]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge tag 'mac80211-next-for-davem-2018-03-29' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/rcupdate.h>
18 #include <linux/kobject.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/percpu.h>
23 #include <linux/string.h>
24 #include <linux/device.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/delay.h>
27 #include <linux/ctype.h>
28 #include <linux/sched.h>
29 #include <linux/sysfs.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/kmod.h>
34 #include <linux/poll.h>
35 #include <linux/nmi.h>
36 #include <linux/cpu.h>
37 #include <linux/ras.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
45
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52 #include <asm/reboot.h>
53 #include <asm/set_memory.h>
54
55 #include "mce-internal.h"
56
57 static DEFINE_MUTEX(mce_log_mutex);
58
59 /* sysfs synchronization */
60 static DEFINE_MUTEX(mce_sysfs_mutex);
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/mce.h>
64
65 #define SPINUNIT 100 /* 100ns */
66
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68
69 struct mce_bank *mce_banks __read_mostly;
70 struct mce_vendor_flags mce_flags __read_mostly;
71
72 struct mca_config mca_cfg __read_mostly = {
73 .bootlog = -1,
74 /*
75 * Tolerant levels:
76 * 0: always panic on uncorrected errors, log corrected errors
77 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
78 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
79 * 3: never panic or SIGBUS, log all errors (for testing only)
80 */
81 .tolerant = 1,
82 .monarch_timeout = -1
83 };
84
85 static DEFINE_PER_CPU(struct mce, mces_seen);
86 static unsigned long mce_need_notify;
87 static int cpu_missing;
88
89 /*
90 * MCA banks polled by the period polling timer for corrected events.
91 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
92 */
93 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
94 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
95 };
96
97 /*
98 * MCA banks controlled through firmware first for corrected errors.
99 * This is a global list of banks for which we won't enable CMCI and we
100 * won't poll. Firmware controls these banks and is responsible for
101 * reporting corrected errors through GHES. Uncorrected/recoverable
102 * errors are still notified through a machine check.
103 */
104 mce_banks_t mce_banks_ce_disabled;
105
106 static struct work_struct mce_work;
107 static struct irq_work mce_irq_work;
108
109 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
110
111 #ifndef mce_unmap_kpfn
112 static void mce_unmap_kpfn(unsigned long pfn);
113 #endif
114
115 /*
116 * CPU/chipset specific EDAC code can register a notifier call here to print
117 * MCE errors in a human-readable form.
118 */
119 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
120
121 /* Do initial initialization of a struct mce */
122 void mce_setup(struct mce *m)
123 {
124 memset(m, 0, sizeof(struct mce));
125 m->cpu = m->extcpu = smp_processor_id();
126 /* We hope get_seconds stays lockless */
127 m->time = get_seconds();
128 m->cpuvendor = boot_cpu_data.x86_vendor;
129 m->cpuid = cpuid_eax(1);
130 m->socketid = cpu_data(m->extcpu).phys_proc_id;
131 m->apicid = cpu_data(m->extcpu).initial_apicid;
132 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
133
134 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
135 rdmsrl(MSR_PPIN, m->ppin);
136
137 m->microcode = boot_cpu_data.microcode;
138 }
139
140 DEFINE_PER_CPU(struct mce, injectm);
141 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
142
143 void mce_log(struct mce *m)
144 {
145 if (!mce_gen_pool_add(m))
146 irq_work_queue(&mce_irq_work);
147 }
148
149 void mce_inject_log(struct mce *m)
150 {
151 mutex_lock(&mce_log_mutex);
152 mce_log(m);
153 mutex_unlock(&mce_log_mutex);
154 }
155 EXPORT_SYMBOL_GPL(mce_inject_log);
156
157 static struct notifier_block mce_srao_nb;
158
159 /*
160 * We run the default notifier if we have only the SRAO, the first and the
161 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
162 * notifiers registered on the chain.
163 */
164 #define NUM_DEFAULT_NOTIFIERS 3
165 static atomic_t num_notifiers;
166
167 void mce_register_decode_chain(struct notifier_block *nb)
168 {
169 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
170 return;
171
172 atomic_inc(&num_notifiers);
173
174 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
175 }
176 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
177
178 void mce_unregister_decode_chain(struct notifier_block *nb)
179 {
180 atomic_dec(&num_notifiers);
181
182 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
183 }
184 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
185
186 static inline u32 ctl_reg(int bank)
187 {
188 return MSR_IA32_MCx_CTL(bank);
189 }
190
191 static inline u32 status_reg(int bank)
192 {
193 return MSR_IA32_MCx_STATUS(bank);
194 }
195
196 static inline u32 addr_reg(int bank)
197 {
198 return MSR_IA32_MCx_ADDR(bank);
199 }
200
201 static inline u32 misc_reg(int bank)
202 {
203 return MSR_IA32_MCx_MISC(bank);
204 }
205
206 static inline u32 smca_ctl_reg(int bank)
207 {
208 return MSR_AMD64_SMCA_MCx_CTL(bank);
209 }
210
211 static inline u32 smca_status_reg(int bank)
212 {
213 return MSR_AMD64_SMCA_MCx_STATUS(bank);
214 }
215
216 static inline u32 smca_addr_reg(int bank)
217 {
218 return MSR_AMD64_SMCA_MCx_ADDR(bank);
219 }
220
221 static inline u32 smca_misc_reg(int bank)
222 {
223 return MSR_AMD64_SMCA_MCx_MISC(bank);
224 }
225
226 struct mca_msr_regs msr_ops = {
227 .ctl = ctl_reg,
228 .status = status_reg,
229 .addr = addr_reg,
230 .misc = misc_reg
231 };
232
233 static void __print_mce(struct mce *m)
234 {
235 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
236 m->extcpu,
237 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
238 m->mcgstatus, m->bank, m->status);
239
240 if (m->ip) {
241 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
242 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
243 m->cs, m->ip);
244
245 if (m->cs == __KERNEL_CS)
246 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
247 pr_cont("\n");
248 }
249
250 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
251 if (m->addr)
252 pr_cont("ADDR %llx ", m->addr);
253 if (m->misc)
254 pr_cont("MISC %llx ", m->misc);
255
256 if (mce_flags.smca) {
257 if (m->synd)
258 pr_cont("SYND %llx ", m->synd);
259 if (m->ipid)
260 pr_cont("IPID %llx ", m->ipid);
261 }
262
263 pr_cont("\n");
264 /*
265 * Note this output is parsed by external tools and old fields
266 * should not be changed.
267 */
268 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
269 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
270 m->microcode);
271 }
272
273 static void print_mce(struct mce *m)
274 {
275 __print_mce(m);
276 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
277 }
278
279 #define PANIC_TIMEOUT 5 /* 5 seconds */
280
281 static atomic_t mce_panicked;
282
283 static int fake_panic;
284 static atomic_t mce_fake_panicked;
285
286 /* Panic in progress. Enable interrupts and wait for final IPI */
287 static void wait_for_panic(void)
288 {
289 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
290
291 preempt_disable();
292 local_irq_enable();
293 while (timeout-- > 0)
294 udelay(1);
295 if (panic_timeout == 0)
296 panic_timeout = mca_cfg.panic_timeout;
297 panic("Panicing machine check CPU died");
298 }
299
300 static void mce_panic(const char *msg, struct mce *final, char *exp)
301 {
302 int apei_err = 0;
303 struct llist_node *pending;
304 struct mce_evt_llist *l;
305
306 if (!fake_panic) {
307 /*
308 * Make sure only one CPU runs in machine check panic
309 */
310 if (atomic_inc_return(&mce_panicked) > 1)
311 wait_for_panic();
312 barrier();
313
314 bust_spinlocks(1);
315 console_verbose();
316 } else {
317 /* Don't log too much for fake panic */
318 if (atomic_inc_return(&mce_fake_panicked) > 1)
319 return;
320 }
321 pending = mce_gen_pool_prepare_records();
322 /* First print corrected ones that are still unlogged */
323 llist_for_each_entry(l, pending, llnode) {
324 struct mce *m = &l->mce;
325 if (!(m->status & MCI_STATUS_UC)) {
326 print_mce(m);
327 if (!apei_err)
328 apei_err = apei_write_mce(m);
329 }
330 }
331 /* Now print uncorrected but with the final one last */
332 llist_for_each_entry(l, pending, llnode) {
333 struct mce *m = &l->mce;
334 if (!(m->status & MCI_STATUS_UC))
335 continue;
336 if (!final || mce_cmp(m, final)) {
337 print_mce(m);
338 if (!apei_err)
339 apei_err = apei_write_mce(m);
340 }
341 }
342 if (final) {
343 print_mce(final);
344 if (!apei_err)
345 apei_err = apei_write_mce(final);
346 }
347 if (cpu_missing)
348 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
349 if (exp)
350 pr_emerg(HW_ERR "Machine check: %s\n", exp);
351 if (!fake_panic) {
352 if (panic_timeout == 0)
353 panic_timeout = mca_cfg.panic_timeout;
354 panic(msg);
355 } else
356 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
357 }
358
359 /* Support code for software error injection */
360
361 static int msr_to_offset(u32 msr)
362 {
363 unsigned bank = __this_cpu_read(injectm.bank);
364
365 if (msr == mca_cfg.rip_msr)
366 return offsetof(struct mce, ip);
367 if (msr == msr_ops.status(bank))
368 return offsetof(struct mce, status);
369 if (msr == msr_ops.addr(bank))
370 return offsetof(struct mce, addr);
371 if (msr == msr_ops.misc(bank))
372 return offsetof(struct mce, misc);
373 if (msr == MSR_IA32_MCG_STATUS)
374 return offsetof(struct mce, mcgstatus);
375 return -1;
376 }
377
378 /* MSR access wrappers used for error injection */
379 static u64 mce_rdmsrl(u32 msr)
380 {
381 u64 v;
382
383 if (__this_cpu_read(injectm.finished)) {
384 int offset = msr_to_offset(msr);
385
386 if (offset < 0)
387 return 0;
388 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
389 }
390
391 if (rdmsrl_safe(msr, &v)) {
392 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
393 /*
394 * Return zero in case the access faulted. This should
395 * not happen normally but can happen if the CPU does
396 * something weird, or if the code is buggy.
397 */
398 v = 0;
399 }
400
401 return v;
402 }
403
404 static void mce_wrmsrl(u32 msr, u64 v)
405 {
406 if (__this_cpu_read(injectm.finished)) {
407 int offset = msr_to_offset(msr);
408
409 if (offset >= 0)
410 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
411 return;
412 }
413 wrmsrl(msr, v);
414 }
415
416 /*
417 * Collect all global (w.r.t. this processor) status about this machine
418 * check into our "mce" struct so that we can use it later to assess
419 * the severity of the problem as we read per-bank specific details.
420 */
421 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
422 {
423 mce_setup(m);
424
425 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
426 if (regs) {
427 /*
428 * Get the address of the instruction at the time of
429 * the machine check error.
430 */
431 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
432 m->ip = regs->ip;
433 m->cs = regs->cs;
434
435 /*
436 * When in VM86 mode make the cs look like ring 3
437 * always. This is a lie, but it's better than passing
438 * the additional vm86 bit around everywhere.
439 */
440 if (v8086_mode(regs))
441 m->cs |= 3;
442 }
443 /* Use accurate RIP reporting if available. */
444 if (mca_cfg.rip_msr)
445 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
446 }
447 }
448
449 int mce_available(struct cpuinfo_x86 *c)
450 {
451 if (mca_cfg.disabled)
452 return 0;
453 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
454 }
455
456 static void mce_schedule_work(void)
457 {
458 if (!mce_gen_pool_empty())
459 schedule_work(&mce_work);
460 }
461
462 static void mce_irq_work_cb(struct irq_work *entry)
463 {
464 mce_schedule_work();
465 }
466
467 static void mce_report_event(struct pt_regs *regs)
468 {
469 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
470 mce_notify_irq();
471 /*
472 * Triggering the work queue here is just an insurance
473 * policy in case the syscall exit notify handler
474 * doesn't run soon enough or ends up running on the
475 * wrong CPU (can happen when audit sleeps)
476 */
477 mce_schedule_work();
478 return;
479 }
480
481 irq_work_queue(&mce_irq_work);
482 }
483
484 /*
485 * Check if the address reported by the CPU is in a format we can parse.
486 * It would be possible to add code for most other cases, but all would
487 * be somewhat complicated (e.g. segment offset would require an instruction
488 * parser). So only support physical addresses up to page granuality for now.
489 */
490 static int mce_usable_address(struct mce *m)
491 {
492 if (!(m->status & MCI_STATUS_ADDRV))
493 return 0;
494
495 /* Checks after this one are Intel-specific: */
496 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
497 return 1;
498
499 if (!(m->status & MCI_STATUS_MISCV))
500 return 0;
501
502 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
503 return 0;
504
505 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
506 return 0;
507
508 return 1;
509 }
510
511 bool mce_is_memory_error(struct mce *m)
512 {
513 if (m->cpuvendor == X86_VENDOR_AMD) {
514 return amd_mce_is_memory_error(m);
515
516 } else if (m->cpuvendor == X86_VENDOR_INTEL) {
517 /*
518 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
519 *
520 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
521 * indicating a memory error. Bit 8 is used for indicating a
522 * cache hierarchy error. The combination of bit 2 and bit 3
523 * is used for indicating a `generic' cache hierarchy error
524 * But we can't just blindly check the above bits, because if
525 * bit 11 is set, then it is a bus/interconnect error - and
526 * either way the above bits just gives more detail on what
527 * bus/interconnect error happened. Note that bit 12 can be
528 * ignored, as it's the "filter" bit.
529 */
530 return (m->status & 0xef80) == BIT(7) ||
531 (m->status & 0xef00) == BIT(8) ||
532 (m->status & 0xeffc) == 0xc;
533 }
534
535 return false;
536 }
537 EXPORT_SYMBOL_GPL(mce_is_memory_error);
538
539 static bool mce_is_correctable(struct mce *m)
540 {
541 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
542 return false;
543
544 if (m->status & MCI_STATUS_UC)
545 return false;
546
547 return true;
548 }
549
550 static bool cec_add_mce(struct mce *m)
551 {
552 if (!m)
553 return false;
554
555 /* We eat only correctable DRAM errors with usable addresses. */
556 if (mce_is_memory_error(m) &&
557 mce_is_correctable(m) &&
558 mce_usable_address(m))
559 if (!cec_add_elem(m->addr >> PAGE_SHIFT))
560 return true;
561
562 return false;
563 }
564
565 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
566 void *data)
567 {
568 struct mce *m = (struct mce *)data;
569
570 if (!m)
571 return NOTIFY_DONE;
572
573 if (cec_add_mce(m))
574 return NOTIFY_STOP;
575
576 /* Emit the trace record: */
577 trace_mce_record(m);
578
579 set_bit(0, &mce_need_notify);
580
581 mce_notify_irq();
582
583 return NOTIFY_DONE;
584 }
585
586 static struct notifier_block first_nb = {
587 .notifier_call = mce_first_notifier,
588 .priority = MCE_PRIO_FIRST,
589 };
590
591 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
592 void *data)
593 {
594 struct mce *mce = (struct mce *)data;
595 unsigned long pfn;
596
597 if (!mce)
598 return NOTIFY_DONE;
599
600 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
601 pfn = mce->addr >> PAGE_SHIFT;
602 if (!memory_failure(pfn, 0))
603 mce_unmap_kpfn(pfn);
604 }
605
606 return NOTIFY_OK;
607 }
608 static struct notifier_block mce_srao_nb = {
609 .notifier_call = srao_decode_notifier,
610 .priority = MCE_PRIO_SRAO,
611 };
612
613 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
614 void *data)
615 {
616 struct mce *m = (struct mce *)data;
617
618 if (!m)
619 return NOTIFY_DONE;
620
621 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
622 return NOTIFY_DONE;
623
624 __print_mce(m);
625
626 return NOTIFY_DONE;
627 }
628
629 static struct notifier_block mce_default_nb = {
630 .notifier_call = mce_default_notifier,
631 /* lowest prio, we want it to run last. */
632 .priority = MCE_PRIO_LOWEST,
633 };
634
635 /*
636 * Read ADDR and MISC registers.
637 */
638 static void mce_read_aux(struct mce *m, int i)
639 {
640 if (m->status & MCI_STATUS_MISCV)
641 m->misc = mce_rdmsrl(msr_ops.misc(i));
642
643 if (m->status & MCI_STATUS_ADDRV) {
644 m->addr = mce_rdmsrl(msr_ops.addr(i));
645
646 /*
647 * Mask the reported address by the reported granularity.
648 */
649 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
650 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
651 m->addr >>= shift;
652 m->addr <<= shift;
653 }
654
655 /*
656 * Extract [55:<lsb>] where lsb is the least significant
657 * *valid* bit of the address bits.
658 */
659 if (mce_flags.smca) {
660 u8 lsb = (m->addr >> 56) & 0x3f;
661
662 m->addr &= GENMASK_ULL(55, lsb);
663 }
664 }
665
666 if (mce_flags.smca) {
667 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
668
669 if (m->status & MCI_STATUS_SYNDV)
670 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
671 }
672 }
673
674 DEFINE_PER_CPU(unsigned, mce_poll_count);
675
676 /*
677 * Poll for corrected events or events that happened before reset.
678 * Those are just logged through /dev/mcelog.
679 *
680 * This is executed in standard interrupt context.
681 *
682 * Note: spec recommends to panic for fatal unsignalled
683 * errors here. However this would be quite problematic --
684 * we would need to reimplement the Monarch handling and
685 * it would mess up the exclusion between exception handler
686 * and poll hander -- * so we skip this for now.
687 * These cases should not happen anyways, or only when the CPU
688 * is already totally * confused. In this case it's likely it will
689 * not fully execute the machine check handler either.
690 */
691 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
692 {
693 bool error_seen = false;
694 struct mce m;
695 int i;
696
697 this_cpu_inc(mce_poll_count);
698
699 mce_gather_info(&m, NULL);
700
701 if (flags & MCP_TIMESTAMP)
702 m.tsc = rdtsc();
703
704 for (i = 0; i < mca_cfg.banks; i++) {
705 if (!mce_banks[i].ctl || !test_bit(i, *b))
706 continue;
707
708 m.misc = 0;
709 m.addr = 0;
710 m.bank = i;
711
712 barrier();
713 m.status = mce_rdmsrl(msr_ops.status(i));
714 if (!(m.status & MCI_STATUS_VAL))
715 continue;
716
717 /*
718 * Uncorrected or signalled events are handled by the exception
719 * handler when it is enabled, so don't process those here.
720 *
721 * TBD do the same check for MCI_STATUS_EN here?
722 */
723 if (!(flags & MCP_UC) &&
724 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
725 continue;
726
727 error_seen = true;
728
729 mce_read_aux(&m, i);
730
731 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
732
733 /*
734 * Don't get the IP here because it's unlikely to
735 * have anything to do with the actual error location.
736 */
737 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
738 mce_log(&m);
739 else if (mce_usable_address(&m)) {
740 /*
741 * Although we skipped logging this, we still want
742 * to take action. Add to the pool so the registered
743 * notifiers will see it.
744 */
745 if (!mce_gen_pool_add(&m))
746 mce_schedule_work();
747 }
748
749 /*
750 * Clear state for this bank.
751 */
752 mce_wrmsrl(msr_ops.status(i), 0);
753 }
754
755 /*
756 * Don't clear MCG_STATUS here because it's only defined for
757 * exceptions.
758 */
759
760 sync_core();
761
762 return error_seen;
763 }
764 EXPORT_SYMBOL_GPL(machine_check_poll);
765
766 /*
767 * Do a quick check if any of the events requires a panic.
768 * This decides if we keep the events around or clear them.
769 */
770 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
771 struct pt_regs *regs)
772 {
773 int i, ret = 0;
774 char *tmp;
775
776 for (i = 0; i < mca_cfg.banks; i++) {
777 m->status = mce_rdmsrl(msr_ops.status(i));
778 if (m->status & MCI_STATUS_VAL) {
779 __set_bit(i, validp);
780 if (quirk_no_way_out)
781 quirk_no_way_out(i, m, regs);
782 }
783
784 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
785 *msg = tmp;
786 ret = 1;
787 }
788 }
789 return ret;
790 }
791
792 /*
793 * Variable to establish order between CPUs while scanning.
794 * Each CPU spins initially until executing is equal its number.
795 */
796 static atomic_t mce_executing;
797
798 /*
799 * Defines order of CPUs on entry. First CPU becomes Monarch.
800 */
801 static atomic_t mce_callin;
802
803 /*
804 * Check if a timeout waiting for other CPUs happened.
805 */
806 static int mce_timed_out(u64 *t, const char *msg)
807 {
808 /*
809 * The others already did panic for some reason.
810 * Bail out like in a timeout.
811 * rmb() to tell the compiler that system_state
812 * might have been modified by someone else.
813 */
814 rmb();
815 if (atomic_read(&mce_panicked))
816 wait_for_panic();
817 if (!mca_cfg.monarch_timeout)
818 goto out;
819 if ((s64)*t < SPINUNIT) {
820 if (mca_cfg.tolerant <= 1)
821 mce_panic(msg, NULL, NULL);
822 cpu_missing = 1;
823 return 1;
824 }
825 *t -= SPINUNIT;
826 out:
827 touch_nmi_watchdog();
828 return 0;
829 }
830
831 /*
832 * The Monarch's reign. The Monarch is the CPU who entered
833 * the machine check handler first. It waits for the others to
834 * raise the exception too and then grades them. When any
835 * error is fatal panic. Only then let the others continue.
836 *
837 * The other CPUs entering the MCE handler will be controlled by the
838 * Monarch. They are called Subjects.
839 *
840 * This way we prevent any potential data corruption in a unrecoverable case
841 * and also makes sure always all CPU's errors are examined.
842 *
843 * Also this detects the case of a machine check event coming from outer
844 * space (not detected by any CPUs) In this case some external agent wants
845 * us to shut down, so panic too.
846 *
847 * The other CPUs might still decide to panic if the handler happens
848 * in a unrecoverable place, but in this case the system is in a semi-stable
849 * state and won't corrupt anything by itself. It's ok to let the others
850 * continue for a bit first.
851 *
852 * All the spin loops have timeouts; when a timeout happens a CPU
853 * typically elects itself to be Monarch.
854 */
855 static void mce_reign(void)
856 {
857 int cpu;
858 struct mce *m = NULL;
859 int global_worst = 0;
860 char *msg = NULL;
861 char *nmsg = NULL;
862
863 /*
864 * This CPU is the Monarch and the other CPUs have run
865 * through their handlers.
866 * Grade the severity of the errors of all the CPUs.
867 */
868 for_each_possible_cpu(cpu) {
869 int severity = mce_severity(&per_cpu(mces_seen, cpu),
870 mca_cfg.tolerant,
871 &nmsg, true);
872 if (severity > global_worst) {
873 msg = nmsg;
874 global_worst = severity;
875 m = &per_cpu(mces_seen, cpu);
876 }
877 }
878
879 /*
880 * Cannot recover? Panic here then.
881 * This dumps all the mces in the log buffer and stops the
882 * other CPUs.
883 */
884 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
885 mce_panic("Fatal machine check", m, msg);
886
887 /*
888 * For UC somewhere we let the CPU who detects it handle it.
889 * Also must let continue the others, otherwise the handling
890 * CPU could deadlock on a lock.
891 */
892
893 /*
894 * No machine check event found. Must be some external
895 * source or one CPU is hung. Panic.
896 */
897 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
898 mce_panic("Fatal machine check from unknown source", NULL, NULL);
899
900 /*
901 * Now clear all the mces_seen so that they don't reappear on
902 * the next mce.
903 */
904 for_each_possible_cpu(cpu)
905 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
906 }
907
908 static atomic_t global_nwo;
909
910 /*
911 * Start of Monarch synchronization. This waits until all CPUs have
912 * entered the exception handler and then determines if any of them
913 * saw a fatal event that requires panic. Then it executes them
914 * in the entry order.
915 * TBD double check parallel CPU hotunplug
916 */
917 static int mce_start(int *no_way_out)
918 {
919 int order;
920 int cpus = num_online_cpus();
921 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
922
923 if (!timeout)
924 return -1;
925
926 atomic_add(*no_way_out, &global_nwo);
927 /*
928 * Rely on the implied barrier below, such that global_nwo
929 * is updated before mce_callin.
930 */
931 order = atomic_inc_return(&mce_callin);
932
933 /*
934 * Wait for everyone.
935 */
936 while (atomic_read(&mce_callin) != cpus) {
937 if (mce_timed_out(&timeout,
938 "Timeout: Not all CPUs entered broadcast exception handler")) {
939 atomic_set(&global_nwo, 0);
940 return -1;
941 }
942 ndelay(SPINUNIT);
943 }
944
945 /*
946 * mce_callin should be read before global_nwo
947 */
948 smp_rmb();
949
950 if (order == 1) {
951 /*
952 * Monarch: Starts executing now, the others wait.
953 */
954 atomic_set(&mce_executing, 1);
955 } else {
956 /*
957 * Subject: Now start the scanning loop one by one in
958 * the original callin order.
959 * This way when there are any shared banks it will be
960 * only seen by one CPU before cleared, avoiding duplicates.
961 */
962 while (atomic_read(&mce_executing) < order) {
963 if (mce_timed_out(&timeout,
964 "Timeout: Subject CPUs unable to finish machine check processing")) {
965 atomic_set(&global_nwo, 0);
966 return -1;
967 }
968 ndelay(SPINUNIT);
969 }
970 }
971
972 /*
973 * Cache the global no_way_out state.
974 */
975 *no_way_out = atomic_read(&global_nwo);
976
977 return order;
978 }
979
980 /*
981 * Synchronize between CPUs after main scanning loop.
982 * This invokes the bulk of the Monarch processing.
983 */
984 static int mce_end(int order)
985 {
986 int ret = -1;
987 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
988
989 if (!timeout)
990 goto reset;
991 if (order < 0)
992 goto reset;
993
994 /*
995 * Allow others to run.
996 */
997 atomic_inc(&mce_executing);
998
999 if (order == 1) {
1000 /* CHECKME: Can this race with a parallel hotplug? */
1001 int cpus = num_online_cpus();
1002
1003 /*
1004 * Monarch: Wait for everyone to go through their scanning
1005 * loops.
1006 */
1007 while (atomic_read(&mce_executing) <= cpus) {
1008 if (mce_timed_out(&timeout,
1009 "Timeout: Monarch CPU unable to finish machine check processing"))
1010 goto reset;
1011 ndelay(SPINUNIT);
1012 }
1013
1014 mce_reign();
1015 barrier();
1016 ret = 0;
1017 } else {
1018 /*
1019 * Subject: Wait for Monarch to finish.
1020 */
1021 while (atomic_read(&mce_executing) != 0) {
1022 if (mce_timed_out(&timeout,
1023 "Timeout: Monarch CPU did not finish machine check processing"))
1024 goto reset;
1025 ndelay(SPINUNIT);
1026 }
1027
1028 /*
1029 * Don't reset anything. That's done by the Monarch.
1030 */
1031 return 0;
1032 }
1033
1034 /*
1035 * Reset all global state.
1036 */
1037 reset:
1038 atomic_set(&global_nwo, 0);
1039 atomic_set(&mce_callin, 0);
1040 barrier();
1041
1042 /*
1043 * Let others run again.
1044 */
1045 atomic_set(&mce_executing, 0);
1046 return ret;
1047 }
1048
1049 static void mce_clear_state(unsigned long *toclear)
1050 {
1051 int i;
1052
1053 for (i = 0; i < mca_cfg.banks; i++) {
1054 if (test_bit(i, toclear))
1055 mce_wrmsrl(msr_ops.status(i), 0);
1056 }
1057 }
1058
1059 static int do_memory_failure(struct mce *m)
1060 {
1061 int flags = MF_ACTION_REQUIRED;
1062 int ret;
1063
1064 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1065 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1066 flags |= MF_MUST_KILL;
1067 ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1068 if (ret)
1069 pr_err("Memory error not recovered");
1070 else
1071 mce_unmap_kpfn(m->addr >> PAGE_SHIFT);
1072 return ret;
1073 }
1074
1075 #ifndef mce_unmap_kpfn
1076 static void mce_unmap_kpfn(unsigned long pfn)
1077 {
1078 unsigned long decoy_addr;
1079
1080 /*
1081 * Unmap this page from the kernel 1:1 mappings to make sure
1082 * we don't log more errors because of speculative access to
1083 * the page.
1084 * We would like to just call:
1085 * set_memory_np((unsigned long)pfn_to_kaddr(pfn), 1);
1086 * but doing that would radically increase the odds of a
1087 * speculative access to the poison page because we'd have
1088 * the virtual address of the kernel 1:1 mapping sitting
1089 * around in registers.
1090 * Instead we get tricky. We create a non-canonical address
1091 * that looks just like the one we want, but has bit 63 flipped.
1092 * This relies on set_memory_np() not checking whether we passed
1093 * a legal address.
1094 */
1095
1096 /*
1097 * Build time check to see if we have a spare virtual bit. Don't want
1098 * to leave this until run time because most developers don't have a
1099 * system that can exercise this code path. This will only become a
1100 * problem if/when we move beyond 5-level page tables.
1101 *
1102 * Hard code "9" here because cpp doesn't grok ilog2(PTRS_PER_PGD)
1103 */
1104 #if PGDIR_SHIFT + 9 < 63
1105 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
1106 #else
1107 #error "no unused virtual bit available"
1108 #endif
1109
1110 if (set_memory_np(decoy_addr, 1))
1111 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
1112 }
1113 #endif
1114
1115 /*
1116 * The actual machine check handler. This only handles real
1117 * exceptions when something got corrupted coming in through int 18.
1118 *
1119 * This is executed in NMI context not subject to normal locking rules. This
1120 * implies that most kernel services cannot be safely used. Don't even
1121 * think about putting a printk in there!
1122 *
1123 * On Intel systems this is entered on all CPUs in parallel through
1124 * MCE broadcast. However some CPUs might be broken beyond repair,
1125 * so be always careful when synchronizing with others.
1126 */
1127 void do_machine_check(struct pt_regs *regs, long error_code)
1128 {
1129 struct mca_config *cfg = &mca_cfg;
1130 struct mce m, *final;
1131 int i;
1132 int worst = 0;
1133 int severity;
1134
1135 /*
1136 * Establish sequential order between the CPUs entering the machine
1137 * check handler.
1138 */
1139 int order = -1;
1140 /*
1141 * If no_way_out gets set, there is no safe way to recover from this
1142 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1143 */
1144 int no_way_out = 0;
1145 /*
1146 * If kill_it gets set, there might be a way to recover from this
1147 * error.
1148 */
1149 int kill_it = 0;
1150 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1151 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1152 char *msg = "Unknown";
1153
1154 /*
1155 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1156 * on Intel.
1157 */
1158 int lmce = 1;
1159 int cpu = smp_processor_id();
1160
1161 /*
1162 * Cases where we avoid rendezvous handler timeout:
1163 * 1) If this CPU is offline.
1164 *
1165 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1166 * skip those CPUs which remain looping in the 1st kernel - see
1167 * crash_nmi_callback().
1168 *
1169 * Note: there still is a small window between kexec-ing and the new,
1170 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1171 * might not get handled properly.
1172 */
1173 if (cpu_is_offline(cpu) ||
1174 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1175 u64 mcgstatus;
1176
1177 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1178 if (mcgstatus & MCG_STATUS_RIPV) {
1179 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1180 return;
1181 }
1182 }
1183
1184 ist_enter(regs);
1185
1186 this_cpu_inc(mce_exception_count);
1187
1188 if (!cfg->banks)
1189 goto out;
1190
1191 mce_gather_info(&m, regs);
1192 m.tsc = rdtsc();
1193
1194 final = this_cpu_ptr(&mces_seen);
1195 *final = m;
1196
1197 memset(valid_banks, 0, sizeof(valid_banks));
1198 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1199
1200 barrier();
1201
1202 /*
1203 * When no restart IP might need to kill or panic.
1204 * Assume the worst for now, but if we find the
1205 * severity is MCE_AR_SEVERITY we have other options.
1206 */
1207 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1208 kill_it = 1;
1209
1210 /*
1211 * Check if this MCE is signaled to only this logical processor,
1212 * on Intel only.
1213 */
1214 if (m.cpuvendor == X86_VENDOR_INTEL)
1215 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1216
1217 /*
1218 * Go through all banks in exclusion of the other CPUs. This way we
1219 * don't report duplicated events on shared banks because the first one
1220 * to see it will clear it. If this is a Local MCE, then no need to
1221 * perform rendezvous.
1222 */
1223 if (!lmce)
1224 order = mce_start(&no_way_out);
1225
1226 for (i = 0; i < cfg->banks; i++) {
1227 __clear_bit(i, toclear);
1228 if (!test_bit(i, valid_banks))
1229 continue;
1230 if (!mce_banks[i].ctl)
1231 continue;
1232
1233 m.misc = 0;
1234 m.addr = 0;
1235 m.bank = i;
1236
1237 m.status = mce_rdmsrl(msr_ops.status(i));
1238 if ((m.status & MCI_STATUS_VAL) == 0)
1239 continue;
1240
1241 /*
1242 * Non uncorrected or non signaled errors are handled by
1243 * machine_check_poll. Leave them alone, unless this panics.
1244 */
1245 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1246 !no_way_out)
1247 continue;
1248
1249 /*
1250 * Set taint even when machine check was not enabled.
1251 */
1252 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1253
1254 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1255
1256 /*
1257 * When machine check was for corrected/deferred handler don't
1258 * touch, unless we're panicing.
1259 */
1260 if ((severity == MCE_KEEP_SEVERITY ||
1261 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1262 continue;
1263 __set_bit(i, toclear);
1264 if (severity == MCE_NO_SEVERITY) {
1265 /*
1266 * Machine check event was not enabled. Clear, but
1267 * ignore.
1268 */
1269 continue;
1270 }
1271
1272 mce_read_aux(&m, i);
1273
1274 /* assuming valid severity level != 0 */
1275 m.severity = severity;
1276
1277 mce_log(&m);
1278
1279 if (severity > worst) {
1280 *final = m;
1281 worst = severity;
1282 }
1283 }
1284
1285 /* mce_clear_state will clear *final, save locally for use later */
1286 m = *final;
1287
1288 if (!no_way_out)
1289 mce_clear_state(toclear);
1290
1291 /*
1292 * Do most of the synchronization with other CPUs.
1293 * When there's any problem use only local no_way_out state.
1294 */
1295 if (!lmce) {
1296 if (mce_end(order) < 0)
1297 no_way_out = worst >= MCE_PANIC_SEVERITY;
1298 } else {
1299 /*
1300 * Local MCE skipped calling mce_reign()
1301 * If we found a fatal error, we need to panic here.
1302 */
1303 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1304 mce_panic("Machine check from unknown source",
1305 NULL, NULL);
1306 }
1307
1308 /*
1309 * If tolerant is at an insane level we drop requests to kill
1310 * processes and continue even when there is no way out.
1311 */
1312 if (cfg->tolerant == 3)
1313 kill_it = 0;
1314 else if (no_way_out)
1315 mce_panic("Fatal machine check on current CPU", &m, msg);
1316
1317 if (worst > 0)
1318 mce_report_event(regs);
1319 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1320 out:
1321 sync_core();
1322
1323 if (worst != MCE_AR_SEVERITY && !kill_it)
1324 goto out_ist;
1325
1326 /* Fault was in user mode and we need to take some action */
1327 if ((m.cs & 3) == 3) {
1328 ist_begin_non_atomic(regs);
1329 local_irq_enable();
1330
1331 if (kill_it || do_memory_failure(&m))
1332 force_sig(SIGBUS, current);
1333 local_irq_disable();
1334 ist_end_non_atomic();
1335 } else {
1336 if (!fixup_exception(regs, X86_TRAP_MC))
1337 mce_panic("Failed kernel mode recovery", &m, NULL);
1338 }
1339
1340 out_ist:
1341 ist_exit(regs);
1342 }
1343 EXPORT_SYMBOL_GPL(do_machine_check);
1344
1345 #ifndef CONFIG_MEMORY_FAILURE
1346 int memory_failure(unsigned long pfn, int flags)
1347 {
1348 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1349 BUG_ON(flags & MF_ACTION_REQUIRED);
1350 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1351 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1352 pfn);
1353
1354 return 0;
1355 }
1356 #endif
1357
1358 /*
1359 * Periodic polling timer for "silent" machine check errors. If the
1360 * poller finds an MCE, poll 2x faster. When the poller finds no more
1361 * errors, poll 2x slower (up to check_interval seconds).
1362 */
1363 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1364
1365 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1366 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1367
1368 static unsigned long mce_adjust_timer_default(unsigned long interval)
1369 {
1370 return interval;
1371 }
1372
1373 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1374
1375 static void __start_timer(struct timer_list *t, unsigned long interval)
1376 {
1377 unsigned long when = jiffies + interval;
1378 unsigned long flags;
1379
1380 local_irq_save(flags);
1381
1382 if (!timer_pending(t) || time_before(when, t->expires))
1383 mod_timer(t, round_jiffies(when));
1384
1385 local_irq_restore(flags);
1386 }
1387
1388 static void mce_timer_fn(struct timer_list *t)
1389 {
1390 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1391 unsigned long iv;
1392
1393 WARN_ON(cpu_t != t);
1394
1395 iv = __this_cpu_read(mce_next_interval);
1396
1397 if (mce_available(this_cpu_ptr(&cpu_info))) {
1398 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1399
1400 if (mce_intel_cmci_poll()) {
1401 iv = mce_adjust_timer(iv);
1402 goto done;
1403 }
1404 }
1405
1406 /*
1407 * Alert userspace if needed. If we logged an MCE, reduce the polling
1408 * interval, otherwise increase the polling interval.
1409 */
1410 if (mce_notify_irq())
1411 iv = max(iv / 2, (unsigned long) HZ/100);
1412 else
1413 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1414
1415 done:
1416 __this_cpu_write(mce_next_interval, iv);
1417 __start_timer(t, iv);
1418 }
1419
1420 /*
1421 * Ensure that the timer is firing in @interval from now.
1422 */
1423 void mce_timer_kick(unsigned long interval)
1424 {
1425 struct timer_list *t = this_cpu_ptr(&mce_timer);
1426 unsigned long iv = __this_cpu_read(mce_next_interval);
1427
1428 __start_timer(t, interval);
1429
1430 if (interval < iv)
1431 __this_cpu_write(mce_next_interval, interval);
1432 }
1433
1434 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1435 static void mce_timer_delete_all(void)
1436 {
1437 int cpu;
1438
1439 for_each_online_cpu(cpu)
1440 del_timer_sync(&per_cpu(mce_timer, cpu));
1441 }
1442
1443 /*
1444 * Notify the user(s) about new machine check events.
1445 * Can be called from interrupt context, but not from machine check/NMI
1446 * context.
1447 */
1448 int mce_notify_irq(void)
1449 {
1450 /* Not more than two messages every minute */
1451 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1452
1453 if (test_and_clear_bit(0, &mce_need_notify)) {
1454 mce_work_trigger();
1455
1456 if (__ratelimit(&ratelimit))
1457 pr_info(HW_ERR "Machine check events logged\n");
1458
1459 return 1;
1460 }
1461 return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(mce_notify_irq);
1464
1465 static int __mcheck_cpu_mce_banks_init(void)
1466 {
1467 int i;
1468 u8 num_banks = mca_cfg.banks;
1469
1470 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1471 if (!mce_banks)
1472 return -ENOMEM;
1473
1474 for (i = 0; i < num_banks; i++) {
1475 struct mce_bank *b = &mce_banks[i];
1476
1477 b->ctl = -1ULL;
1478 b->init = 1;
1479 }
1480 return 0;
1481 }
1482
1483 /*
1484 * Initialize Machine Checks for a CPU.
1485 */
1486 static int __mcheck_cpu_cap_init(void)
1487 {
1488 unsigned b;
1489 u64 cap;
1490
1491 rdmsrl(MSR_IA32_MCG_CAP, cap);
1492
1493 b = cap & MCG_BANKCNT_MASK;
1494 if (!mca_cfg.banks)
1495 pr_info("CPU supports %d MCE banks\n", b);
1496
1497 if (b > MAX_NR_BANKS) {
1498 pr_warn("Using only %u machine check banks out of %u\n",
1499 MAX_NR_BANKS, b);
1500 b = MAX_NR_BANKS;
1501 }
1502
1503 /* Don't support asymmetric configurations today */
1504 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1505 mca_cfg.banks = b;
1506
1507 if (!mce_banks) {
1508 int err = __mcheck_cpu_mce_banks_init();
1509
1510 if (err)
1511 return err;
1512 }
1513
1514 /* Use accurate RIP reporting if available. */
1515 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1516 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1517
1518 if (cap & MCG_SER_P)
1519 mca_cfg.ser = true;
1520
1521 return 0;
1522 }
1523
1524 static void __mcheck_cpu_init_generic(void)
1525 {
1526 enum mcp_flags m_fl = 0;
1527 mce_banks_t all_banks;
1528 u64 cap;
1529
1530 if (!mca_cfg.bootlog)
1531 m_fl = MCP_DONTLOG;
1532
1533 /*
1534 * Log the machine checks left over from the previous reset.
1535 */
1536 bitmap_fill(all_banks, MAX_NR_BANKS);
1537 machine_check_poll(MCP_UC | m_fl, &all_banks);
1538
1539 cr4_set_bits(X86_CR4_MCE);
1540
1541 rdmsrl(MSR_IA32_MCG_CAP, cap);
1542 if (cap & MCG_CTL_P)
1543 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1544 }
1545
1546 static void __mcheck_cpu_init_clear_banks(void)
1547 {
1548 int i;
1549
1550 for (i = 0; i < mca_cfg.banks; i++) {
1551 struct mce_bank *b = &mce_banks[i];
1552
1553 if (!b->init)
1554 continue;
1555 wrmsrl(msr_ops.ctl(i), b->ctl);
1556 wrmsrl(msr_ops.status(i), 0);
1557 }
1558 }
1559
1560 /*
1561 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1562 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1563 * Vol 3B Table 15-20). But this confuses both the code that determines
1564 * whether the machine check occurred in kernel or user mode, and also
1565 * the severity assessment code. Pretend that EIPV was set, and take the
1566 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1567 */
1568 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1569 {
1570 if (bank != 0)
1571 return;
1572 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1573 return;
1574 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1575 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1576 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1577 MCACOD)) !=
1578 (MCI_STATUS_UC|MCI_STATUS_EN|
1579 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1580 MCI_STATUS_AR|MCACOD_INSTR))
1581 return;
1582
1583 m->mcgstatus |= MCG_STATUS_EIPV;
1584 m->ip = regs->ip;
1585 m->cs = regs->cs;
1586 }
1587
1588 /* Add per CPU specific workarounds here */
1589 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1590 {
1591 struct mca_config *cfg = &mca_cfg;
1592
1593 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1594 pr_info("unknown CPU type - not enabling MCE support\n");
1595 return -EOPNOTSUPP;
1596 }
1597
1598 /* This should be disabled by the BIOS, but isn't always */
1599 if (c->x86_vendor == X86_VENDOR_AMD) {
1600 if (c->x86 == 15 && cfg->banks > 4) {
1601 /*
1602 * disable GART TBL walk error reporting, which
1603 * trips off incorrectly with the IOMMU & 3ware
1604 * & Cerberus:
1605 */
1606 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1607 }
1608 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1609 /*
1610 * Lots of broken BIOS around that don't clear them
1611 * by default and leave crap in there. Don't log:
1612 */
1613 cfg->bootlog = 0;
1614 }
1615 /*
1616 * Various K7s with broken bank 0 around. Always disable
1617 * by default.
1618 */
1619 if (c->x86 == 6 && cfg->banks > 0)
1620 mce_banks[0].ctl = 0;
1621
1622 /*
1623 * overflow_recov is supported for F15h Models 00h-0fh
1624 * even though we don't have a CPUID bit for it.
1625 */
1626 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1627 mce_flags.overflow_recov = 1;
1628
1629 /*
1630 * Turn off MC4_MISC thresholding banks on those models since
1631 * they're not supported there.
1632 */
1633 if (c->x86 == 0x15 &&
1634 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1635 int i;
1636 u64 hwcr;
1637 bool need_toggle;
1638 u32 msrs[] = {
1639 0x00000413, /* MC4_MISC0 */
1640 0xc0000408, /* MC4_MISC1 */
1641 };
1642
1643 rdmsrl(MSR_K7_HWCR, hwcr);
1644
1645 /* McStatusWrEn has to be set */
1646 need_toggle = !(hwcr & BIT(18));
1647
1648 if (need_toggle)
1649 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1650
1651 /* Clear CntP bit safely */
1652 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1653 msr_clear_bit(msrs[i], 62);
1654
1655 /* restore old settings */
1656 if (need_toggle)
1657 wrmsrl(MSR_K7_HWCR, hwcr);
1658 }
1659 }
1660
1661 if (c->x86_vendor == X86_VENDOR_INTEL) {
1662 /*
1663 * SDM documents that on family 6 bank 0 should not be written
1664 * because it aliases to another special BIOS controlled
1665 * register.
1666 * But it's not aliased anymore on model 0x1a+
1667 * Don't ignore bank 0 completely because there could be a
1668 * valid event later, merely don't write CTL0.
1669 */
1670
1671 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1672 mce_banks[0].init = 0;
1673
1674 /*
1675 * All newer Intel systems support MCE broadcasting. Enable
1676 * synchronization with a one second timeout.
1677 */
1678 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1679 cfg->monarch_timeout < 0)
1680 cfg->monarch_timeout = USEC_PER_SEC;
1681
1682 /*
1683 * There are also broken BIOSes on some Pentium M and
1684 * earlier systems:
1685 */
1686 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1687 cfg->bootlog = 0;
1688
1689 if (c->x86 == 6 && c->x86_model == 45)
1690 quirk_no_way_out = quirk_sandybridge_ifu;
1691 }
1692 if (cfg->monarch_timeout < 0)
1693 cfg->monarch_timeout = 0;
1694 if (cfg->bootlog != 0)
1695 cfg->panic_timeout = 30;
1696
1697 return 0;
1698 }
1699
1700 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1701 {
1702 if (c->x86 != 5)
1703 return 0;
1704
1705 switch (c->x86_vendor) {
1706 case X86_VENDOR_INTEL:
1707 intel_p5_mcheck_init(c);
1708 return 1;
1709 break;
1710 case X86_VENDOR_CENTAUR:
1711 winchip_mcheck_init(c);
1712 return 1;
1713 break;
1714 default:
1715 return 0;
1716 }
1717
1718 return 0;
1719 }
1720
1721 /*
1722 * Init basic CPU features needed for early decoding of MCEs.
1723 */
1724 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1725 {
1726 if (c->x86_vendor == X86_VENDOR_AMD) {
1727 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1728 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1729 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1730
1731 if (mce_flags.smca) {
1732 msr_ops.ctl = smca_ctl_reg;
1733 msr_ops.status = smca_status_reg;
1734 msr_ops.addr = smca_addr_reg;
1735 msr_ops.misc = smca_misc_reg;
1736 }
1737 }
1738 }
1739
1740 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1741 {
1742 switch (c->x86_vendor) {
1743 case X86_VENDOR_INTEL:
1744 mce_intel_feature_init(c);
1745 mce_adjust_timer = cmci_intel_adjust_timer;
1746 break;
1747
1748 case X86_VENDOR_AMD: {
1749 mce_amd_feature_init(c);
1750 break;
1751 }
1752
1753 default:
1754 break;
1755 }
1756 }
1757
1758 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1759 {
1760 switch (c->x86_vendor) {
1761 case X86_VENDOR_INTEL:
1762 mce_intel_feature_clear(c);
1763 break;
1764 default:
1765 break;
1766 }
1767 }
1768
1769 static void mce_start_timer(struct timer_list *t)
1770 {
1771 unsigned long iv = check_interval * HZ;
1772
1773 if (mca_cfg.ignore_ce || !iv)
1774 return;
1775
1776 this_cpu_write(mce_next_interval, iv);
1777 __start_timer(t, iv);
1778 }
1779
1780 static void __mcheck_cpu_setup_timer(void)
1781 {
1782 struct timer_list *t = this_cpu_ptr(&mce_timer);
1783
1784 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1785 }
1786
1787 static void __mcheck_cpu_init_timer(void)
1788 {
1789 struct timer_list *t = this_cpu_ptr(&mce_timer);
1790
1791 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1792 mce_start_timer(t);
1793 }
1794
1795 /* Handle unconfigured int18 (should never happen) */
1796 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1797 {
1798 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1799 smp_processor_id());
1800 }
1801
1802 /* Call the installed machine check handler for this CPU setup. */
1803 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1804 unexpected_machine_check;
1805
1806 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1807 {
1808 machine_check_vector(regs, error_code);
1809 }
1810
1811 /*
1812 * Called for each booted CPU to set up machine checks.
1813 * Must be called with preempt off:
1814 */
1815 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1816 {
1817 if (mca_cfg.disabled)
1818 return;
1819
1820 if (__mcheck_cpu_ancient_init(c))
1821 return;
1822
1823 if (!mce_available(c))
1824 return;
1825
1826 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1827 mca_cfg.disabled = true;
1828 return;
1829 }
1830
1831 if (mce_gen_pool_init()) {
1832 mca_cfg.disabled = true;
1833 pr_emerg("Couldn't allocate MCE records pool!\n");
1834 return;
1835 }
1836
1837 machine_check_vector = do_machine_check;
1838
1839 __mcheck_cpu_init_early(c);
1840 __mcheck_cpu_init_generic();
1841 __mcheck_cpu_init_vendor(c);
1842 __mcheck_cpu_init_clear_banks();
1843 __mcheck_cpu_setup_timer();
1844 }
1845
1846 /*
1847 * Called for each booted CPU to clear some machine checks opt-ins
1848 */
1849 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1850 {
1851 if (mca_cfg.disabled)
1852 return;
1853
1854 if (!mce_available(c))
1855 return;
1856
1857 /*
1858 * Possibly to clear general settings generic to x86
1859 * __mcheck_cpu_clear_generic(c);
1860 */
1861 __mcheck_cpu_clear_vendor(c);
1862
1863 }
1864
1865 static void __mce_disable_bank(void *arg)
1866 {
1867 int bank = *((int *)arg);
1868 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1869 cmci_disable_bank(bank);
1870 }
1871
1872 void mce_disable_bank(int bank)
1873 {
1874 if (bank >= mca_cfg.banks) {
1875 pr_warn(FW_BUG
1876 "Ignoring request to disable invalid MCA bank %d.\n",
1877 bank);
1878 return;
1879 }
1880 set_bit(bank, mce_banks_ce_disabled);
1881 on_each_cpu(__mce_disable_bank, &bank, 1);
1882 }
1883
1884 /*
1885 * mce=off Disables machine check
1886 * mce=no_cmci Disables CMCI
1887 * mce=no_lmce Disables LMCE
1888 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1889 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1890 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1891 * monarchtimeout is how long to wait for other CPUs on machine
1892 * check, or 0 to not wait
1893 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1894 and older.
1895 * mce=nobootlog Don't log MCEs from before booting.
1896 * mce=bios_cmci_threshold Don't program the CMCI threshold
1897 * mce=recovery force enable memcpy_mcsafe()
1898 */
1899 static int __init mcheck_enable(char *str)
1900 {
1901 struct mca_config *cfg = &mca_cfg;
1902
1903 if (*str == 0) {
1904 enable_p5_mce();
1905 return 1;
1906 }
1907 if (*str == '=')
1908 str++;
1909 if (!strcmp(str, "off"))
1910 cfg->disabled = true;
1911 else if (!strcmp(str, "no_cmci"))
1912 cfg->cmci_disabled = true;
1913 else if (!strcmp(str, "no_lmce"))
1914 cfg->lmce_disabled = true;
1915 else if (!strcmp(str, "dont_log_ce"))
1916 cfg->dont_log_ce = true;
1917 else if (!strcmp(str, "ignore_ce"))
1918 cfg->ignore_ce = true;
1919 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1920 cfg->bootlog = (str[0] == 'b');
1921 else if (!strcmp(str, "bios_cmci_threshold"))
1922 cfg->bios_cmci_threshold = true;
1923 else if (!strcmp(str, "recovery"))
1924 cfg->recovery = true;
1925 else if (isdigit(str[0])) {
1926 if (get_option(&str, &cfg->tolerant) == 2)
1927 get_option(&str, &(cfg->monarch_timeout));
1928 } else {
1929 pr_info("mce argument %s ignored. Please use /sys\n", str);
1930 return 0;
1931 }
1932 return 1;
1933 }
1934 __setup("mce", mcheck_enable);
1935
1936 int __init mcheck_init(void)
1937 {
1938 mcheck_intel_therm_init();
1939 mce_register_decode_chain(&first_nb);
1940 mce_register_decode_chain(&mce_srao_nb);
1941 mce_register_decode_chain(&mce_default_nb);
1942 mcheck_vendor_init_severity();
1943
1944 INIT_WORK(&mce_work, mce_gen_pool_process);
1945 init_irq_work(&mce_irq_work, mce_irq_work_cb);
1946
1947 return 0;
1948 }
1949
1950 /*
1951 * mce_syscore: PM support
1952 */
1953
1954 /*
1955 * Disable machine checks on suspend and shutdown. We can't really handle
1956 * them later.
1957 */
1958 static void mce_disable_error_reporting(void)
1959 {
1960 int i;
1961
1962 for (i = 0; i < mca_cfg.banks; i++) {
1963 struct mce_bank *b = &mce_banks[i];
1964
1965 if (b->init)
1966 wrmsrl(msr_ops.ctl(i), 0);
1967 }
1968 return;
1969 }
1970
1971 static void vendor_disable_error_reporting(void)
1972 {
1973 /*
1974 * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide.
1975 * Disabling them for just a single offlined CPU is bad, since it will
1976 * inhibit reporting for all shared resources on the socket like the
1977 * last level cache (LLC), the integrated memory controller (iMC), etc.
1978 */
1979 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1980 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1981 return;
1982
1983 mce_disable_error_reporting();
1984 }
1985
1986 static int mce_syscore_suspend(void)
1987 {
1988 vendor_disable_error_reporting();
1989 return 0;
1990 }
1991
1992 static void mce_syscore_shutdown(void)
1993 {
1994 vendor_disable_error_reporting();
1995 }
1996
1997 /*
1998 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1999 * Only one CPU is active at this time, the others get re-added later using
2000 * CPU hotplug:
2001 */
2002 static void mce_syscore_resume(void)
2003 {
2004 __mcheck_cpu_init_generic();
2005 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2006 __mcheck_cpu_init_clear_banks();
2007 }
2008
2009 static struct syscore_ops mce_syscore_ops = {
2010 .suspend = mce_syscore_suspend,
2011 .shutdown = mce_syscore_shutdown,
2012 .resume = mce_syscore_resume,
2013 };
2014
2015 /*
2016 * mce_device: Sysfs support
2017 */
2018
2019 static void mce_cpu_restart(void *data)
2020 {
2021 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2022 return;
2023 __mcheck_cpu_init_generic();
2024 __mcheck_cpu_init_clear_banks();
2025 __mcheck_cpu_init_timer();
2026 }
2027
2028 /* Reinit MCEs after user configuration changes */
2029 static void mce_restart(void)
2030 {
2031 mce_timer_delete_all();
2032 on_each_cpu(mce_cpu_restart, NULL, 1);
2033 }
2034
2035 /* Toggle features for corrected errors */
2036 static void mce_disable_cmci(void *data)
2037 {
2038 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2039 return;
2040 cmci_clear();
2041 }
2042
2043 static void mce_enable_ce(void *all)
2044 {
2045 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2046 return;
2047 cmci_reenable();
2048 cmci_recheck();
2049 if (all)
2050 __mcheck_cpu_init_timer();
2051 }
2052
2053 static struct bus_type mce_subsys = {
2054 .name = "machinecheck",
2055 .dev_name = "machinecheck",
2056 };
2057
2058 DEFINE_PER_CPU(struct device *, mce_device);
2059
2060 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2061 {
2062 return container_of(attr, struct mce_bank, attr);
2063 }
2064
2065 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2066 char *buf)
2067 {
2068 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2069 }
2070
2071 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2072 const char *buf, size_t size)
2073 {
2074 u64 new;
2075
2076 if (kstrtou64(buf, 0, &new) < 0)
2077 return -EINVAL;
2078
2079 attr_to_bank(attr)->ctl = new;
2080 mce_restart();
2081
2082 return size;
2083 }
2084
2085 static ssize_t set_ignore_ce(struct device *s,
2086 struct device_attribute *attr,
2087 const char *buf, size_t size)
2088 {
2089 u64 new;
2090
2091 if (kstrtou64(buf, 0, &new) < 0)
2092 return -EINVAL;
2093
2094 mutex_lock(&mce_sysfs_mutex);
2095 if (mca_cfg.ignore_ce ^ !!new) {
2096 if (new) {
2097 /* disable ce features */
2098 mce_timer_delete_all();
2099 on_each_cpu(mce_disable_cmci, NULL, 1);
2100 mca_cfg.ignore_ce = true;
2101 } else {
2102 /* enable ce features */
2103 mca_cfg.ignore_ce = false;
2104 on_each_cpu(mce_enable_ce, (void *)1, 1);
2105 }
2106 }
2107 mutex_unlock(&mce_sysfs_mutex);
2108
2109 return size;
2110 }
2111
2112 static ssize_t set_cmci_disabled(struct device *s,
2113 struct device_attribute *attr,
2114 const char *buf, size_t size)
2115 {
2116 u64 new;
2117
2118 if (kstrtou64(buf, 0, &new) < 0)
2119 return -EINVAL;
2120
2121 mutex_lock(&mce_sysfs_mutex);
2122 if (mca_cfg.cmci_disabled ^ !!new) {
2123 if (new) {
2124 /* disable cmci */
2125 on_each_cpu(mce_disable_cmci, NULL, 1);
2126 mca_cfg.cmci_disabled = true;
2127 } else {
2128 /* enable cmci */
2129 mca_cfg.cmci_disabled = false;
2130 on_each_cpu(mce_enable_ce, NULL, 1);
2131 }
2132 }
2133 mutex_unlock(&mce_sysfs_mutex);
2134
2135 return size;
2136 }
2137
2138 static ssize_t store_int_with_restart(struct device *s,
2139 struct device_attribute *attr,
2140 const char *buf, size_t size)
2141 {
2142 unsigned long old_check_interval = check_interval;
2143 ssize_t ret = device_store_ulong(s, attr, buf, size);
2144
2145 if (check_interval == old_check_interval)
2146 return ret;
2147
2148 if (check_interval < 1)
2149 check_interval = 1;
2150
2151 mutex_lock(&mce_sysfs_mutex);
2152 mce_restart();
2153 mutex_unlock(&mce_sysfs_mutex);
2154
2155 return ret;
2156 }
2157
2158 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2159 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2160 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2161
2162 static struct dev_ext_attribute dev_attr_check_interval = {
2163 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2164 &check_interval
2165 };
2166
2167 static struct dev_ext_attribute dev_attr_ignore_ce = {
2168 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2169 &mca_cfg.ignore_ce
2170 };
2171
2172 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2173 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2174 &mca_cfg.cmci_disabled
2175 };
2176
2177 static struct device_attribute *mce_device_attrs[] = {
2178 &dev_attr_tolerant.attr,
2179 &dev_attr_check_interval.attr,
2180 #ifdef CONFIG_X86_MCELOG_LEGACY
2181 &dev_attr_trigger,
2182 #endif
2183 &dev_attr_monarch_timeout.attr,
2184 &dev_attr_dont_log_ce.attr,
2185 &dev_attr_ignore_ce.attr,
2186 &dev_attr_cmci_disabled.attr,
2187 NULL
2188 };
2189
2190 static cpumask_var_t mce_device_initialized;
2191
2192 static void mce_device_release(struct device *dev)
2193 {
2194 kfree(dev);
2195 }
2196
2197 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2198 static int mce_device_create(unsigned int cpu)
2199 {
2200 struct device *dev;
2201 int err;
2202 int i, j;
2203
2204 if (!mce_available(&boot_cpu_data))
2205 return -EIO;
2206
2207 dev = per_cpu(mce_device, cpu);
2208 if (dev)
2209 return 0;
2210
2211 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2212 if (!dev)
2213 return -ENOMEM;
2214 dev->id = cpu;
2215 dev->bus = &mce_subsys;
2216 dev->release = &mce_device_release;
2217
2218 err = device_register(dev);
2219 if (err) {
2220 put_device(dev);
2221 return err;
2222 }
2223
2224 for (i = 0; mce_device_attrs[i]; i++) {
2225 err = device_create_file(dev, mce_device_attrs[i]);
2226 if (err)
2227 goto error;
2228 }
2229 for (j = 0; j < mca_cfg.banks; j++) {
2230 err = device_create_file(dev, &mce_banks[j].attr);
2231 if (err)
2232 goto error2;
2233 }
2234 cpumask_set_cpu(cpu, mce_device_initialized);
2235 per_cpu(mce_device, cpu) = dev;
2236
2237 return 0;
2238 error2:
2239 while (--j >= 0)
2240 device_remove_file(dev, &mce_banks[j].attr);
2241 error:
2242 while (--i >= 0)
2243 device_remove_file(dev, mce_device_attrs[i]);
2244
2245 device_unregister(dev);
2246
2247 return err;
2248 }
2249
2250 static void mce_device_remove(unsigned int cpu)
2251 {
2252 struct device *dev = per_cpu(mce_device, cpu);
2253 int i;
2254
2255 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2256 return;
2257
2258 for (i = 0; mce_device_attrs[i]; i++)
2259 device_remove_file(dev, mce_device_attrs[i]);
2260
2261 for (i = 0; i < mca_cfg.banks; i++)
2262 device_remove_file(dev, &mce_banks[i].attr);
2263
2264 device_unregister(dev);
2265 cpumask_clear_cpu(cpu, mce_device_initialized);
2266 per_cpu(mce_device, cpu) = NULL;
2267 }
2268
2269 /* Make sure there are no machine checks on offlined CPUs. */
2270 static void mce_disable_cpu(void)
2271 {
2272 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2273 return;
2274
2275 if (!cpuhp_tasks_frozen)
2276 cmci_clear();
2277
2278 vendor_disable_error_reporting();
2279 }
2280
2281 static void mce_reenable_cpu(void)
2282 {
2283 int i;
2284
2285 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2286 return;
2287
2288 if (!cpuhp_tasks_frozen)
2289 cmci_reenable();
2290 for (i = 0; i < mca_cfg.banks; i++) {
2291 struct mce_bank *b = &mce_banks[i];
2292
2293 if (b->init)
2294 wrmsrl(msr_ops.ctl(i), b->ctl);
2295 }
2296 }
2297
2298 static int mce_cpu_dead(unsigned int cpu)
2299 {
2300 mce_intel_hcpu_update(cpu);
2301
2302 /* intentionally ignoring frozen here */
2303 if (!cpuhp_tasks_frozen)
2304 cmci_rediscover();
2305 return 0;
2306 }
2307
2308 static int mce_cpu_online(unsigned int cpu)
2309 {
2310 struct timer_list *t = this_cpu_ptr(&mce_timer);
2311 int ret;
2312
2313 mce_device_create(cpu);
2314
2315 ret = mce_threshold_create_device(cpu);
2316 if (ret) {
2317 mce_device_remove(cpu);
2318 return ret;
2319 }
2320 mce_reenable_cpu();
2321 mce_start_timer(t);
2322 return 0;
2323 }
2324
2325 static int mce_cpu_pre_down(unsigned int cpu)
2326 {
2327 struct timer_list *t = this_cpu_ptr(&mce_timer);
2328
2329 mce_disable_cpu();
2330 del_timer_sync(t);
2331 mce_threshold_remove_device(cpu);
2332 mce_device_remove(cpu);
2333 return 0;
2334 }
2335
2336 static __init void mce_init_banks(void)
2337 {
2338 int i;
2339
2340 for (i = 0; i < mca_cfg.banks; i++) {
2341 struct mce_bank *b = &mce_banks[i];
2342 struct device_attribute *a = &b->attr;
2343
2344 sysfs_attr_init(&a->attr);
2345 a->attr.name = b->attrname;
2346 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2347
2348 a->attr.mode = 0644;
2349 a->show = show_bank;
2350 a->store = set_bank;
2351 }
2352 }
2353
2354 static __init int mcheck_init_device(void)
2355 {
2356 int err;
2357
2358 if (!mce_available(&boot_cpu_data)) {
2359 err = -EIO;
2360 goto err_out;
2361 }
2362
2363 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2364 err = -ENOMEM;
2365 goto err_out;
2366 }
2367
2368 mce_init_banks();
2369
2370 err = subsys_system_register(&mce_subsys, NULL);
2371 if (err)
2372 goto err_out_mem;
2373
2374 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2375 mce_cpu_dead);
2376 if (err)
2377 goto err_out_mem;
2378
2379 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2380 mce_cpu_online, mce_cpu_pre_down);
2381 if (err < 0)
2382 goto err_out_online;
2383
2384 register_syscore_ops(&mce_syscore_ops);
2385
2386 return 0;
2387
2388 err_out_online:
2389 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2390
2391 err_out_mem:
2392 free_cpumask_var(mce_device_initialized);
2393
2394 err_out:
2395 pr_err("Unable to init MCE device (rc: %d)\n", err);
2396
2397 return err;
2398 }
2399 device_initcall_sync(mcheck_init_device);
2400
2401 /*
2402 * Old style boot options parsing. Only for compatibility.
2403 */
2404 static int __init mcheck_disable(char *str)
2405 {
2406 mca_cfg.disabled = true;
2407 return 1;
2408 }
2409 __setup("nomce", mcheck_disable);
2410
2411 #ifdef CONFIG_DEBUG_FS
2412 struct dentry *mce_get_debugfs_dir(void)
2413 {
2414 static struct dentry *dmce;
2415
2416 if (!dmce)
2417 dmce = debugfs_create_dir("mce", NULL);
2418
2419 return dmce;
2420 }
2421
2422 static void mce_reset(void)
2423 {
2424 cpu_missing = 0;
2425 atomic_set(&mce_fake_panicked, 0);
2426 atomic_set(&mce_executing, 0);
2427 atomic_set(&mce_callin, 0);
2428 atomic_set(&global_nwo, 0);
2429 }
2430
2431 static int fake_panic_get(void *data, u64 *val)
2432 {
2433 *val = fake_panic;
2434 return 0;
2435 }
2436
2437 static int fake_panic_set(void *data, u64 val)
2438 {
2439 mce_reset();
2440 fake_panic = val;
2441 return 0;
2442 }
2443
2444 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2445 fake_panic_set, "%llu\n");
2446
2447 static int __init mcheck_debugfs_init(void)
2448 {
2449 struct dentry *dmce, *ffake_panic;
2450
2451 dmce = mce_get_debugfs_dir();
2452 if (!dmce)
2453 return -ENOMEM;
2454 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2455 &fake_panic_fops);
2456 if (!ffake_panic)
2457 return -ENOMEM;
2458
2459 return 0;
2460 }
2461 #else
2462 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2463 #endif
2464
2465 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2466 EXPORT_SYMBOL_GPL(mcsafe_key);
2467
2468 static int __init mcheck_late_init(void)
2469 {
2470 if (mca_cfg.recovery)
2471 static_branch_inc(&mcsafe_key);
2472
2473 mcheck_debugfs_init();
2474 cec_init();
2475
2476 /*
2477 * Flush out everything that has been logged during early boot, now that
2478 * everything has been initialized (workqueues, decoders, ...).
2479 */
2480 mce_schedule_work();
2481
2482 return 0;
2483 }
2484 late_initcall(mcheck_late_init);