]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44
45 #include <asm/processor.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
48
49 #include "mce-internal.h"
50
51 static DEFINE_MUTEX(mce_chrdev_read_mutex);
52
53 #define rcu_dereference_check_mce(p) \
54 rcu_dereference_index_check((p), \
55 rcu_read_lock_sched_held() || \
56 lockdep_is_held(&mce_chrdev_read_mutex))
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
60
61 int mce_disabled __read_mostly;
62
63 #define SPINUNIT 100 /* 100ns */
64
65 atomic_t mce_entry;
66
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68
69 /*
70 * Tolerant levels:
71 * 0: always panic on uncorrected errors, log corrected errors
72 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
73 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
74 * 3: never panic or SIGBUS, log all errors (for testing only)
75 */
76 static int tolerant __read_mostly = 1;
77 static int banks __read_mostly;
78 static int rip_msr __read_mostly;
79 static int mce_bootlog __read_mostly = -1;
80 static int monarch_timeout __read_mostly = -1;
81 static int mce_panic_timeout __read_mostly;
82 static int mce_dont_log_ce __read_mostly;
83 int mce_cmci_disabled __read_mostly;
84 int mce_ignore_ce __read_mostly;
85 int mce_ser __read_mostly;
86
87 struct mce_bank *mce_banks __read_mostly;
88
89 /* User mode helper program triggered by machine check event */
90 static unsigned long mce_need_notify;
91 static char mce_helper[128];
92 static char *mce_helper_argv[2] = { mce_helper, NULL };
93
94 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
95
96 static DEFINE_PER_CPU(struct mce, mces_seen);
97 static int cpu_missing;
98
99 /* MCA banks polled by the period polling timer for corrected events */
100 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
101 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
102 };
103
104 static DEFINE_PER_CPU(struct work_struct, mce_work);
105
106 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
107
108 /*
109 * CPU/chipset specific EDAC code can register a notifier call here to print
110 * MCE errors in a human-readable form.
111 */
112 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
113
114 /* Do initial initialization of a struct mce */
115 void mce_setup(struct mce *m)
116 {
117 memset(m, 0, sizeof(struct mce));
118 m->cpu = m->extcpu = smp_processor_id();
119 rdtscll(m->tsc);
120 /* We hope get_seconds stays lockless */
121 m->time = get_seconds();
122 m->cpuvendor = boot_cpu_data.x86_vendor;
123 m->cpuid = cpuid_eax(1);
124 m->socketid = cpu_data(m->extcpu).phys_proc_id;
125 m->apicid = cpu_data(m->extcpu).initial_apicid;
126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 }
128
129 DEFINE_PER_CPU(struct mce, injectm);
130 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
131
132 /*
133 * Lockless MCE logging infrastructure.
134 * This avoids deadlocks on printk locks without having to break locks. Also
135 * separate MCEs from kernel messages to avoid bogus bug reports.
136 */
137
138 static struct mce_log mcelog = {
139 .signature = MCE_LOG_SIGNATURE,
140 .len = MCE_LOG_LEN,
141 .recordlen = sizeof(struct mce),
142 };
143
144 void mce_log(struct mce *mce)
145 {
146 unsigned next, entry;
147 int ret = 0;
148
149 /* Emit the trace record: */
150 trace_mce_record(mce);
151
152 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
153 if (ret == NOTIFY_STOP)
154 return;
155
156 mce->finished = 0;
157 wmb();
158 for (;;) {
159 entry = rcu_dereference_check_mce(mcelog.next);
160 for (;;) {
161
162 /*
163 * When the buffer fills up discard new entries.
164 * Assume that the earlier errors are the more
165 * interesting ones:
166 */
167 if (entry >= MCE_LOG_LEN) {
168 set_bit(MCE_OVERFLOW,
169 (unsigned long *)&mcelog.flags);
170 return;
171 }
172 /* Old left over entry. Skip: */
173 if (mcelog.entry[entry].finished) {
174 entry++;
175 continue;
176 }
177 break;
178 }
179 smp_rmb();
180 next = entry + 1;
181 if (cmpxchg(&mcelog.next, entry, next) == entry)
182 break;
183 }
184 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
185 wmb();
186 mcelog.entry[entry].finished = 1;
187 wmb();
188
189 mce->finished = 1;
190 set_bit(0, &mce_need_notify);
191 }
192
193 static void drain_mcelog_buffer(void)
194 {
195 unsigned int next, i, prev = 0;
196
197 next = ACCESS_ONCE(mcelog.next);
198
199 do {
200 struct mce *m;
201
202 /* drain what was logged during boot */
203 for (i = prev; i < next; i++) {
204 unsigned long start = jiffies;
205 unsigned retries = 1;
206
207 m = &mcelog.entry[i];
208
209 while (!m->finished) {
210 if (time_after_eq(jiffies, start + 2*retries))
211 retries++;
212
213 cpu_relax();
214
215 if (!m->finished && retries >= 4) {
216 pr_err("skipping error being logged currently!\n");
217 break;
218 }
219 }
220 smp_rmb();
221 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
222 }
223
224 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
225 prev = next;
226 next = cmpxchg(&mcelog.next, prev, 0);
227 } while (next != prev);
228 }
229
230
231 void mce_register_decode_chain(struct notifier_block *nb)
232 {
233 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
234 drain_mcelog_buffer();
235 }
236 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
237
238 void mce_unregister_decode_chain(struct notifier_block *nb)
239 {
240 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
241 }
242 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
243
244 static void print_mce(struct mce *m)
245 {
246 int ret = 0;
247
248 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
249 m->extcpu, m->mcgstatus, m->bank, m->status);
250
251 if (m->ip) {
252 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
253 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
254 m->cs, m->ip);
255
256 if (m->cs == __KERNEL_CS)
257 print_symbol("{%s}", m->ip);
258 pr_cont("\n");
259 }
260
261 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
262 if (m->addr)
263 pr_cont("ADDR %llx ", m->addr);
264 if (m->misc)
265 pr_cont("MISC %llx ", m->misc);
266
267 pr_cont("\n");
268 /*
269 * Note this output is parsed by external tools and old fields
270 * should not be changed.
271 */
272 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
273 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
274 cpu_data(m->extcpu).microcode);
275
276 /*
277 * Print out human-readable details about the MCE error,
278 * (if the CPU has an implementation for that)
279 */
280 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
281 if (ret == NOTIFY_STOP)
282 return;
283
284 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
285 }
286
287 #define PANIC_TIMEOUT 5 /* 5 seconds */
288
289 static atomic_t mce_paniced;
290
291 static int fake_panic;
292 static atomic_t mce_fake_paniced;
293
294 /* Panic in progress. Enable interrupts and wait for final IPI */
295 static void wait_for_panic(void)
296 {
297 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
298
299 preempt_disable();
300 local_irq_enable();
301 while (timeout-- > 0)
302 udelay(1);
303 if (panic_timeout == 0)
304 panic_timeout = mce_panic_timeout;
305 panic("Panicing machine check CPU died");
306 }
307
308 static void mce_panic(char *msg, struct mce *final, char *exp)
309 {
310 int i, apei_err = 0;
311
312 if (!fake_panic) {
313 /*
314 * Make sure only one CPU runs in machine check panic
315 */
316 if (atomic_inc_return(&mce_paniced) > 1)
317 wait_for_panic();
318 barrier();
319
320 bust_spinlocks(1);
321 console_verbose();
322 } else {
323 /* Don't log too much for fake panic */
324 if (atomic_inc_return(&mce_fake_paniced) > 1)
325 return;
326 }
327 /* First print corrected ones that are still unlogged */
328 for (i = 0; i < MCE_LOG_LEN; i++) {
329 struct mce *m = &mcelog.entry[i];
330 if (!(m->status & MCI_STATUS_VAL))
331 continue;
332 if (!(m->status & MCI_STATUS_UC)) {
333 print_mce(m);
334 if (!apei_err)
335 apei_err = apei_write_mce(m);
336 }
337 }
338 /* Now print uncorrected but with the final one last */
339 for (i = 0; i < MCE_LOG_LEN; i++) {
340 struct mce *m = &mcelog.entry[i];
341 if (!(m->status & MCI_STATUS_VAL))
342 continue;
343 if (!(m->status & MCI_STATUS_UC))
344 continue;
345 if (!final || memcmp(m, final, sizeof(struct mce))) {
346 print_mce(m);
347 if (!apei_err)
348 apei_err = apei_write_mce(m);
349 }
350 }
351 if (final) {
352 print_mce(final);
353 if (!apei_err)
354 apei_err = apei_write_mce(final);
355 }
356 if (cpu_missing)
357 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
358 if (exp)
359 pr_emerg(HW_ERR "Machine check: %s\n", exp);
360 if (!fake_panic) {
361 if (panic_timeout == 0)
362 panic_timeout = mce_panic_timeout;
363 panic(msg);
364 } else
365 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
366 }
367
368 /* Support code for software error injection */
369
370 static int msr_to_offset(u32 msr)
371 {
372 unsigned bank = __this_cpu_read(injectm.bank);
373
374 if (msr == rip_msr)
375 return offsetof(struct mce, ip);
376 if (msr == MSR_IA32_MCx_STATUS(bank))
377 return offsetof(struct mce, status);
378 if (msr == MSR_IA32_MCx_ADDR(bank))
379 return offsetof(struct mce, addr);
380 if (msr == MSR_IA32_MCx_MISC(bank))
381 return offsetof(struct mce, misc);
382 if (msr == MSR_IA32_MCG_STATUS)
383 return offsetof(struct mce, mcgstatus);
384 return -1;
385 }
386
387 /* MSR access wrappers used for error injection */
388 static u64 mce_rdmsrl(u32 msr)
389 {
390 u64 v;
391
392 if (__this_cpu_read(injectm.finished)) {
393 int offset = msr_to_offset(msr);
394
395 if (offset < 0)
396 return 0;
397 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
398 }
399
400 if (rdmsrl_safe(msr, &v)) {
401 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
402 /*
403 * Return zero in case the access faulted. This should
404 * not happen normally but can happen if the CPU does
405 * something weird, or if the code is buggy.
406 */
407 v = 0;
408 }
409
410 return v;
411 }
412
413 static void mce_wrmsrl(u32 msr, u64 v)
414 {
415 if (__this_cpu_read(injectm.finished)) {
416 int offset = msr_to_offset(msr);
417
418 if (offset >= 0)
419 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
420 return;
421 }
422 wrmsrl(msr, v);
423 }
424
425 /*
426 * Collect all global (w.r.t. this processor) status about this machine
427 * check into our "mce" struct so that we can use it later to assess
428 * the severity of the problem as we read per-bank specific details.
429 */
430 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
431 {
432 mce_setup(m);
433
434 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
435 if (regs) {
436 /*
437 * Get the address of the instruction at the time of
438 * the machine check error.
439 */
440 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
441 m->ip = regs->ip;
442 m->cs = regs->cs;
443
444 /*
445 * When in VM86 mode make the cs look like ring 3
446 * always. This is a lie, but it's better than passing
447 * the additional vm86 bit around everywhere.
448 */
449 if (v8086_mode(regs))
450 m->cs |= 3;
451 }
452 /* Use accurate RIP reporting if available. */
453 if (rip_msr)
454 m->ip = mce_rdmsrl(rip_msr);
455 }
456 }
457
458 /*
459 * Simple lockless ring to communicate PFNs from the exception handler with the
460 * process context work function. This is vastly simplified because there's
461 * only a single reader and a single writer.
462 */
463 #define MCE_RING_SIZE 16 /* we use one entry less */
464
465 struct mce_ring {
466 unsigned short start;
467 unsigned short end;
468 unsigned long ring[MCE_RING_SIZE];
469 };
470 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
471
472 /* Runs with CPU affinity in workqueue */
473 static int mce_ring_empty(void)
474 {
475 struct mce_ring *r = &__get_cpu_var(mce_ring);
476
477 return r->start == r->end;
478 }
479
480 static int mce_ring_get(unsigned long *pfn)
481 {
482 struct mce_ring *r;
483 int ret = 0;
484
485 *pfn = 0;
486 get_cpu();
487 r = &__get_cpu_var(mce_ring);
488 if (r->start == r->end)
489 goto out;
490 *pfn = r->ring[r->start];
491 r->start = (r->start + 1) % MCE_RING_SIZE;
492 ret = 1;
493 out:
494 put_cpu();
495 return ret;
496 }
497
498 /* Always runs in MCE context with preempt off */
499 static int mce_ring_add(unsigned long pfn)
500 {
501 struct mce_ring *r = &__get_cpu_var(mce_ring);
502 unsigned next;
503
504 next = (r->end + 1) % MCE_RING_SIZE;
505 if (next == r->start)
506 return -1;
507 r->ring[r->end] = pfn;
508 wmb();
509 r->end = next;
510 return 0;
511 }
512
513 int mce_available(struct cpuinfo_x86 *c)
514 {
515 if (mce_disabled)
516 return 0;
517 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
518 }
519
520 static void mce_schedule_work(void)
521 {
522 if (!mce_ring_empty()) {
523 struct work_struct *work = &__get_cpu_var(mce_work);
524 if (!work_pending(work))
525 schedule_work(work);
526 }
527 }
528
529 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
530
531 static void mce_irq_work_cb(struct irq_work *entry)
532 {
533 mce_notify_irq();
534 mce_schedule_work();
535 }
536
537 static void mce_report_event(struct pt_regs *regs)
538 {
539 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
540 mce_notify_irq();
541 /*
542 * Triggering the work queue here is just an insurance
543 * policy in case the syscall exit notify handler
544 * doesn't run soon enough or ends up running on the
545 * wrong CPU (can happen when audit sleeps)
546 */
547 mce_schedule_work();
548 return;
549 }
550
551 irq_work_queue(&__get_cpu_var(mce_irq_work));
552 }
553
554 /*
555 * Read ADDR and MISC registers.
556 */
557 static void mce_read_aux(struct mce *m, int i)
558 {
559 if (m->status & MCI_STATUS_MISCV)
560 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
561 if (m->status & MCI_STATUS_ADDRV) {
562 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
563
564 /*
565 * Mask the reported address by the reported granularity.
566 */
567 if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
568 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
569 m->addr >>= shift;
570 m->addr <<= shift;
571 }
572 }
573 }
574
575 DEFINE_PER_CPU(unsigned, mce_poll_count);
576
577 /*
578 * Poll for corrected events or events that happened before reset.
579 * Those are just logged through /dev/mcelog.
580 *
581 * This is executed in standard interrupt context.
582 *
583 * Note: spec recommends to panic for fatal unsignalled
584 * errors here. However this would be quite problematic --
585 * we would need to reimplement the Monarch handling and
586 * it would mess up the exclusion between exception handler
587 * and poll hander -- * so we skip this for now.
588 * These cases should not happen anyways, or only when the CPU
589 * is already totally * confused. In this case it's likely it will
590 * not fully execute the machine check handler either.
591 */
592 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
593 {
594 struct mce m;
595 int i;
596
597 this_cpu_inc(mce_poll_count);
598
599 mce_gather_info(&m, NULL);
600
601 for (i = 0; i < banks; i++) {
602 if (!mce_banks[i].ctl || !test_bit(i, *b))
603 continue;
604
605 m.misc = 0;
606 m.addr = 0;
607 m.bank = i;
608 m.tsc = 0;
609
610 barrier();
611 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
612 if (!(m.status & MCI_STATUS_VAL))
613 continue;
614
615 /*
616 * Uncorrected or signalled events are handled by the exception
617 * handler when it is enabled, so don't process those here.
618 *
619 * TBD do the same check for MCI_STATUS_EN here?
620 */
621 if (!(flags & MCP_UC) &&
622 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
623 continue;
624
625 mce_read_aux(&m, i);
626
627 if (!(flags & MCP_TIMESTAMP))
628 m.tsc = 0;
629 /*
630 * Don't get the IP here because it's unlikely to
631 * have anything to do with the actual error location.
632 */
633 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
634 mce_log(&m);
635
636 /*
637 * Clear state for this bank.
638 */
639 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
640 }
641
642 /*
643 * Don't clear MCG_STATUS here because it's only defined for
644 * exceptions.
645 */
646
647 sync_core();
648 }
649 EXPORT_SYMBOL_GPL(machine_check_poll);
650
651 /*
652 * Do a quick check if any of the events requires a panic.
653 * This decides if we keep the events around or clear them.
654 */
655 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
656 struct pt_regs *regs)
657 {
658 int i, ret = 0;
659
660 for (i = 0; i < banks; i++) {
661 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
662 if (m->status & MCI_STATUS_VAL) {
663 __set_bit(i, validp);
664 if (quirk_no_way_out)
665 quirk_no_way_out(i, m, regs);
666 }
667 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
668 ret = 1;
669 }
670 return ret;
671 }
672
673 /*
674 * Variable to establish order between CPUs while scanning.
675 * Each CPU spins initially until executing is equal its number.
676 */
677 static atomic_t mce_executing;
678
679 /*
680 * Defines order of CPUs on entry. First CPU becomes Monarch.
681 */
682 static atomic_t mce_callin;
683
684 /*
685 * Check if a timeout waiting for other CPUs happened.
686 */
687 static int mce_timed_out(u64 *t)
688 {
689 /*
690 * The others already did panic for some reason.
691 * Bail out like in a timeout.
692 * rmb() to tell the compiler that system_state
693 * might have been modified by someone else.
694 */
695 rmb();
696 if (atomic_read(&mce_paniced))
697 wait_for_panic();
698 if (!monarch_timeout)
699 goto out;
700 if ((s64)*t < SPINUNIT) {
701 /* CHECKME: Make panic default for 1 too? */
702 if (tolerant < 1)
703 mce_panic("Timeout synchronizing machine check over CPUs",
704 NULL, NULL);
705 cpu_missing = 1;
706 return 1;
707 }
708 *t -= SPINUNIT;
709 out:
710 touch_nmi_watchdog();
711 return 0;
712 }
713
714 /*
715 * The Monarch's reign. The Monarch is the CPU who entered
716 * the machine check handler first. It waits for the others to
717 * raise the exception too and then grades them. When any
718 * error is fatal panic. Only then let the others continue.
719 *
720 * The other CPUs entering the MCE handler will be controlled by the
721 * Monarch. They are called Subjects.
722 *
723 * This way we prevent any potential data corruption in a unrecoverable case
724 * and also makes sure always all CPU's errors are examined.
725 *
726 * Also this detects the case of a machine check event coming from outer
727 * space (not detected by any CPUs) In this case some external agent wants
728 * us to shut down, so panic too.
729 *
730 * The other CPUs might still decide to panic if the handler happens
731 * in a unrecoverable place, but in this case the system is in a semi-stable
732 * state and won't corrupt anything by itself. It's ok to let the others
733 * continue for a bit first.
734 *
735 * All the spin loops have timeouts; when a timeout happens a CPU
736 * typically elects itself to be Monarch.
737 */
738 static void mce_reign(void)
739 {
740 int cpu;
741 struct mce *m = NULL;
742 int global_worst = 0;
743 char *msg = NULL;
744 char *nmsg = NULL;
745
746 /*
747 * This CPU is the Monarch and the other CPUs have run
748 * through their handlers.
749 * Grade the severity of the errors of all the CPUs.
750 */
751 for_each_possible_cpu(cpu) {
752 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
753 &nmsg);
754 if (severity > global_worst) {
755 msg = nmsg;
756 global_worst = severity;
757 m = &per_cpu(mces_seen, cpu);
758 }
759 }
760
761 /*
762 * Cannot recover? Panic here then.
763 * This dumps all the mces in the log buffer and stops the
764 * other CPUs.
765 */
766 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
767 mce_panic("Fatal Machine check", m, msg);
768
769 /*
770 * For UC somewhere we let the CPU who detects it handle it.
771 * Also must let continue the others, otherwise the handling
772 * CPU could deadlock on a lock.
773 */
774
775 /*
776 * No machine check event found. Must be some external
777 * source or one CPU is hung. Panic.
778 */
779 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
780 mce_panic("Machine check from unknown source", NULL, NULL);
781
782 /*
783 * Now clear all the mces_seen so that they don't reappear on
784 * the next mce.
785 */
786 for_each_possible_cpu(cpu)
787 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
788 }
789
790 static atomic_t global_nwo;
791
792 /*
793 * Start of Monarch synchronization. This waits until all CPUs have
794 * entered the exception handler and then determines if any of them
795 * saw a fatal event that requires panic. Then it executes them
796 * in the entry order.
797 * TBD double check parallel CPU hotunplug
798 */
799 static int mce_start(int *no_way_out)
800 {
801 int order;
802 int cpus = num_online_cpus();
803 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
804
805 if (!timeout)
806 return -1;
807
808 atomic_add(*no_way_out, &global_nwo);
809 /*
810 * global_nwo should be updated before mce_callin
811 */
812 smp_wmb();
813 order = atomic_inc_return(&mce_callin);
814
815 /*
816 * Wait for everyone.
817 */
818 while (atomic_read(&mce_callin) != cpus) {
819 if (mce_timed_out(&timeout)) {
820 atomic_set(&global_nwo, 0);
821 return -1;
822 }
823 ndelay(SPINUNIT);
824 }
825
826 /*
827 * mce_callin should be read before global_nwo
828 */
829 smp_rmb();
830
831 if (order == 1) {
832 /*
833 * Monarch: Starts executing now, the others wait.
834 */
835 atomic_set(&mce_executing, 1);
836 } else {
837 /*
838 * Subject: Now start the scanning loop one by one in
839 * the original callin order.
840 * This way when there are any shared banks it will be
841 * only seen by one CPU before cleared, avoiding duplicates.
842 */
843 while (atomic_read(&mce_executing) < order) {
844 if (mce_timed_out(&timeout)) {
845 atomic_set(&global_nwo, 0);
846 return -1;
847 }
848 ndelay(SPINUNIT);
849 }
850 }
851
852 /*
853 * Cache the global no_way_out state.
854 */
855 *no_way_out = atomic_read(&global_nwo);
856
857 return order;
858 }
859
860 /*
861 * Synchronize between CPUs after main scanning loop.
862 * This invokes the bulk of the Monarch processing.
863 */
864 static int mce_end(int order)
865 {
866 int ret = -1;
867 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
868
869 if (!timeout)
870 goto reset;
871 if (order < 0)
872 goto reset;
873
874 /*
875 * Allow others to run.
876 */
877 atomic_inc(&mce_executing);
878
879 if (order == 1) {
880 /* CHECKME: Can this race with a parallel hotplug? */
881 int cpus = num_online_cpus();
882
883 /*
884 * Monarch: Wait for everyone to go through their scanning
885 * loops.
886 */
887 while (atomic_read(&mce_executing) <= cpus) {
888 if (mce_timed_out(&timeout))
889 goto reset;
890 ndelay(SPINUNIT);
891 }
892
893 mce_reign();
894 barrier();
895 ret = 0;
896 } else {
897 /*
898 * Subject: Wait for Monarch to finish.
899 */
900 while (atomic_read(&mce_executing) != 0) {
901 if (mce_timed_out(&timeout))
902 goto reset;
903 ndelay(SPINUNIT);
904 }
905
906 /*
907 * Don't reset anything. That's done by the Monarch.
908 */
909 return 0;
910 }
911
912 /*
913 * Reset all global state.
914 */
915 reset:
916 atomic_set(&global_nwo, 0);
917 atomic_set(&mce_callin, 0);
918 barrier();
919
920 /*
921 * Let others run again.
922 */
923 atomic_set(&mce_executing, 0);
924 return ret;
925 }
926
927 /*
928 * Check if the address reported by the CPU is in a format we can parse.
929 * It would be possible to add code for most other cases, but all would
930 * be somewhat complicated (e.g. segment offset would require an instruction
931 * parser). So only support physical addresses up to page granuality for now.
932 */
933 static int mce_usable_address(struct mce *m)
934 {
935 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
936 return 0;
937 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
938 return 0;
939 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
940 return 0;
941 return 1;
942 }
943
944 static void mce_clear_state(unsigned long *toclear)
945 {
946 int i;
947
948 for (i = 0; i < banks; i++) {
949 if (test_bit(i, toclear))
950 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
951 }
952 }
953
954 /*
955 * Need to save faulting physical address associated with a process
956 * in the machine check handler some place where we can grab it back
957 * later in mce_notify_process()
958 */
959 #define MCE_INFO_MAX 16
960
961 struct mce_info {
962 atomic_t inuse;
963 struct task_struct *t;
964 __u64 paddr;
965 int restartable;
966 } mce_info[MCE_INFO_MAX];
967
968 static void mce_save_info(__u64 addr, int c)
969 {
970 struct mce_info *mi;
971
972 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
973 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
974 mi->t = current;
975 mi->paddr = addr;
976 mi->restartable = c;
977 return;
978 }
979 }
980
981 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
982 }
983
984 static struct mce_info *mce_find_info(void)
985 {
986 struct mce_info *mi;
987
988 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
989 if (atomic_read(&mi->inuse) && mi->t == current)
990 return mi;
991 return NULL;
992 }
993
994 static void mce_clear_info(struct mce_info *mi)
995 {
996 atomic_set(&mi->inuse, 0);
997 }
998
999 /*
1000 * The actual machine check handler. This only handles real
1001 * exceptions when something got corrupted coming in through int 18.
1002 *
1003 * This is executed in NMI context not subject to normal locking rules. This
1004 * implies that most kernel services cannot be safely used. Don't even
1005 * think about putting a printk in there!
1006 *
1007 * On Intel systems this is entered on all CPUs in parallel through
1008 * MCE broadcast. However some CPUs might be broken beyond repair,
1009 * so be always careful when synchronizing with others.
1010 */
1011 void do_machine_check(struct pt_regs *regs, long error_code)
1012 {
1013 struct mce m, *final;
1014 int i;
1015 int worst = 0;
1016 int severity;
1017 /*
1018 * Establish sequential order between the CPUs entering the machine
1019 * check handler.
1020 */
1021 int order;
1022 /*
1023 * If no_way_out gets set, there is no safe way to recover from this
1024 * MCE. If tolerant is cranked up, we'll try anyway.
1025 */
1026 int no_way_out = 0;
1027 /*
1028 * If kill_it gets set, there might be a way to recover from this
1029 * error.
1030 */
1031 int kill_it = 0;
1032 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1033 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1034 char *msg = "Unknown";
1035
1036 atomic_inc(&mce_entry);
1037
1038 this_cpu_inc(mce_exception_count);
1039
1040 if (!banks)
1041 goto out;
1042
1043 mce_gather_info(&m, regs);
1044
1045 final = &__get_cpu_var(mces_seen);
1046 *final = m;
1047
1048 memset(valid_banks, 0, sizeof(valid_banks));
1049 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1050
1051 barrier();
1052
1053 /*
1054 * When no restart IP might need to kill or panic.
1055 * Assume the worst for now, but if we find the
1056 * severity is MCE_AR_SEVERITY we have other options.
1057 */
1058 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1059 kill_it = 1;
1060
1061 /*
1062 * Go through all the banks in exclusion of the other CPUs.
1063 * This way we don't report duplicated events on shared banks
1064 * because the first one to see it will clear it.
1065 */
1066 order = mce_start(&no_way_out);
1067 for (i = 0; i < banks; i++) {
1068 __clear_bit(i, toclear);
1069 if (!test_bit(i, valid_banks))
1070 continue;
1071 if (!mce_banks[i].ctl)
1072 continue;
1073
1074 m.misc = 0;
1075 m.addr = 0;
1076 m.bank = i;
1077
1078 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1079 if ((m.status & MCI_STATUS_VAL) == 0)
1080 continue;
1081
1082 /*
1083 * Non uncorrected or non signaled errors are handled by
1084 * machine_check_poll. Leave them alone, unless this panics.
1085 */
1086 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1087 !no_way_out)
1088 continue;
1089
1090 /*
1091 * Set taint even when machine check was not enabled.
1092 */
1093 add_taint(TAINT_MACHINE_CHECK);
1094
1095 severity = mce_severity(&m, tolerant, NULL);
1096
1097 /*
1098 * When machine check was for corrected handler don't touch,
1099 * unless we're panicing.
1100 */
1101 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1102 continue;
1103 __set_bit(i, toclear);
1104 if (severity == MCE_NO_SEVERITY) {
1105 /*
1106 * Machine check event was not enabled. Clear, but
1107 * ignore.
1108 */
1109 continue;
1110 }
1111
1112 mce_read_aux(&m, i);
1113
1114 /*
1115 * Action optional error. Queue address for later processing.
1116 * When the ring overflows we just ignore the AO error.
1117 * RED-PEN add some logging mechanism when
1118 * usable_address or mce_add_ring fails.
1119 * RED-PEN don't ignore overflow for tolerant == 0
1120 */
1121 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1122 mce_ring_add(m.addr >> PAGE_SHIFT);
1123
1124 mce_log(&m);
1125
1126 if (severity > worst) {
1127 *final = m;
1128 worst = severity;
1129 }
1130 }
1131
1132 /* mce_clear_state will clear *final, save locally for use later */
1133 m = *final;
1134
1135 if (!no_way_out)
1136 mce_clear_state(toclear);
1137
1138 /*
1139 * Do most of the synchronization with other CPUs.
1140 * When there's any problem use only local no_way_out state.
1141 */
1142 if (mce_end(order) < 0)
1143 no_way_out = worst >= MCE_PANIC_SEVERITY;
1144
1145 /*
1146 * At insane "tolerant" levels we take no action. Otherwise
1147 * we only die if we have no other choice. For less serious
1148 * issues we try to recover, or limit damage to the current
1149 * process.
1150 */
1151 if (tolerant < 3) {
1152 if (no_way_out)
1153 mce_panic("Fatal machine check on current CPU", &m, msg);
1154 if (worst == MCE_AR_SEVERITY) {
1155 /* schedule action before return to userland */
1156 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1157 set_thread_flag(TIF_MCE_NOTIFY);
1158 } else if (kill_it) {
1159 force_sig(SIGBUS, current);
1160 }
1161 }
1162
1163 if (worst > 0)
1164 mce_report_event(regs);
1165 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1166 out:
1167 atomic_dec(&mce_entry);
1168 sync_core();
1169 }
1170 EXPORT_SYMBOL_GPL(do_machine_check);
1171
1172 #ifndef CONFIG_MEMORY_FAILURE
1173 int memory_failure(unsigned long pfn, int vector, int flags)
1174 {
1175 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1176 BUG_ON(flags & MF_ACTION_REQUIRED);
1177 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1178 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1179 pfn);
1180
1181 return 0;
1182 }
1183 #endif
1184
1185 /*
1186 * Called in process context that interrupted by MCE and marked with
1187 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1188 * This code is allowed to sleep.
1189 * Attempt possible recovery such as calling the high level VM handler to
1190 * process any corrupted pages, and kill/signal current process if required.
1191 * Action required errors are handled here.
1192 */
1193 void mce_notify_process(void)
1194 {
1195 unsigned long pfn;
1196 struct mce_info *mi = mce_find_info();
1197 int flags = MF_ACTION_REQUIRED;
1198
1199 if (!mi)
1200 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1201 pfn = mi->paddr >> PAGE_SHIFT;
1202
1203 clear_thread_flag(TIF_MCE_NOTIFY);
1204
1205 pr_err("Uncorrected hardware memory error in user-access at %llx",
1206 mi->paddr);
1207 /*
1208 * We must call memory_failure() here even if the current process is
1209 * doomed. We still need to mark the page as poisoned and alert any
1210 * other users of the page.
1211 */
1212 if (!mi->restartable)
1213 flags |= MF_MUST_KILL;
1214 if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1215 pr_err("Memory error not recovered");
1216 force_sig(SIGBUS, current);
1217 }
1218 mce_clear_info(mi);
1219 }
1220
1221 /*
1222 * Action optional processing happens here (picking up
1223 * from the list of faulting pages that do_machine_check()
1224 * placed into the "ring").
1225 */
1226 static void mce_process_work(struct work_struct *dummy)
1227 {
1228 unsigned long pfn;
1229
1230 while (mce_ring_get(&pfn))
1231 memory_failure(pfn, MCE_VECTOR, 0);
1232 }
1233
1234 #ifdef CONFIG_X86_MCE_INTEL
1235 /***
1236 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1237 * @cpu: The CPU on which the event occurred.
1238 * @status: Event status information
1239 *
1240 * This function should be called by the thermal interrupt after the
1241 * event has been processed and the decision was made to log the event
1242 * further.
1243 *
1244 * The status parameter will be saved to the 'status' field of 'struct mce'
1245 * and historically has been the register value of the
1246 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1247 */
1248 void mce_log_therm_throt_event(__u64 status)
1249 {
1250 struct mce m;
1251
1252 mce_setup(&m);
1253 m.bank = MCE_THERMAL_BANK;
1254 m.status = status;
1255 mce_log(&m);
1256 }
1257 #endif /* CONFIG_X86_MCE_INTEL */
1258
1259 /*
1260 * Periodic polling timer for "silent" machine check errors. If the
1261 * poller finds an MCE, poll 2x faster. When the poller finds no more
1262 * errors, poll 2x slower (up to check_interval seconds).
1263 */
1264 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1265
1266 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1267 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1268
1269 static void mce_timer_fn(unsigned long data)
1270 {
1271 struct timer_list *t = &__get_cpu_var(mce_timer);
1272 unsigned long iv;
1273
1274 WARN_ON(smp_processor_id() != data);
1275
1276 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1277 machine_check_poll(MCP_TIMESTAMP,
1278 &__get_cpu_var(mce_poll_banks));
1279 }
1280
1281 /*
1282 * Alert userspace if needed. If we logged an MCE, reduce the
1283 * polling interval, otherwise increase the polling interval.
1284 */
1285 iv = __this_cpu_read(mce_next_interval);
1286 if (mce_notify_irq())
1287 iv = max(iv / 2, (unsigned long) HZ/100);
1288 else
1289 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1290 __this_cpu_write(mce_next_interval, iv);
1291
1292 t->expires = jiffies + iv;
1293 add_timer_on(t, smp_processor_id());
1294 }
1295
1296 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1297 static void mce_timer_delete_all(void)
1298 {
1299 int cpu;
1300
1301 for_each_online_cpu(cpu)
1302 del_timer_sync(&per_cpu(mce_timer, cpu));
1303 }
1304
1305 static void mce_do_trigger(struct work_struct *work)
1306 {
1307 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1308 }
1309
1310 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1311
1312 /*
1313 * Notify the user(s) about new machine check events.
1314 * Can be called from interrupt context, but not from machine check/NMI
1315 * context.
1316 */
1317 int mce_notify_irq(void)
1318 {
1319 /* Not more than two messages every minute */
1320 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1321
1322 if (test_and_clear_bit(0, &mce_need_notify)) {
1323 /* wake processes polling /dev/mcelog */
1324 wake_up_interruptible(&mce_chrdev_wait);
1325
1326 /*
1327 * There is no risk of missing notifications because
1328 * work_pending is always cleared before the function is
1329 * executed.
1330 */
1331 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1332 schedule_work(&mce_trigger_work);
1333
1334 if (__ratelimit(&ratelimit))
1335 pr_info(HW_ERR "Machine check events logged\n");
1336
1337 return 1;
1338 }
1339 return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(mce_notify_irq);
1342
1343 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1344 {
1345 int i;
1346
1347 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1348 if (!mce_banks)
1349 return -ENOMEM;
1350 for (i = 0; i < banks; i++) {
1351 struct mce_bank *b = &mce_banks[i];
1352
1353 b->ctl = -1ULL;
1354 b->init = 1;
1355 }
1356 return 0;
1357 }
1358
1359 /*
1360 * Initialize Machine Checks for a CPU.
1361 */
1362 static int __cpuinit __mcheck_cpu_cap_init(void)
1363 {
1364 unsigned b;
1365 u64 cap;
1366
1367 rdmsrl(MSR_IA32_MCG_CAP, cap);
1368
1369 b = cap & MCG_BANKCNT_MASK;
1370 if (!banks)
1371 pr_info("CPU supports %d MCE banks\n", b);
1372
1373 if (b > MAX_NR_BANKS) {
1374 pr_warn("Using only %u machine check banks out of %u\n",
1375 MAX_NR_BANKS, b);
1376 b = MAX_NR_BANKS;
1377 }
1378
1379 /* Don't support asymmetric configurations today */
1380 WARN_ON(banks != 0 && b != banks);
1381 banks = b;
1382 if (!mce_banks) {
1383 int err = __mcheck_cpu_mce_banks_init();
1384
1385 if (err)
1386 return err;
1387 }
1388
1389 /* Use accurate RIP reporting if available. */
1390 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1391 rip_msr = MSR_IA32_MCG_EIP;
1392
1393 if (cap & MCG_SER_P)
1394 mce_ser = 1;
1395
1396 return 0;
1397 }
1398
1399 static void __mcheck_cpu_init_generic(void)
1400 {
1401 mce_banks_t all_banks;
1402 u64 cap;
1403 int i;
1404
1405 /*
1406 * Log the machine checks left over from the previous reset.
1407 */
1408 bitmap_fill(all_banks, MAX_NR_BANKS);
1409 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1410
1411 set_in_cr4(X86_CR4_MCE);
1412
1413 rdmsrl(MSR_IA32_MCG_CAP, cap);
1414 if (cap & MCG_CTL_P)
1415 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1416
1417 for (i = 0; i < banks; i++) {
1418 struct mce_bank *b = &mce_banks[i];
1419
1420 if (!b->init)
1421 continue;
1422 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1423 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1424 }
1425 }
1426
1427 /*
1428 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1429 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1430 * Vol 3B Table 15-20). But this confuses both the code that determines
1431 * whether the machine check occurred in kernel or user mode, and also
1432 * the severity assessment code. Pretend that EIPV was set, and take the
1433 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1434 */
1435 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1436 {
1437 if (bank != 0)
1438 return;
1439 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1440 return;
1441 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1442 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1443 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1444 MCACOD)) !=
1445 (MCI_STATUS_UC|MCI_STATUS_EN|
1446 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1447 MCI_STATUS_AR|MCACOD_INSTR))
1448 return;
1449
1450 m->mcgstatus |= MCG_STATUS_EIPV;
1451 m->ip = regs->ip;
1452 m->cs = regs->cs;
1453 }
1454
1455 /* Add per CPU specific workarounds here */
1456 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1457 {
1458 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1459 pr_info("unknown CPU type - not enabling MCE support\n");
1460 return -EOPNOTSUPP;
1461 }
1462
1463 /* This should be disabled by the BIOS, but isn't always */
1464 if (c->x86_vendor == X86_VENDOR_AMD) {
1465 if (c->x86 == 15 && banks > 4) {
1466 /*
1467 * disable GART TBL walk error reporting, which
1468 * trips off incorrectly with the IOMMU & 3ware
1469 * & Cerberus:
1470 */
1471 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1472 }
1473 if (c->x86 <= 17 && mce_bootlog < 0) {
1474 /*
1475 * Lots of broken BIOS around that don't clear them
1476 * by default and leave crap in there. Don't log:
1477 */
1478 mce_bootlog = 0;
1479 }
1480 /*
1481 * Various K7s with broken bank 0 around. Always disable
1482 * by default.
1483 */
1484 if (c->x86 == 6 && banks > 0)
1485 mce_banks[0].ctl = 0;
1486
1487 /*
1488 * Turn off MC4_MISC thresholding banks on those models since
1489 * they're not supported there.
1490 */
1491 if (c->x86 == 0x15 &&
1492 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1493 int i;
1494 u64 val, hwcr;
1495 bool need_toggle;
1496 u32 msrs[] = {
1497 0x00000413, /* MC4_MISC0 */
1498 0xc0000408, /* MC4_MISC1 */
1499 };
1500
1501 rdmsrl(MSR_K7_HWCR, hwcr);
1502
1503 /* McStatusWrEn has to be set */
1504 need_toggle = !(hwcr & BIT(18));
1505
1506 if (need_toggle)
1507 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1508
1509 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1510 rdmsrl(msrs[i], val);
1511
1512 /* CntP bit set? */
1513 if (val & BIT_64(62)) {
1514 val &= ~BIT_64(62);
1515 wrmsrl(msrs[i], val);
1516 }
1517 }
1518
1519 /* restore old settings */
1520 if (need_toggle)
1521 wrmsrl(MSR_K7_HWCR, hwcr);
1522 }
1523 }
1524
1525 if (c->x86_vendor == X86_VENDOR_INTEL) {
1526 /*
1527 * SDM documents that on family 6 bank 0 should not be written
1528 * because it aliases to another special BIOS controlled
1529 * register.
1530 * But it's not aliased anymore on model 0x1a+
1531 * Don't ignore bank 0 completely because there could be a
1532 * valid event later, merely don't write CTL0.
1533 */
1534
1535 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1536 mce_banks[0].init = 0;
1537
1538 /*
1539 * All newer Intel systems support MCE broadcasting. Enable
1540 * synchronization with a one second timeout.
1541 */
1542 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1543 monarch_timeout < 0)
1544 monarch_timeout = USEC_PER_SEC;
1545
1546 /*
1547 * There are also broken BIOSes on some Pentium M and
1548 * earlier systems:
1549 */
1550 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1551 mce_bootlog = 0;
1552
1553 if (c->x86 == 6 && c->x86_model == 45)
1554 quirk_no_way_out = quirk_sandybridge_ifu;
1555 }
1556 if (monarch_timeout < 0)
1557 monarch_timeout = 0;
1558 if (mce_bootlog != 0)
1559 mce_panic_timeout = 30;
1560
1561 return 0;
1562 }
1563
1564 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1565 {
1566 if (c->x86 != 5)
1567 return 0;
1568
1569 switch (c->x86_vendor) {
1570 case X86_VENDOR_INTEL:
1571 intel_p5_mcheck_init(c);
1572 return 1;
1573 break;
1574 case X86_VENDOR_CENTAUR:
1575 winchip_mcheck_init(c);
1576 return 1;
1577 break;
1578 }
1579
1580 return 0;
1581 }
1582
1583 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1584 {
1585 switch (c->x86_vendor) {
1586 case X86_VENDOR_INTEL:
1587 mce_intel_feature_init(c);
1588 break;
1589 case X86_VENDOR_AMD:
1590 mce_amd_feature_init(c);
1591 break;
1592 default:
1593 break;
1594 }
1595 }
1596
1597 static void __mcheck_cpu_init_timer(void)
1598 {
1599 struct timer_list *t = &__get_cpu_var(mce_timer);
1600 unsigned long iv = check_interval * HZ;
1601
1602 setup_timer(t, mce_timer_fn, smp_processor_id());
1603
1604 if (mce_ignore_ce)
1605 return;
1606
1607 __this_cpu_write(mce_next_interval, iv);
1608 if (!iv)
1609 return;
1610 t->expires = round_jiffies(jiffies + iv);
1611 add_timer_on(t, smp_processor_id());
1612 }
1613
1614 /* Handle unconfigured int18 (should never happen) */
1615 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1616 {
1617 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1618 smp_processor_id());
1619 }
1620
1621 /* Call the installed machine check handler for this CPU setup. */
1622 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1623 unexpected_machine_check;
1624
1625 /*
1626 * Called for each booted CPU to set up machine checks.
1627 * Must be called with preempt off:
1628 */
1629 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1630 {
1631 if (mce_disabled)
1632 return;
1633
1634 if (__mcheck_cpu_ancient_init(c))
1635 return;
1636
1637 if (!mce_available(c))
1638 return;
1639
1640 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1641 mce_disabled = 1;
1642 return;
1643 }
1644
1645 machine_check_vector = do_machine_check;
1646
1647 __mcheck_cpu_init_generic();
1648 __mcheck_cpu_init_vendor(c);
1649 __mcheck_cpu_init_timer();
1650 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1651 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1652 }
1653
1654 /*
1655 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1656 */
1657
1658 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1659 static int mce_chrdev_open_count; /* #times opened */
1660 static int mce_chrdev_open_exclu; /* already open exclusive? */
1661
1662 static int mce_chrdev_open(struct inode *inode, struct file *file)
1663 {
1664 spin_lock(&mce_chrdev_state_lock);
1665
1666 if (mce_chrdev_open_exclu ||
1667 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1668 spin_unlock(&mce_chrdev_state_lock);
1669
1670 return -EBUSY;
1671 }
1672
1673 if (file->f_flags & O_EXCL)
1674 mce_chrdev_open_exclu = 1;
1675 mce_chrdev_open_count++;
1676
1677 spin_unlock(&mce_chrdev_state_lock);
1678
1679 return nonseekable_open(inode, file);
1680 }
1681
1682 static int mce_chrdev_release(struct inode *inode, struct file *file)
1683 {
1684 spin_lock(&mce_chrdev_state_lock);
1685
1686 mce_chrdev_open_count--;
1687 mce_chrdev_open_exclu = 0;
1688
1689 spin_unlock(&mce_chrdev_state_lock);
1690
1691 return 0;
1692 }
1693
1694 static void collect_tscs(void *data)
1695 {
1696 unsigned long *cpu_tsc = (unsigned long *)data;
1697
1698 rdtscll(cpu_tsc[smp_processor_id()]);
1699 }
1700
1701 static int mce_apei_read_done;
1702
1703 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1704 static int __mce_read_apei(char __user **ubuf, size_t usize)
1705 {
1706 int rc;
1707 u64 record_id;
1708 struct mce m;
1709
1710 if (usize < sizeof(struct mce))
1711 return -EINVAL;
1712
1713 rc = apei_read_mce(&m, &record_id);
1714 /* Error or no more MCE record */
1715 if (rc <= 0) {
1716 mce_apei_read_done = 1;
1717 /*
1718 * When ERST is disabled, mce_chrdev_read() should return
1719 * "no record" instead of "no device."
1720 */
1721 if (rc == -ENODEV)
1722 return 0;
1723 return rc;
1724 }
1725 rc = -EFAULT;
1726 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1727 return rc;
1728 /*
1729 * In fact, we should have cleared the record after that has
1730 * been flushed to the disk or sent to network in
1731 * /sbin/mcelog, but we have no interface to support that now,
1732 * so just clear it to avoid duplication.
1733 */
1734 rc = apei_clear_mce(record_id);
1735 if (rc) {
1736 mce_apei_read_done = 1;
1737 return rc;
1738 }
1739 *ubuf += sizeof(struct mce);
1740
1741 return 0;
1742 }
1743
1744 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1745 size_t usize, loff_t *off)
1746 {
1747 char __user *buf = ubuf;
1748 unsigned long *cpu_tsc;
1749 unsigned prev, next;
1750 int i, err;
1751
1752 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1753 if (!cpu_tsc)
1754 return -ENOMEM;
1755
1756 mutex_lock(&mce_chrdev_read_mutex);
1757
1758 if (!mce_apei_read_done) {
1759 err = __mce_read_apei(&buf, usize);
1760 if (err || buf != ubuf)
1761 goto out;
1762 }
1763
1764 next = rcu_dereference_check_mce(mcelog.next);
1765
1766 /* Only supports full reads right now */
1767 err = -EINVAL;
1768 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1769 goto out;
1770
1771 err = 0;
1772 prev = 0;
1773 do {
1774 for (i = prev; i < next; i++) {
1775 unsigned long start = jiffies;
1776 struct mce *m = &mcelog.entry[i];
1777
1778 while (!m->finished) {
1779 if (time_after_eq(jiffies, start + 2)) {
1780 memset(m, 0, sizeof(*m));
1781 goto timeout;
1782 }
1783 cpu_relax();
1784 }
1785 smp_rmb();
1786 err |= copy_to_user(buf, m, sizeof(*m));
1787 buf += sizeof(*m);
1788 timeout:
1789 ;
1790 }
1791
1792 memset(mcelog.entry + prev, 0,
1793 (next - prev) * sizeof(struct mce));
1794 prev = next;
1795 next = cmpxchg(&mcelog.next, prev, 0);
1796 } while (next != prev);
1797
1798 synchronize_sched();
1799
1800 /*
1801 * Collect entries that were still getting written before the
1802 * synchronize.
1803 */
1804 on_each_cpu(collect_tscs, cpu_tsc, 1);
1805
1806 for (i = next; i < MCE_LOG_LEN; i++) {
1807 struct mce *m = &mcelog.entry[i];
1808
1809 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1810 err |= copy_to_user(buf, m, sizeof(*m));
1811 smp_rmb();
1812 buf += sizeof(*m);
1813 memset(m, 0, sizeof(*m));
1814 }
1815 }
1816
1817 if (err)
1818 err = -EFAULT;
1819
1820 out:
1821 mutex_unlock(&mce_chrdev_read_mutex);
1822 kfree(cpu_tsc);
1823
1824 return err ? err : buf - ubuf;
1825 }
1826
1827 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1828 {
1829 poll_wait(file, &mce_chrdev_wait, wait);
1830 if (rcu_access_index(mcelog.next))
1831 return POLLIN | POLLRDNORM;
1832 if (!mce_apei_read_done && apei_check_mce())
1833 return POLLIN | POLLRDNORM;
1834 return 0;
1835 }
1836
1837 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1838 unsigned long arg)
1839 {
1840 int __user *p = (int __user *)arg;
1841
1842 if (!capable(CAP_SYS_ADMIN))
1843 return -EPERM;
1844
1845 switch (cmd) {
1846 case MCE_GET_RECORD_LEN:
1847 return put_user(sizeof(struct mce), p);
1848 case MCE_GET_LOG_LEN:
1849 return put_user(MCE_LOG_LEN, p);
1850 case MCE_GETCLEAR_FLAGS: {
1851 unsigned flags;
1852
1853 do {
1854 flags = mcelog.flags;
1855 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1856
1857 return put_user(flags, p);
1858 }
1859 default:
1860 return -ENOTTY;
1861 }
1862 }
1863
1864 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1865 size_t usize, loff_t *off);
1866
1867 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1868 const char __user *ubuf,
1869 size_t usize, loff_t *off))
1870 {
1871 mce_write = fn;
1872 }
1873 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1874
1875 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1876 size_t usize, loff_t *off)
1877 {
1878 if (mce_write)
1879 return mce_write(filp, ubuf, usize, off);
1880 else
1881 return -EINVAL;
1882 }
1883
1884 static const struct file_operations mce_chrdev_ops = {
1885 .open = mce_chrdev_open,
1886 .release = mce_chrdev_release,
1887 .read = mce_chrdev_read,
1888 .write = mce_chrdev_write,
1889 .poll = mce_chrdev_poll,
1890 .unlocked_ioctl = mce_chrdev_ioctl,
1891 .llseek = no_llseek,
1892 };
1893
1894 static struct miscdevice mce_chrdev_device = {
1895 MISC_MCELOG_MINOR,
1896 "mcelog",
1897 &mce_chrdev_ops,
1898 };
1899
1900 /*
1901 * mce=off Disables machine check
1902 * mce=no_cmci Disables CMCI
1903 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1904 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1905 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1906 * monarchtimeout is how long to wait for other CPUs on machine
1907 * check, or 0 to not wait
1908 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1909 * mce=nobootlog Don't log MCEs from before booting.
1910 */
1911 static int __init mcheck_enable(char *str)
1912 {
1913 if (*str == 0) {
1914 enable_p5_mce();
1915 return 1;
1916 }
1917 if (*str == '=')
1918 str++;
1919 if (!strcmp(str, "off"))
1920 mce_disabled = 1;
1921 else if (!strcmp(str, "no_cmci"))
1922 mce_cmci_disabled = 1;
1923 else if (!strcmp(str, "dont_log_ce"))
1924 mce_dont_log_ce = 1;
1925 else if (!strcmp(str, "ignore_ce"))
1926 mce_ignore_ce = 1;
1927 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1928 mce_bootlog = (str[0] == 'b');
1929 else if (isdigit(str[0])) {
1930 get_option(&str, &tolerant);
1931 if (*str == ',') {
1932 ++str;
1933 get_option(&str, &monarch_timeout);
1934 }
1935 } else {
1936 pr_info("mce argument %s ignored. Please use /sys\n", str);
1937 return 0;
1938 }
1939 return 1;
1940 }
1941 __setup("mce", mcheck_enable);
1942
1943 int __init mcheck_init(void)
1944 {
1945 mcheck_intel_therm_init();
1946
1947 return 0;
1948 }
1949
1950 /*
1951 * mce_syscore: PM support
1952 */
1953
1954 /*
1955 * Disable machine checks on suspend and shutdown. We can't really handle
1956 * them later.
1957 */
1958 static int mce_disable_error_reporting(void)
1959 {
1960 int i;
1961
1962 for (i = 0; i < banks; i++) {
1963 struct mce_bank *b = &mce_banks[i];
1964
1965 if (b->init)
1966 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1967 }
1968 return 0;
1969 }
1970
1971 static int mce_syscore_suspend(void)
1972 {
1973 return mce_disable_error_reporting();
1974 }
1975
1976 static void mce_syscore_shutdown(void)
1977 {
1978 mce_disable_error_reporting();
1979 }
1980
1981 /*
1982 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1983 * Only one CPU is active at this time, the others get re-added later using
1984 * CPU hotplug:
1985 */
1986 static void mce_syscore_resume(void)
1987 {
1988 __mcheck_cpu_init_generic();
1989 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1990 }
1991
1992 static struct syscore_ops mce_syscore_ops = {
1993 .suspend = mce_syscore_suspend,
1994 .shutdown = mce_syscore_shutdown,
1995 .resume = mce_syscore_resume,
1996 };
1997
1998 /*
1999 * mce_device: Sysfs support
2000 */
2001
2002 static void mce_cpu_restart(void *data)
2003 {
2004 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2005 return;
2006 __mcheck_cpu_init_generic();
2007 __mcheck_cpu_init_timer();
2008 }
2009
2010 /* Reinit MCEs after user configuration changes */
2011 static void mce_restart(void)
2012 {
2013 mce_timer_delete_all();
2014 on_each_cpu(mce_cpu_restart, NULL, 1);
2015 }
2016
2017 /* Toggle features for corrected errors */
2018 static void mce_disable_cmci(void *data)
2019 {
2020 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2021 return;
2022 cmci_clear();
2023 }
2024
2025 static void mce_enable_ce(void *all)
2026 {
2027 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2028 return;
2029 cmci_reenable();
2030 cmci_recheck();
2031 if (all)
2032 __mcheck_cpu_init_timer();
2033 }
2034
2035 static struct bus_type mce_subsys = {
2036 .name = "machinecheck",
2037 .dev_name = "machinecheck",
2038 };
2039
2040 DEFINE_PER_CPU(struct device *, mce_device);
2041
2042 __cpuinitdata
2043 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2044
2045 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2046 {
2047 return container_of(attr, struct mce_bank, attr);
2048 }
2049
2050 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2051 char *buf)
2052 {
2053 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2054 }
2055
2056 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2057 const char *buf, size_t size)
2058 {
2059 u64 new;
2060
2061 if (strict_strtoull(buf, 0, &new) < 0)
2062 return -EINVAL;
2063
2064 attr_to_bank(attr)->ctl = new;
2065 mce_restart();
2066
2067 return size;
2068 }
2069
2070 static ssize_t
2071 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2072 {
2073 strcpy(buf, mce_helper);
2074 strcat(buf, "\n");
2075 return strlen(mce_helper) + 1;
2076 }
2077
2078 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2079 const char *buf, size_t siz)
2080 {
2081 char *p;
2082
2083 strncpy(mce_helper, buf, sizeof(mce_helper));
2084 mce_helper[sizeof(mce_helper)-1] = 0;
2085 p = strchr(mce_helper, '\n');
2086
2087 if (p)
2088 *p = 0;
2089
2090 return strlen(mce_helper) + !!p;
2091 }
2092
2093 static ssize_t set_ignore_ce(struct device *s,
2094 struct device_attribute *attr,
2095 const char *buf, size_t size)
2096 {
2097 u64 new;
2098
2099 if (strict_strtoull(buf, 0, &new) < 0)
2100 return -EINVAL;
2101
2102 if (mce_ignore_ce ^ !!new) {
2103 if (new) {
2104 /* disable ce features */
2105 mce_timer_delete_all();
2106 on_each_cpu(mce_disable_cmci, NULL, 1);
2107 mce_ignore_ce = 1;
2108 } else {
2109 /* enable ce features */
2110 mce_ignore_ce = 0;
2111 on_each_cpu(mce_enable_ce, (void *)1, 1);
2112 }
2113 }
2114 return size;
2115 }
2116
2117 static ssize_t set_cmci_disabled(struct device *s,
2118 struct device_attribute *attr,
2119 const char *buf, size_t size)
2120 {
2121 u64 new;
2122
2123 if (strict_strtoull(buf, 0, &new) < 0)
2124 return -EINVAL;
2125
2126 if (mce_cmci_disabled ^ !!new) {
2127 if (new) {
2128 /* disable cmci */
2129 on_each_cpu(mce_disable_cmci, NULL, 1);
2130 mce_cmci_disabled = 1;
2131 } else {
2132 /* enable cmci */
2133 mce_cmci_disabled = 0;
2134 on_each_cpu(mce_enable_ce, NULL, 1);
2135 }
2136 }
2137 return size;
2138 }
2139
2140 static ssize_t store_int_with_restart(struct device *s,
2141 struct device_attribute *attr,
2142 const char *buf, size_t size)
2143 {
2144 ssize_t ret = device_store_int(s, attr, buf, size);
2145 mce_restart();
2146 return ret;
2147 }
2148
2149 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2150 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2151 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2152 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2153
2154 static struct dev_ext_attribute dev_attr_check_interval = {
2155 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2156 &check_interval
2157 };
2158
2159 static struct dev_ext_attribute dev_attr_ignore_ce = {
2160 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2161 &mce_ignore_ce
2162 };
2163
2164 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2165 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2166 &mce_cmci_disabled
2167 };
2168
2169 static struct device_attribute *mce_device_attrs[] = {
2170 &dev_attr_tolerant.attr,
2171 &dev_attr_check_interval.attr,
2172 &dev_attr_trigger,
2173 &dev_attr_monarch_timeout.attr,
2174 &dev_attr_dont_log_ce.attr,
2175 &dev_attr_ignore_ce.attr,
2176 &dev_attr_cmci_disabled.attr,
2177 NULL
2178 };
2179
2180 static cpumask_var_t mce_device_initialized;
2181
2182 static void mce_device_release(struct device *dev)
2183 {
2184 kfree(dev);
2185 }
2186
2187 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2188 static __cpuinit int mce_device_create(unsigned int cpu)
2189 {
2190 struct device *dev;
2191 int err;
2192 int i, j;
2193
2194 if (!mce_available(&boot_cpu_data))
2195 return -EIO;
2196
2197 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2198 if (!dev)
2199 return -ENOMEM;
2200 dev->id = cpu;
2201 dev->bus = &mce_subsys;
2202 dev->release = &mce_device_release;
2203
2204 err = device_register(dev);
2205 if (err)
2206 return err;
2207
2208 for (i = 0; mce_device_attrs[i]; i++) {
2209 err = device_create_file(dev, mce_device_attrs[i]);
2210 if (err)
2211 goto error;
2212 }
2213 for (j = 0; j < banks; j++) {
2214 err = device_create_file(dev, &mce_banks[j].attr);
2215 if (err)
2216 goto error2;
2217 }
2218 cpumask_set_cpu(cpu, mce_device_initialized);
2219 per_cpu(mce_device, cpu) = dev;
2220
2221 return 0;
2222 error2:
2223 while (--j >= 0)
2224 device_remove_file(dev, &mce_banks[j].attr);
2225 error:
2226 while (--i >= 0)
2227 device_remove_file(dev, mce_device_attrs[i]);
2228
2229 device_unregister(dev);
2230
2231 return err;
2232 }
2233
2234 static __cpuinit void mce_device_remove(unsigned int cpu)
2235 {
2236 struct device *dev = per_cpu(mce_device, cpu);
2237 int i;
2238
2239 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2240 return;
2241
2242 for (i = 0; mce_device_attrs[i]; i++)
2243 device_remove_file(dev, mce_device_attrs[i]);
2244
2245 for (i = 0; i < banks; i++)
2246 device_remove_file(dev, &mce_banks[i].attr);
2247
2248 device_unregister(dev);
2249 cpumask_clear_cpu(cpu, mce_device_initialized);
2250 per_cpu(mce_device, cpu) = NULL;
2251 }
2252
2253 /* Make sure there are no machine checks on offlined CPUs. */
2254 static void __cpuinit mce_disable_cpu(void *h)
2255 {
2256 unsigned long action = *(unsigned long *)h;
2257 int i;
2258
2259 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2260 return;
2261
2262 if (!(action & CPU_TASKS_FROZEN))
2263 cmci_clear();
2264 for (i = 0; i < banks; i++) {
2265 struct mce_bank *b = &mce_banks[i];
2266
2267 if (b->init)
2268 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2269 }
2270 }
2271
2272 static void __cpuinit mce_reenable_cpu(void *h)
2273 {
2274 unsigned long action = *(unsigned long *)h;
2275 int i;
2276
2277 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2278 return;
2279
2280 if (!(action & CPU_TASKS_FROZEN))
2281 cmci_reenable();
2282 for (i = 0; i < banks; i++) {
2283 struct mce_bank *b = &mce_banks[i];
2284
2285 if (b->init)
2286 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2287 }
2288 }
2289
2290 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2291 static int __cpuinit
2292 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2293 {
2294 unsigned int cpu = (unsigned long)hcpu;
2295 struct timer_list *t = &per_cpu(mce_timer, cpu);
2296
2297 switch (action) {
2298 case CPU_ONLINE:
2299 case CPU_ONLINE_FROZEN:
2300 mce_device_create(cpu);
2301 if (threshold_cpu_callback)
2302 threshold_cpu_callback(action, cpu);
2303 break;
2304 case CPU_DEAD:
2305 case CPU_DEAD_FROZEN:
2306 if (threshold_cpu_callback)
2307 threshold_cpu_callback(action, cpu);
2308 mce_device_remove(cpu);
2309 break;
2310 case CPU_DOWN_PREPARE:
2311 case CPU_DOWN_PREPARE_FROZEN:
2312 del_timer_sync(t);
2313 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2314 break;
2315 case CPU_DOWN_FAILED:
2316 case CPU_DOWN_FAILED_FROZEN:
2317 if (!mce_ignore_ce && check_interval) {
2318 t->expires = round_jiffies(jiffies +
2319 per_cpu(mce_next_interval, cpu));
2320 add_timer_on(t, cpu);
2321 }
2322 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2323 break;
2324 case CPU_POST_DEAD:
2325 /* intentionally ignoring frozen here */
2326 cmci_rediscover(cpu);
2327 break;
2328 }
2329 return NOTIFY_OK;
2330 }
2331
2332 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2333 .notifier_call = mce_cpu_callback,
2334 };
2335
2336 static __init void mce_init_banks(void)
2337 {
2338 int i;
2339
2340 for (i = 0; i < banks; i++) {
2341 struct mce_bank *b = &mce_banks[i];
2342 struct device_attribute *a = &b->attr;
2343
2344 sysfs_attr_init(&a->attr);
2345 a->attr.name = b->attrname;
2346 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2347
2348 a->attr.mode = 0644;
2349 a->show = show_bank;
2350 a->store = set_bank;
2351 }
2352 }
2353
2354 static __init int mcheck_init_device(void)
2355 {
2356 int err;
2357 int i = 0;
2358
2359 if (!mce_available(&boot_cpu_data))
2360 return -EIO;
2361
2362 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2363
2364 mce_init_banks();
2365
2366 err = subsys_system_register(&mce_subsys, NULL);
2367 if (err)
2368 return err;
2369
2370 for_each_online_cpu(i) {
2371 err = mce_device_create(i);
2372 if (err)
2373 return err;
2374 }
2375
2376 register_syscore_ops(&mce_syscore_ops);
2377 register_hotcpu_notifier(&mce_cpu_notifier);
2378
2379 /* register character device /dev/mcelog */
2380 misc_register(&mce_chrdev_device);
2381
2382 return err;
2383 }
2384 device_initcall_sync(mcheck_init_device);
2385
2386 /*
2387 * Old style boot options parsing. Only for compatibility.
2388 */
2389 static int __init mcheck_disable(char *str)
2390 {
2391 mce_disabled = 1;
2392 return 1;
2393 }
2394 __setup("nomce", mcheck_disable);
2395
2396 #ifdef CONFIG_DEBUG_FS
2397 struct dentry *mce_get_debugfs_dir(void)
2398 {
2399 static struct dentry *dmce;
2400
2401 if (!dmce)
2402 dmce = debugfs_create_dir("mce", NULL);
2403
2404 return dmce;
2405 }
2406
2407 static void mce_reset(void)
2408 {
2409 cpu_missing = 0;
2410 atomic_set(&mce_fake_paniced, 0);
2411 atomic_set(&mce_executing, 0);
2412 atomic_set(&mce_callin, 0);
2413 atomic_set(&global_nwo, 0);
2414 }
2415
2416 static int fake_panic_get(void *data, u64 *val)
2417 {
2418 *val = fake_panic;
2419 return 0;
2420 }
2421
2422 static int fake_panic_set(void *data, u64 val)
2423 {
2424 mce_reset();
2425 fake_panic = val;
2426 return 0;
2427 }
2428
2429 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2430 fake_panic_set, "%llu\n");
2431
2432 static int __init mcheck_debugfs_init(void)
2433 {
2434 struct dentry *dmce, *ffake_panic;
2435
2436 dmce = mce_get_debugfs_dir();
2437 if (!dmce)
2438 return -ENOMEM;
2439 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2440 &fake_panic_fops);
2441 if (!ffake_panic)
2442 return -ENOMEM;
2443
2444 return 0;
2445 }
2446 late_initcall(mcheck_debugfs_init);
2447 #endif