]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/ras.h>
39 #include <linux/smp.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/debugfs.h>
43 #include <linux/irq_work.h>
44 #include <linux/export.h>
45 #include <linux/jump_label.h>
46
47 #include <asm/intel-family.h>
48 #include <asm/processor.h>
49 #include <asm/traps.h>
50 #include <asm/tlbflush.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/reboot.h>
54
55 #include "mce-internal.h"
56
57 static DEFINE_MUTEX(mce_log_mutex);
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/mce.h>
61
62 #define SPINUNIT 100 /* 100ns */
63
64 DEFINE_PER_CPU(unsigned, mce_exception_count);
65
66 struct mce_bank *mce_banks __read_mostly;
67 struct mce_vendor_flags mce_flags __read_mostly;
68
69 struct mca_config mca_cfg __read_mostly = {
70 .bootlog = -1,
71 /*
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
77 */
78 .tolerant = 1,
79 .monarch_timeout = -1
80 };
81
82 static DEFINE_PER_CPU(struct mce, mces_seen);
83 static unsigned long mce_need_notify;
84 static int cpu_missing;
85
86 /*
87 * MCA banks polled by the period polling timer for corrected events.
88 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
89 */
90 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
91 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
92 };
93
94 /*
95 * MCA banks controlled through firmware first for corrected errors.
96 * This is a global list of banks for which we won't enable CMCI and we
97 * won't poll. Firmware controls these banks and is responsible for
98 * reporting corrected errors through GHES. Uncorrected/recoverable
99 * errors are still notified through a machine check.
100 */
101 mce_banks_t mce_banks_ce_disabled;
102
103 static struct work_struct mce_work;
104 static struct irq_work mce_irq_work;
105
106 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
107
108 /*
109 * CPU/chipset specific EDAC code can register a notifier call here to print
110 * MCE errors in a human-readable form.
111 */
112 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
113
114 /* Do initial initialization of a struct mce */
115 void mce_setup(struct mce *m)
116 {
117 memset(m, 0, sizeof(struct mce));
118 m->cpu = m->extcpu = smp_processor_id();
119 /* We hope get_seconds stays lockless */
120 m->time = get_seconds();
121 m->cpuvendor = boot_cpu_data.x86_vendor;
122 m->cpuid = cpuid_eax(1);
123 m->socketid = cpu_data(m->extcpu).phys_proc_id;
124 m->apicid = cpu_data(m->extcpu).initial_apicid;
125 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
126
127 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
128 rdmsrl(MSR_PPIN, m->ppin);
129 }
130
131 DEFINE_PER_CPU(struct mce, injectm);
132 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
133
134 void mce_log(struct mce *m)
135 {
136 if (!mce_gen_pool_add(m))
137 irq_work_queue(&mce_irq_work);
138 }
139
140 void mce_inject_log(struct mce *m)
141 {
142 mutex_lock(&mce_log_mutex);
143 mce_log(m);
144 mutex_unlock(&mce_log_mutex);
145 }
146 EXPORT_SYMBOL_GPL(mce_inject_log);
147
148 static struct notifier_block mce_srao_nb;
149
150 /*
151 * We run the default notifier if we have only the SRAO, the first and the
152 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
153 * notifiers registered on the chain.
154 */
155 #define NUM_DEFAULT_NOTIFIERS 3
156 static atomic_t num_notifiers;
157
158 void mce_register_decode_chain(struct notifier_block *nb)
159 {
160 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
161 return;
162
163 atomic_inc(&num_notifiers);
164
165 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
166 }
167 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
168
169 void mce_unregister_decode_chain(struct notifier_block *nb)
170 {
171 atomic_dec(&num_notifiers);
172
173 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
174 }
175 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
176
177 static inline u32 ctl_reg(int bank)
178 {
179 return MSR_IA32_MCx_CTL(bank);
180 }
181
182 static inline u32 status_reg(int bank)
183 {
184 return MSR_IA32_MCx_STATUS(bank);
185 }
186
187 static inline u32 addr_reg(int bank)
188 {
189 return MSR_IA32_MCx_ADDR(bank);
190 }
191
192 static inline u32 misc_reg(int bank)
193 {
194 return MSR_IA32_MCx_MISC(bank);
195 }
196
197 static inline u32 smca_ctl_reg(int bank)
198 {
199 return MSR_AMD64_SMCA_MCx_CTL(bank);
200 }
201
202 static inline u32 smca_status_reg(int bank)
203 {
204 return MSR_AMD64_SMCA_MCx_STATUS(bank);
205 }
206
207 static inline u32 smca_addr_reg(int bank)
208 {
209 return MSR_AMD64_SMCA_MCx_ADDR(bank);
210 }
211
212 static inline u32 smca_misc_reg(int bank)
213 {
214 return MSR_AMD64_SMCA_MCx_MISC(bank);
215 }
216
217 struct mca_msr_regs msr_ops = {
218 .ctl = ctl_reg,
219 .status = status_reg,
220 .addr = addr_reg,
221 .misc = misc_reg
222 };
223
224 static void __print_mce(struct mce *m)
225 {
226 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
227 m->extcpu,
228 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
229 m->mcgstatus, m->bank, m->status);
230
231 if (m->ip) {
232 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
233 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
234 m->cs, m->ip);
235
236 if (m->cs == __KERNEL_CS)
237 print_symbol("{%s}", m->ip);
238 pr_cont("\n");
239 }
240
241 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
242 if (m->addr)
243 pr_cont("ADDR %llx ", m->addr);
244 if (m->misc)
245 pr_cont("MISC %llx ", m->misc);
246
247 if (mce_flags.smca) {
248 if (m->synd)
249 pr_cont("SYND %llx ", m->synd);
250 if (m->ipid)
251 pr_cont("IPID %llx ", m->ipid);
252 }
253
254 pr_cont("\n");
255 /*
256 * Note this output is parsed by external tools and old fields
257 * should not be changed.
258 */
259 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
260 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
261 cpu_data(m->extcpu).microcode);
262 }
263
264 static void print_mce(struct mce *m)
265 {
266 __print_mce(m);
267 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
268 }
269
270 #define PANIC_TIMEOUT 5 /* 5 seconds */
271
272 static atomic_t mce_panicked;
273
274 static int fake_panic;
275 static atomic_t mce_fake_panicked;
276
277 /* Panic in progress. Enable interrupts and wait for final IPI */
278 static void wait_for_panic(void)
279 {
280 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
281
282 preempt_disable();
283 local_irq_enable();
284 while (timeout-- > 0)
285 udelay(1);
286 if (panic_timeout == 0)
287 panic_timeout = mca_cfg.panic_timeout;
288 panic("Panicing machine check CPU died");
289 }
290
291 static void mce_panic(const char *msg, struct mce *final, char *exp)
292 {
293 int apei_err = 0;
294 struct llist_node *pending;
295 struct mce_evt_llist *l;
296
297 if (!fake_panic) {
298 /*
299 * Make sure only one CPU runs in machine check panic
300 */
301 if (atomic_inc_return(&mce_panicked) > 1)
302 wait_for_panic();
303 barrier();
304
305 bust_spinlocks(1);
306 console_verbose();
307 } else {
308 /* Don't log too much for fake panic */
309 if (atomic_inc_return(&mce_fake_panicked) > 1)
310 return;
311 }
312 pending = mce_gen_pool_prepare_records();
313 /* First print corrected ones that are still unlogged */
314 llist_for_each_entry(l, pending, llnode) {
315 struct mce *m = &l->mce;
316 if (!(m->status & MCI_STATUS_UC)) {
317 print_mce(m);
318 if (!apei_err)
319 apei_err = apei_write_mce(m);
320 }
321 }
322 /* Now print uncorrected but with the final one last */
323 llist_for_each_entry(l, pending, llnode) {
324 struct mce *m = &l->mce;
325 if (!(m->status & MCI_STATUS_UC))
326 continue;
327 if (!final || mce_cmp(m, final)) {
328 print_mce(m);
329 if (!apei_err)
330 apei_err = apei_write_mce(m);
331 }
332 }
333 if (final) {
334 print_mce(final);
335 if (!apei_err)
336 apei_err = apei_write_mce(final);
337 }
338 if (cpu_missing)
339 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
340 if (exp)
341 pr_emerg(HW_ERR "Machine check: %s\n", exp);
342 if (!fake_panic) {
343 if (panic_timeout == 0)
344 panic_timeout = mca_cfg.panic_timeout;
345 panic(msg);
346 } else
347 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
348 }
349
350 /* Support code for software error injection */
351
352 static int msr_to_offset(u32 msr)
353 {
354 unsigned bank = __this_cpu_read(injectm.bank);
355
356 if (msr == mca_cfg.rip_msr)
357 return offsetof(struct mce, ip);
358 if (msr == msr_ops.status(bank))
359 return offsetof(struct mce, status);
360 if (msr == msr_ops.addr(bank))
361 return offsetof(struct mce, addr);
362 if (msr == msr_ops.misc(bank))
363 return offsetof(struct mce, misc);
364 if (msr == MSR_IA32_MCG_STATUS)
365 return offsetof(struct mce, mcgstatus);
366 return -1;
367 }
368
369 /* MSR access wrappers used for error injection */
370 static u64 mce_rdmsrl(u32 msr)
371 {
372 u64 v;
373
374 if (__this_cpu_read(injectm.finished)) {
375 int offset = msr_to_offset(msr);
376
377 if (offset < 0)
378 return 0;
379 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
380 }
381
382 if (rdmsrl_safe(msr, &v)) {
383 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
384 /*
385 * Return zero in case the access faulted. This should
386 * not happen normally but can happen if the CPU does
387 * something weird, or if the code is buggy.
388 */
389 v = 0;
390 }
391
392 return v;
393 }
394
395 static void mce_wrmsrl(u32 msr, u64 v)
396 {
397 if (__this_cpu_read(injectm.finished)) {
398 int offset = msr_to_offset(msr);
399
400 if (offset >= 0)
401 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
402 return;
403 }
404 wrmsrl(msr, v);
405 }
406
407 /*
408 * Collect all global (w.r.t. this processor) status about this machine
409 * check into our "mce" struct so that we can use it later to assess
410 * the severity of the problem as we read per-bank specific details.
411 */
412 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
413 {
414 mce_setup(m);
415
416 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
417 if (regs) {
418 /*
419 * Get the address of the instruction at the time of
420 * the machine check error.
421 */
422 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
423 m->ip = regs->ip;
424 m->cs = regs->cs;
425
426 /*
427 * When in VM86 mode make the cs look like ring 3
428 * always. This is a lie, but it's better than passing
429 * the additional vm86 bit around everywhere.
430 */
431 if (v8086_mode(regs))
432 m->cs |= 3;
433 }
434 /* Use accurate RIP reporting if available. */
435 if (mca_cfg.rip_msr)
436 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
437 }
438 }
439
440 int mce_available(struct cpuinfo_x86 *c)
441 {
442 if (mca_cfg.disabled)
443 return 0;
444 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
445 }
446
447 static void mce_schedule_work(void)
448 {
449 if (!mce_gen_pool_empty())
450 schedule_work(&mce_work);
451 }
452
453 static void mce_irq_work_cb(struct irq_work *entry)
454 {
455 mce_schedule_work();
456 }
457
458 static void mce_report_event(struct pt_regs *regs)
459 {
460 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
461 mce_notify_irq();
462 /*
463 * Triggering the work queue here is just an insurance
464 * policy in case the syscall exit notify handler
465 * doesn't run soon enough or ends up running on the
466 * wrong CPU (can happen when audit sleeps)
467 */
468 mce_schedule_work();
469 return;
470 }
471
472 irq_work_queue(&mce_irq_work);
473 }
474
475 /*
476 * Check if the address reported by the CPU is in a format we can parse.
477 * It would be possible to add code for most other cases, but all would
478 * be somewhat complicated (e.g. segment offset would require an instruction
479 * parser). So only support physical addresses up to page granuality for now.
480 */
481 static int mce_usable_address(struct mce *m)
482 {
483 if (!(m->status & MCI_STATUS_ADDRV))
484 return 0;
485
486 /* Checks after this one are Intel-specific: */
487 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
488 return 1;
489
490 if (!(m->status & MCI_STATUS_MISCV))
491 return 0;
492
493 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
494 return 0;
495
496 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
497 return 0;
498
499 return 1;
500 }
501
502 static bool memory_error(struct mce *m)
503 {
504 struct cpuinfo_x86 *c = &boot_cpu_data;
505
506 if (c->x86_vendor == X86_VENDOR_AMD) {
507 /* ErrCodeExt[20:16] */
508 u8 xec = (m->status >> 16) & 0x1f;
509
510 return (xec == 0x0 || xec == 0x8);
511 } else if (c->x86_vendor == X86_VENDOR_INTEL) {
512 /*
513 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
514 *
515 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
516 * indicating a memory error. Bit 8 is used for indicating a
517 * cache hierarchy error. The combination of bit 2 and bit 3
518 * is used for indicating a `generic' cache hierarchy error
519 * But we can't just blindly check the above bits, because if
520 * bit 11 is set, then it is a bus/interconnect error - and
521 * either way the above bits just gives more detail on what
522 * bus/interconnect error happened. Note that bit 12 can be
523 * ignored, as it's the "filter" bit.
524 */
525 return (m->status & 0xef80) == BIT(7) ||
526 (m->status & 0xef00) == BIT(8) ||
527 (m->status & 0xeffc) == 0xc;
528 }
529
530 return false;
531 }
532
533 static bool cec_add_mce(struct mce *m)
534 {
535 if (!m)
536 return false;
537
538 /* We eat only correctable DRAM errors with usable addresses. */
539 if (memory_error(m) &&
540 !(m->status & MCI_STATUS_UC) &&
541 mce_usable_address(m))
542 if (!cec_add_elem(m->addr >> PAGE_SHIFT))
543 return true;
544
545 return false;
546 }
547
548 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
549 void *data)
550 {
551 struct mce *m = (struct mce *)data;
552
553 if (!m)
554 return NOTIFY_DONE;
555
556 if (cec_add_mce(m))
557 return NOTIFY_STOP;
558
559 /* Emit the trace record: */
560 trace_mce_record(m);
561
562 set_bit(0, &mce_need_notify);
563
564 mce_notify_irq();
565
566 return NOTIFY_DONE;
567 }
568
569 static struct notifier_block first_nb = {
570 .notifier_call = mce_first_notifier,
571 .priority = MCE_PRIO_FIRST,
572 };
573
574 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
575 void *data)
576 {
577 struct mce *mce = (struct mce *)data;
578 unsigned long pfn;
579
580 if (!mce)
581 return NOTIFY_DONE;
582
583 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
584 pfn = mce->addr >> PAGE_SHIFT;
585 memory_failure(pfn, MCE_VECTOR, 0);
586 }
587
588 return NOTIFY_OK;
589 }
590 static struct notifier_block mce_srao_nb = {
591 .notifier_call = srao_decode_notifier,
592 .priority = MCE_PRIO_SRAO,
593 };
594
595 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
596 void *data)
597 {
598 struct mce *m = (struct mce *)data;
599
600 if (!m)
601 return NOTIFY_DONE;
602
603 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
604 return NOTIFY_DONE;
605
606 __print_mce(m);
607
608 return NOTIFY_DONE;
609 }
610
611 static struct notifier_block mce_default_nb = {
612 .notifier_call = mce_default_notifier,
613 /* lowest prio, we want it to run last. */
614 .priority = MCE_PRIO_LOWEST,
615 };
616
617 /*
618 * Read ADDR and MISC registers.
619 */
620 static void mce_read_aux(struct mce *m, int i)
621 {
622 if (m->status & MCI_STATUS_MISCV)
623 m->misc = mce_rdmsrl(msr_ops.misc(i));
624
625 if (m->status & MCI_STATUS_ADDRV) {
626 m->addr = mce_rdmsrl(msr_ops.addr(i));
627
628 /*
629 * Mask the reported address by the reported granularity.
630 */
631 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
632 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
633 m->addr >>= shift;
634 m->addr <<= shift;
635 }
636
637 /*
638 * Extract [55:<lsb>] where lsb is the least significant
639 * *valid* bit of the address bits.
640 */
641 if (mce_flags.smca) {
642 u8 lsb = (m->addr >> 56) & 0x3f;
643
644 m->addr &= GENMASK_ULL(55, lsb);
645 }
646 }
647
648 if (mce_flags.smca) {
649 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
650
651 if (m->status & MCI_STATUS_SYNDV)
652 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
653 }
654 }
655
656 DEFINE_PER_CPU(unsigned, mce_poll_count);
657
658 /*
659 * Poll for corrected events or events that happened before reset.
660 * Those are just logged through /dev/mcelog.
661 *
662 * This is executed in standard interrupt context.
663 *
664 * Note: spec recommends to panic for fatal unsignalled
665 * errors here. However this would be quite problematic --
666 * we would need to reimplement the Monarch handling and
667 * it would mess up the exclusion between exception handler
668 * and poll hander -- * so we skip this for now.
669 * These cases should not happen anyways, or only when the CPU
670 * is already totally * confused. In this case it's likely it will
671 * not fully execute the machine check handler either.
672 */
673 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
674 {
675 bool error_seen = false;
676 struct mce m;
677 int severity;
678 int i;
679
680 this_cpu_inc(mce_poll_count);
681
682 mce_gather_info(&m, NULL);
683
684 if (flags & MCP_TIMESTAMP)
685 m.tsc = rdtsc();
686
687 for (i = 0; i < mca_cfg.banks; i++) {
688 if (!mce_banks[i].ctl || !test_bit(i, *b))
689 continue;
690
691 m.misc = 0;
692 m.addr = 0;
693 m.bank = i;
694
695 barrier();
696 m.status = mce_rdmsrl(msr_ops.status(i));
697 if (!(m.status & MCI_STATUS_VAL))
698 continue;
699
700 /*
701 * Uncorrected or signalled events are handled by the exception
702 * handler when it is enabled, so don't process those here.
703 *
704 * TBD do the same check for MCI_STATUS_EN here?
705 */
706 if (!(flags & MCP_UC) &&
707 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
708 continue;
709
710 error_seen = true;
711
712 mce_read_aux(&m, i);
713
714 severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
715
716 if (severity == MCE_DEFERRED_SEVERITY && memory_error(&m))
717 if (m.status & MCI_STATUS_ADDRV)
718 m.severity = severity;
719
720 /*
721 * Don't get the IP here because it's unlikely to
722 * have anything to do with the actual error location.
723 */
724 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
725 mce_log(&m);
726 else if (mce_usable_address(&m)) {
727 /*
728 * Although we skipped logging this, we still want
729 * to take action. Add to the pool so the registered
730 * notifiers will see it.
731 */
732 if (!mce_gen_pool_add(&m))
733 mce_schedule_work();
734 }
735
736 /*
737 * Clear state for this bank.
738 */
739 mce_wrmsrl(msr_ops.status(i), 0);
740 }
741
742 /*
743 * Don't clear MCG_STATUS here because it's only defined for
744 * exceptions.
745 */
746
747 sync_core();
748
749 return error_seen;
750 }
751 EXPORT_SYMBOL_GPL(machine_check_poll);
752
753 /*
754 * Do a quick check if any of the events requires a panic.
755 * This decides if we keep the events around or clear them.
756 */
757 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
758 struct pt_regs *regs)
759 {
760 int i, ret = 0;
761 char *tmp;
762
763 for (i = 0; i < mca_cfg.banks; i++) {
764 m->status = mce_rdmsrl(msr_ops.status(i));
765 if (m->status & MCI_STATUS_VAL) {
766 __set_bit(i, validp);
767 if (quirk_no_way_out)
768 quirk_no_way_out(i, m, regs);
769 }
770
771 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
772 *msg = tmp;
773 ret = 1;
774 }
775 }
776 return ret;
777 }
778
779 /*
780 * Variable to establish order between CPUs while scanning.
781 * Each CPU spins initially until executing is equal its number.
782 */
783 static atomic_t mce_executing;
784
785 /*
786 * Defines order of CPUs on entry. First CPU becomes Monarch.
787 */
788 static atomic_t mce_callin;
789
790 /*
791 * Check if a timeout waiting for other CPUs happened.
792 */
793 static int mce_timed_out(u64 *t, const char *msg)
794 {
795 /*
796 * The others already did panic for some reason.
797 * Bail out like in a timeout.
798 * rmb() to tell the compiler that system_state
799 * might have been modified by someone else.
800 */
801 rmb();
802 if (atomic_read(&mce_panicked))
803 wait_for_panic();
804 if (!mca_cfg.monarch_timeout)
805 goto out;
806 if ((s64)*t < SPINUNIT) {
807 if (mca_cfg.tolerant <= 1)
808 mce_panic(msg, NULL, NULL);
809 cpu_missing = 1;
810 return 1;
811 }
812 *t -= SPINUNIT;
813 out:
814 touch_nmi_watchdog();
815 return 0;
816 }
817
818 /*
819 * The Monarch's reign. The Monarch is the CPU who entered
820 * the machine check handler first. It waits for the others to
821 * raise the exception too and then grades them. When any
822 * error is fatal panic. Only then let the others continue.
823 *
824 * The other CPUs entering the MCE handler will be controlled by the
825 * Monarch. They are called Subjects.
826 *
827 * This way we prevent any potential data corruption in a unrecoverable case
828 * and also makes sure always all CPU's errors are examined.
829 *
830 * Also this detects the case of a machine check event coming from outer
831 * space (not detected by any CPUs) In this case some external agent wants
832 * us to shut down, so panic too.
833 *
834 * The other CPUs might still decide to panic if the handler happens
835 * in a unrecoverable place, but in this case the system is in a semi-stable
836 * state and won't corrupt anything by itself. It's ok to let the others
837 * continue for a bit first.
838 *
839 * All the spin loops have timeouts; when a timeout happens a CPU
840 * typically elects itself to be Monarch.
841 */
842 static void mce_reign(void)
843 {
844 int cpu;
845 struct mce *m = NULL;
846 int global_worst = 0;
847 char *msg = NULL;
848 char *nmsg = NULL;
849
850 /*
851 * This CPU is the Monarch and the other CPUs have run
852 * through their handlers.
853 * Grade the severity of the errors of all the CPUs.
854 */
855 for_each_possible_cpu(cpu) {
856 int severity = mce_severity(&per_cpu(mces_seen, cpu),
857 mca_cfg.tolerant,
858 &nmsg, true);
859 if (severity > global_worst) {
860 msg = nmsg;
861 global_worst = severity;
862 m = &per_cpu(mces_seen, cpu);
863 }
864 }
865
866 /*
867 * Cannot recover? Panic here then.
868 * This dumps all the mces in the log buffer and stops the
869 * other CPUs.
870 */
871 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
872 mce_panic("Fatal machine check", m, msg);
873
874 /*
875 * For UC somewhere we let the CPU who detects it handle it.
876 * Also must let continue the others, otherwise the handling
877 * CPU could deadlock on a lock.
878 */
879
880 /*
881 * No machine check event found. Must be some external
882 * source or one CPU is hung. Panic.
883 */
884 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
885 mce_panic("Fatal machine check from unknown source", NULL, NULL);
886
887 /*
888 * Now clear all the mces_seen so that they don't reappear on
889 * the next mce.
890 */
891 for_each_possible_cpu(cpu)
892 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
893 }
894
895 static atomic_t global_nwo;
896
897 /*
898 * Start of Monarch synchronization. This waits until all CPUs have
899 * entered the exception handler and then determines if any of them
900 * saw a fatal event that requires panic. Then it executes them
901 * in the entry order.
902 * TBD double check parallel CPU hotunplug
903 */
904 static int mce_start(int *no_way_out)
905 {
906 int order;
907 int cpus = num_online_cpus();
908 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
909
910 if (!timeout)
911 return -1;
912
913 atomic_add(*no_way_out, &global_nwo);
914 /*
915 * Rely on the implied barrier below, such that global_nwo
916 * is updated before mce_callin.
917 */
918 order = atomic_inc_return(&mce_callin);
919
920 /*
921 * Wait for everyone.
922 */
923 while (atomic_read(&mce_callin) != cpus) {
924 if (mce_timed_out(&timeout,
925 "Timeout: Not all CPUs entered broadcast exception handler")) {
926 atomic_set(&global_nwo, 0);
927 return -1;
928 }
929 ndelay(SPINUNIT);
930 }
931
932 /*
933 * mce_callin should be read before global_nwo
934 */
935 smp_rmb();
936
937 if (order == 1) {
938 /*
939 * Monarch: Starts executing now, the others wait.
940 */
941 atomic_set(&mce_executing, 1);
942 } else {
943 /*
944 * Subject: Now start the scanning loop one by one in
945 * the original callin order.
946 * This way when there are any shared banks it will be
947 * only seen by one CPU before cleared, avoiding duplicates.
948 */
949 while (atomic_read(&mce_executing) < order) {
950 if (mce_timed_out(&timeout,
951 "Timeout: Subject CPUs unable to finish machine check processing")) {
952 atomic_set(&global_nwo, 0);
953 return -1;
954 }
955 ndelay(SPINUNIT);
956 }
957 }
958
959 /*
960 * Cache the global no_way_out state.
961 */
962 *no_way_out = atomic_read(&global_nwo);
963
964 return order;
965 }
966
967 /*
968 * Synchronize between CPUs after main scanning loop.
969 * This invokes the bulk of the Monarch processing.
970 */
971 static int mce_end(int order)
972 {
973 int ret = -1;
974 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
975
976 if (!timeout)
977 goto reset;
978 if (order < 0)
979 goto reset;
980
981 /*
982 * Allow others to run.
983 */
984 atomic_inc(&mce_executing);
985
986 if (order == 1) {
987 /* CHECKME: Can this race with a parallel hotplug? */
988 int cpus = num_online_cpus();
989
990 /*
991 * Monarch: Wait for everyone to go through their scanning
992 * loops.
993 */
994 while (atomic_read(&mce_executing) <= cpus) {
995 if (mce_timed_out(&timeout,
996 "Timeout: Monarch CPU unable to finish machine check processing"))
997 goto reset;
998 ndelay(SPINUNIT);
999 }
1000
1001 mce_reign();
1002 barrier();
1003 ret = 0;
1004 } else {
1005 /*
1006 * Subject: Wait for Monarch to finish.
1007 */
1008 while (atomic_read(&mce_executing) != 0) {
1009 if (mce_timed_out(&timeout,
1010 "Timeout: Monarch CPU did not finish machine check processing"))
1011 goto reset;
1012 ndelay(SPINUNIT);
1013 }
1014
1015 /*
1016 * Don't reset anything. That's done by the Monarch.
1017 */
1018 return 0;
1019 }
1020
1021 /*
1022 * Reset all global state.
1023 */
1024 reset:
1025 atomic_set(&global_nwo, 0);
1026 atomic_set(&mce_callin, 0);
1027 barrier();
1028
1029 /*
1030 * Let others run again.
1031 */
1032 atomic_set(&mce_executing, 0);
1033 return ret;
1034 }
1035
1036 static void mce_clear_state(unsigned long *toclear)
1037 {
1038 int i;
1039
1040 for (i = 0; i < mca_cfg.banks; i++) {
1041 if (test_bit(i, toclear))
1042 mce_wrmsrl(msr_ops.status(i), 0);
1043 }
1044 }
1045
1046 static int do_memory_failure(struct mce *m)
1047 {
1048 int flags = MF_ACTION_REQUIRED;
1049 int ret;
1050
1051 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1052 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1053 flags |= MF_MUST_KILL;
1054 ret = memory_failure(m->addr >> PAGE_SHIFT, MCE_VECTOR, flags);
1055 if (ret)
1056 pr_err("Memory error not recovered");
1057 return ret;
1058 }
1059
1060 /*
1061 * The actual machine check handler. This only handles real
1062 * exceptions when something got corrupted coming in through int 18.
1063 *
1064 * This is executed in NMI context not subject to normal locking rules. This
1065 * implies that most kernel services cannot be safely used. Don't even
1066 * think about putting a printk in there!
1067 *
1068 * On Intel systems this is entered on all CPUs in parallel through
1069 * MCE broadcast. However some CPUs might be broken beyond repair,
1070 * so be always careful when synchronizing with others.
1071 */
1072 void do_machine_check(struct pt_regs *regs, long error_code)
1073 {
1074 struct mca_config *cfg = &mca_cfg;
1075 struct mce m, *final;
1076 int i;
1077 int worst = 0;
1078 int severity;
1079
1080 /*
1081 * Establish sequential order between the CPUs entering the machine
1082 * check handler.
1083 */
1084 int order = -1;
1085 /*
1086 * If no_way_out gets set, there is no safe way to recover from this
1087 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1088 */
1089 int no_way_out = 0;
1090 /*
1091 * If kill_it gets set, there might be a way to recover from this
1092 * error.
1093 */
1094 int kill_it = 0;
1095 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1096 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1097 char *msg = "Unknown";
1098
1099 /*
1100 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1101 * on Intel.
1102 */
1103 int lmce = 1;
1104 int cpu = smp_processor_id();
1105
1106 /*
1107 * Cases where we avoid rendezvous handler timeout:
1108 * 1) If this CPU is offline.
1109 *
1110 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1111 * skip those CPUs which remain looping in the 1st kernel - see
1112 * crash_nmi_callback().
1113 *
1114 * Note: there still is a small window between kexec-ing and the new,
1115 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1116 * might not get handled properly.
1117 */
1118 if (cpu_is_offline(cpu) ||
1119 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1120 u64 mcgstatus;
1121
1122 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1123 if (mcgstatus & MCG_STATUS_RIPV) {
1124 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1125 return;
1126 }
1127 }
1128
1129 ist_enter(regs);
1130
1131 this_cpu_inc(mce_exception_count);
1132
1133 if (!cfg->banks)
1134 goto out;
1135
1136 mce_gather_info(&m, regs);
1137 m.tsc = rdtsc();
1138
1139 final = this_cpu_ptr(&mces_seen);
1140 *final = m;
1141
1142 memset(valid_banks, 0, sizeof(valid_banks));
1143 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1144
1145 barrier();
1146
1147 /*
1148 * When no restart IP might need to kill or panic.
1149 * Assume the worst for now, but if we find the
1150 * severity is MCE_AR_SEVERITY we have other options.
1151 */
1152 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1153 kill_it = 1;
1154
1155 /*
1156 * Check if this MCE is signaled to only this logical processor,
1157 * on Intel only.
1158 */
1159 if (m.cpuvendor == X86_VENDOR_INTEL)
1160 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1161
1162 /*
1163 * Go through all banks in exclusion of the other CPUs. This way we
1164 * don't report duplicated events on shared banks because the first one
1165 * to see it will clear it. If this is a Local MCE, then no need to
1166 * perform rendezvous.
1167 */
1168 if (!lmce)
1169 order = mce_start(&no_way_out);
1170
1171 for (i = 0; i < cfg->banks; i++) {
1172 __clear_bit(i, toclear);
1173 if (!test_bit(i, valid_banks))
1174 continue;
1175 if (!mce_banks[i].ctl)
1176 continue;
1177
1178 m.misc = 0;
1179 m.addr = 0;
1180 m.bank = i;
1181
1182 m.status = mce_rdmsrl(msr_ops.status(i));
1183 if ((m.status & MCI_STATUS_VAL) == 0)
1184 continue;
1185
1186 /*
1187 * Non uncorrected or non signaled errors are handled by
1188 * machine_check_poll. Leave them alone, unless this panics.
1189 */
1190 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1191 !no_way_out)
1192 continue;
1193
1194 /*
1195 * Set taint even when machine check was not enabled.
1196 */
1197 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1198
1199 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1200
1201 /*
1202 * When machine check was for corrected/deferred handler don't
1203 * touch, unless we're panicing.
1204 */
1205 if ((severity == MCE_KEEP_SEVERITY ||
1206 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1207 continue;
1208 __set_bit(i, toclear);
1209 if (severity == MCE_NO_SEVERITY) {
1210 /*
1211 * Machine check event was not enabled. Clear, but
1212 * ignore.
1213 */
1214 continue;
1215 }
1216
1217 mce_read_aux(&m, i);
1218
1219 /* assuming valid severity level != 0 */
1220 m.severity = severity;
1221
1222 mce_log(&m);
1223
1224 if (severity > worst) {
1225 *final = m;
1226 worst = severity;
1227 }
1228 }
1229
1230 /* mce_clear_state will clear *final, save locally for use later */
1231 m = *final;
1232
1233 if (!no_way_out)
1234 mce_clear_state(toclear);
1235
1236 /*
1237 * Do most of the synchronization with other CPUs.
1238 * When there's any problem use only local no_way_out state.
1239 */
1240 if (!lmce) {
1241 if (mce_end(order) < 0)
1242 no_way_out = worst >= MCE_PANIC_SEVERITY;
1243 } else {
1244 /*
1245 * Local MCE skipped calling mce_reign()
1246 * If we found a fatal error, we need to panic here.
1247 */
1248 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1249 mce_panic("Machine check from unknown source",
1250 NULL, NULL);
1251 }
1252
1253 /*
1254 * If tolerant is at an insane level we drop requests to kill
1255 * processes and continue even when there is no way out.
1256 */
1257 if (cfg->tolerant == 3)
1258 kill_it = 0;
1259 else if (no_way_out)
1260 mce_panic("Fatal machine check on current CPU", &m, msg);
1261
1262 if (worst > 0)
1263 mce_report_event(regs);
1264 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1265 out:
1266 sync_core();
1267
1268 if (worst != MCE_AR_SEVERITY && !kill_it)
1269 goto out_ist;
1270
1271 /* Fault was in user mode and we need to take some action */
1272 if ((m.cs & 3) == 3) {
1273 ist_begin_non_atomic(regs);
1274 local_irq_enable();
1275
1276 if (kill_it || do_memory_failure(&m))
1277 force_sig(SIGBUS, current);
1278 local_irq_disable();
1279 ist_end_non_atomic();
1280 } else {
1281 if (!fixup_exception(regs, X86_TRAP_MC))
1282 mce_panic("Failed kernel mode recovery", &m, NULL);
1283 }
1284
1285 out_ist:
1286 ist_exit(regs);
1287 }
1288 EXPORT_SYMBOL_GPL(do_machine_check);
1289
1290 #ifndef CONFIG_MEMORY_FAILURE
1291 int memory_failure(unsigned long pfn, int vector, int flags)
1292 {
1293 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1294 BUG_ON(flags & MF_ACTION_REQUIRED);
1295 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1296 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1297 pfn);
1298
1299 return 0;
1300 }
1301 #endif
1302
1303 /*
1304 * Periodic polling timer for "silent" machine check errors. If the
1305 * poller finds an MCE, poll 2x faster. When the poller finds no more
1306 * errors, poll 2x slower (up to check_interval seconds).
1307 */
1308 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1309
1310 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1311 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1312
1313 static unsigned long mce_adjust_timer_default(unsigned long interval)
1314 {
1315 return interval;
1316 }
1317
1318 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1319
1320 static void __start_timer(struct timer_list *t, unsigned long interval)
1321 {
1322 unsigned long when = jiffies + interval;
1323 unsigned long flags;
1324
1325 local_irq_save(flags);
1326
1327 if (!timer_pending(t) || time_before(when, t->expires))
1328 mod_timer(t, round_jiffies(when));
1329
1330 local_irq_restore(flags);
1331 }
1332
1333 static void mce_timer_fn(unsigned long data)
1334 {
1335 struct timer_list *t = this_cpu_ptr(&mce_timer);
1336 int cpu = smp_processor_id();
1337 unsigned long iv;
1338
1339 WARN_ON(cpu != data);
1340
1341 iv = __this_cpu_read(mce_next_interval);
1342
1343 if (mce_available(this_cpu_ptr(&cpu_info))) {
1344 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1345
1346 if (mce_intel_cmci_poll()) {
1347 iv = mce_adjust_timer(iv);
1348 goto done;
1349 }
1350 }
1351
1352 /*
1353 * Alert userspace if needed. If we logged an MCE, reduce the polling
1354 * interval, otherwise increase the polling interval.
1355 */
1356 if (mce_notify_irq())
1357 iv = max(iv / 2, (unsigned long) HZ/100);
1358 else
1359 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1360
1361 done:
1362 __this_cpu_write(mce_next_interval, iv);
1363 __start_timer(t, iv);
1364 }
1365
1366 /*
1367 * Ensure that the timer is firing in @interval from now.
1368 */
1369 void mce_timer_kick(unsigned long interval)
1370 {
1371 struct timer_list *t = this_cpu_ptr(&mce_timer);
1372 unsigned long iv = __this_cpu_read(mce_next_interval);
1373
1374 __start_timer(t, interval);
1375
1376 if (interval < iv)
1377 __this_cpu_write(mce_next_interval, interval);
1378 }
1379
1380 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1381 static void mce_timer_delete_all(void)
1382 {
1383 int cpu;
1384
1385 for_each_online_cpu(cpu)
1386 del_timer_sync(&per_cpu(mce_timer, cpu));
1387 }
1388
1389 /*
1390 * Notify the user(s) about new machine check events.
1391 * Can be called from interrupt context, but not from machine check/NMI
1392 * context.
1393 */
1394 int mce_notify_irq(void)
1395 {
1396 /* Not more than two messages every minute */
1397 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1398
1399 if (test_and_clear_bit(0, &mce_need_notify)) {
1400 mce_work_trigger();
1401
1402 if (__ratelimit(&ratelimit))
1403 pr_info(HW_ERR "Machine check events logged\n");
1404
1405 return 1;
1406 }
1407 return 0;
1408 }
1409 EXPORT_SYMBOL_GPL(mce_notify_irq);
1410
1411 static int __mcheck_cpu_mce_banks_init(void)
1412 {
1413 int i;
1414 u8 num_banks = mca_cfg.banks;
1415
1416 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1417 if (!mce_banks)
1418 return -ENOMEM;
1419
1420 for (i = 0; i < num_banks; i++) {
1421 struct mce_bank *b = &mce_banks[i];
1422
1423 b->ctl = -1ULL;
1424 b->init = 1;
1425 }
1426 return 0;
1427 }
1428
1429 /*
1430 * Initialize Machine Checks for a CPU.
1431 */
1432 static int __mcheck_cpu_cap_init(void)
1433 {
1434 unsigned b;
1435 u64 cap;
1436
1437 rdmsrl(MSR_IA32_MCG_CAP, cap);
1438
1439 b = cap & MCG_BANKCNT_MASK;
1440 if (!mca_cfg.banks)
1441 pr_info("CPU supports %d MCE banks\n", b);
1442
1443 if (b > MAX_NR_BANKS) {
1444 pr_warn("Using only %u machine check banks out of %u\n",
1445 MAX_NR_BANKS, b);
1446 b = MAX_NR_BANKS;
1447 }
1448
1449 /* Don't support asymmetric configurations today */
1450 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1451 mca_cfg.banks = b;
1452
1453 if (!mce_banks) {
1454 int err = __mcheck_cpu_mce_banks_init();
1455
1456 if (err)
1457 return err;
1458 }
1459
1460 /* Use accurate RIP reporting if available. */
1461 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1462 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1463
1464 if (cap & MCG_SER_P)
1465 mca_cfg.ser = true;
1466
1467 return 0;
1468 }
1469
1470 static void __mcheck_cpu_init_generic(void)
1471 {
1472 enum mcp_flags m_fl = 0;
1473 mce_banks_t all_banks;
1474 u64 cap;
1475
1476 if (!mca_cfg.bootlog)
1477 m_fl = MCP_DONTLOG;
1478
1479 /*
1480 * Log the machine checks left over from the previous reset.
1481 */
1482 bitmap_fill(all_banks, MAX_NR_BANKS);
1483 machine_check_poll(MCP_UC | m_fl, &all_banks);
1484
1485 cr4_set_bits(X86_CR4_MCE);
1486
1487 rdmsrl(MSR_IA32_MCG_CAP, cap);
1488 if (cap & MCG_CTL_P)
1489 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1490 }
1491
1492 static void __mcheck_cpu_init_clear_banks(void)
1493 {
1494 int i;
1495
1496 for (i = 0; i < mca_cfg.banks; i++) {
1497 struct mce_bank *b = &mce_banks[i];
1498
1499 if (!b->init)
1500 continue;
1501 wrmsrl(msr_ops.ctl(i), b->ctl);
1502 wrmsrl(msr_ops.status(i), 0);
1503 }
1504 }
1505
1506 /*
1507 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1508 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1509 * Vol 3B Table 15-20). But this confuses both the code that determines
1510 * whether the machine check occurred in kernel or user mode, and also
1511 * the severity assessment code. Pretend that EIPV was set, and take the
1512 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1513 */
1514 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1515 {
1516 if (bank != 0)
1517 return;
1518 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1519 return;
1520 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1521 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1522 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1523 MCACOD)) !=
1524 (MCI_STATUS_UC|MCI_STATUS_EN|
1525 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1526 MCI_STATUS_AR|MCACOD_INSTR))
1527 return;
1528
1529 m->mcgstatus |= MCG_STATUS_EIPV;
1530 m->ip = regs->ip;
1531 m->cs = regs->cs;
1532 }
1533
1534 /* Add per CPU specific workarounds here */
1535 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1536 {
1537 struct mca_config *cfg = &mca_cfg;
1538
1539 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1540 pr_info("unknown CPU type - not enabling MCE support\n");
1541 return -EOPNOTSUPP;
1542 }
1543
1544 /* This should be disabled by the BIOS, but isn't always */
1545 if (c->x86_vendor == X86_VENDOR_AMD) {
1546 if (c->x86 == 15 && cfg->banks > 4) {
1547 /*
1548 * disable GART TBL walk error reporting, which
1549 * trips off incorrectly with the IOMMU & 3ware
1550 * & Cerberus:
1551 */
1552 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1553 }
1554 if (c->x86 < 17 && cfg->bootlog < 0) {
1555 /*
1556 * Lots of broken BIOS around that don't clear them
1557 * by default and leave crap in there. Don't log:
1558 */
1559 cfg->bootlog = 0;
1560 }
1561 /*
1562 * Various K7s with broken bank 0 around. Always disable
1563 * by default.
1564 */
1565 if (c->x86 == 6 && cfg->banks > 0)
1566 mce_banks[0].ctl = 0;
1567
1568 /*
1569 * overflow_recov is supported for F15h Models 00h-0fh
1570 * even though we don't have a CPUID bit for it.
1571 */
1572 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1573 mce_flags.overflow_recov = 1;
1574
1575 /*
1576 * Turn off MC4_MISC thresholding banks on those models since
1577 * they're not supported there.
1578 */
1579 if (c->x86 == 0x15 &&
1580 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1581 int i;
1582 u64 hwcr;
1583 bool need_toggle;
1584 u32 msrs[] = {
1585 0x00000413, /* MC4_MISC0 */
1586 0xc0000408, /* MC4_MISC1 */
1587 };
1588
1589 rdmsrl(MSR_K7_HWCR, hwcr);
1590
1591 /* McStatusWrEn has to be set */
1592 need_toggle = !(hwcr & BIT(18));
1593
1594 if (need_toggle)
1595 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1596
1597 /* Clear CntP bit safely */
1598 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1599 msr_clear_bit(msrs[i], 62);
1600
1601 /* restore old settings */
1602 if (need_toggle)
1603 wrmsrl(MSR_K7_HWCR, hwcr);
1604 }
1605 }
1606
1607 if (c->x86_vendor == X86_VENDOR_INTEL) {
1608 /*
1609 * SDM documents that on family 6 bank 0 should not be written
1610 * because it aliases to another special BIOS controlled
1611 * register.
1612 * But it's not aliased anymore on model 0x1a+
1613 * Don't ignore bank 0 completely because there could be a
1614 * valid event later, merely don't write CTL0.
1615 */
1616
1617 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1618 mce_banks[0].init = 0;
1619
1620 /*
1621 * All newer Intel systems support MCE broadcasting. Enable
1622 * synchronization with a one second timeout.
1623 */
1624 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1625 cfg->monarch_timeout < 0)
1626 cfg->monarch_timeout = USEC_PER_SEC;
1627
1628 /*
1629 * There are also broken BIOSes on some Pentium M and
1630 * earlier systems:
1631 */
1632 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1633 cfg->bootlog = 0;
1634
1635 if (c->x86 == 6 && c->x86_model == 45)
1636 quirk_no_way_out = quirk_sandybridge_ifu;
1637 }
1638 if (cfg->monarch_timeout < 0)
1639 cfg->monarch_timeout = 0;
1640 if (cfg->bootlog != 0)
1641 cfg->panic_timeout = 30;
1642
1643 return 0;
1644 }
1645
1646 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1647 {
1648 if (c->x86 != 5)
1649 return 0;
1650
1651 switch (c->x86_vendor) {
1652 case X86_VENDOR_INTEL:
1653 intel_p5_mcheck_init(c);
1654 return 1;
1655 break;
1656 case X86_VENDOR_CENTAUR:
1657 winchip_mcheck_init(c);
1658 return 1;
1659 break;
1660 default:
1661 return 0;
1662 }
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * Init basic CPU features needed for early decoding of MCEs.
1669 */
1670 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1671 {
1672 if (c->x86_vendor == X86_VENDOR_AMD) {
1673 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1674 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1675 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1676
1677 if (mce_flags.smca) {
1678 msr_ops.ctl = smca_ctl_reg;
1679 msr_ops.status = smca_status_reg;
1680 msr_ops.addr = smca_addr_reg;
1681 msr_ops.misc = smca_misc_reg;
1682 }
1683 }
1684 }
1685
1686 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1687 {
1688 switch (c->x86_vendor) {
1689 case X86_VENDOR_INTEL:
1690 mce_intel_feature_init(c);
1691 mce_adjust_timer = cmci_intel_adjust_timer;
1692 break;
1693
1694 case X86_VENDOR_AMD: {
1695 mce_amd_feature_init(c);
1696 break;
1697 }
1698
1699 default:
1700 break;
1701 }
1702 }
1703
1704 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1705 {
1706 switch (c->x86_vendor) {
1707 case X86_VENDOR_INTEL:
1708 mce_intel_feature_clear(c);
1709 break;
1710 default:
1711 break;
1712 }
1713 }
1714
1715 static void mce_start_timer(struct timer_list *t)
1716 {
1717 unsigned long iv = check_interval * HZ;
1718
1719 if (mca_cfg.ignore_ce || !iv)
1720 return;
1721
1722 this_cpu_write(mce_next_interval, iv);
1723 __start_timer(t, iv);
1724 }
1725
1726 static void __mcheck_cpu_setup_timer(void)
1727 {
1728 struct timer_list *t = this_cpu_ptr(&mce_timer);
1729 unsigned int cpu = smp_processor_id();
1730
1731 setup_pinned_timer(t, mce_timer_fn, cpu);
1732 }
1733
1734 static void __mcheck_cpu_init_timer(void)
1735 {
1736 struct timer_list *t = this_cpu_ptr(&mce_timer);
1737 unsigned int cpu = smp_processor_id();
1738
1739 setup_pinned_timer(t, mce_timer_fn, cpu);
1740 mce_start_timer(t);
1741 }
1742
1743 /* Handle unconfigured int18 (should never happen) */
1744 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1745 {
1746 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1747 smp_processor_id());
1748 }
1749
1750 /* Call the installed machine check handler for this CPU setup. */
1751 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1752 unexpected_machine_check;
1753
1754 /*
1755 * Called for each booted CPU to set up machine checks.
1756 * Must be called with preempt off:
1757 */
1758 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1759 {
1760 if (mca_cfg.disabled)
1761 return;
1762
1763 if (__mcheck_cpu_ancient_init(c))
1764 return;
1765
1766 if (!mce_available(c))
1767 return;
1768
1769 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1770 mca_cfg.disabled = true;
1771 return;
1772 }
1773
1774 if (mce_gen_pool_init()) {
1775 mca_cfg.disabled = true;
1776 pr_emerg("Couldn't allocate MCE records pool!\n");
1777 return;
1778 }
1779
1780 machine_check_vector = do_machine_check;
1781
1782 __mcheck_cpu_init_early(c);
1783 __mcheck_cpu_init_generic();
1784 __mcheck_cpu_init_vendor(c);
1785 __mcheck_cpu_init_clear_banks();
1786 __mcheck_cpu_setup_timer();
1787 }
1788
1789 /*
1790 * Called for each booted CPU to clear some machine checks opt-ins
1791 */
1792 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1793 {
1794 if (mca_cfg.disabled)
1795 return;
1796
1797 if (!mce_available(c))
1798 return;
1799
1800 /*
1801 * Possibly to clear general settings generic to x86
1802 * __mcheck_cpu_clear_generic(c);
1803 */
1804 __mcheck_cpu_clear_vendor(c);
1805
1806 }
1807
1808 static void __mce_disable_bank(void *arg)
1809 {
1810 int bank = *((int *)arg);
1811 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1812 cmci_disable_bank(bank);
1813 }
1814
1815 void mce_disable_bank(int bank)
1816 {
1817 if (bank >= mca_cfg.banks) {
1818 pr_warn(FW_BUG
1819 "Ignoring request to disable invalid MCA bank %d.\n",
1820 bank);
1821 return;
1822 }
1823 set_bit(bank, mce_banks_ce_disabled);
1824 on_each_cpu(__mce_disable_bank, &bank, 1);
1825 }
1826
1827 /*
1828 * mce=off Disables machine check
1829 * mce=no_cmci Disables CMCI
1830 * mce=no_lmce Disables LMCE
1831 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1832 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1833 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1834 * monarchtimeout is how long to wait for other CPUs on machine
1835 * check, or 0 to not wait
1836 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1837 * mce=nobootlog Don't log MCEs from before booting.
1838 * mce=bios_cmci_threshold Don't program the CMCI threshold
1839 * mce=recovery force enable memcpy_mcsafe()
1840 */
1841 static int __init mcheck_enable(char *str)
1842 {
1843 struct mca_config *cfg = &mca_cfg;
1844
1845 if (*str == 0) {
1846 enable_p5_mce();
1847 return 1;
1848 }
1849 if (*str == '=')
1850 str++;
1851 if (!strcmp(str, "off"))
1852 cfg->disabled = true;
1853 else if (!strcmp(str, "no_cmci"))
1854 cfg->cmci_disabled = true;
1855 else if (!strcmp(str, "no_lmce"))
1856 cfg->lmce_disabled = true;
1857 else if (!strcmp(str, "dont_log_ce"))
1858 cfg->dont_log_ce = true;
1859 else if (!strcmp(str, "ignore_ce"))
1860 cfg->ignore_ce = true;
1861 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1862 cfg->bootlog = (str[0] == 'b');
1863 else if (!strcmp(str, "bios_cmci_threshold"))
1864 cfg->bios_cmci_threshold = true;
1865 else if (!strcmp(str, "recovery"))
1866 cfg->recovery = true;
1867 else if (isdigit(str[0])) {
1868 if (get_option(&str, &cfg->tolerant) == 2)
1869 get_option(&str, &(cfg->monarch_timeout));
1870 } else {
1871 pr_info("mce argument %s ignored. Please use /sys\n", str);
1872 return 0;
1873 }
1874 return 1;
1875 }
1876 __setup("mce", mcheck_enable);
1877
1878 int __init mcheck_init(void)
1879 {
1880 mcheck_intel_therm_init();
1881 mce_register_decode_chain(&first_nb);
1882 mce_register_decode_chain(&mce_srao_nb);
1883 mce_register_decode_chain(&mce_default_nb);
1884 mcheck_vendor_init_severity();
1885
1886 INIT_WORK(&mce_work, mce_gen_pool_process);
1887 init_irq_work(&mce_irq_work, mce_irq_work_cb);
1888
1889 return 0;
1890 }
1891
1892 /*
1893 * mce_syscore: PM support
1894 */
1895
1896 /*
1897 * Disable machine checks on suspend and shutdown. We can't really handle
1898 * them later.
1899 */
1900 static void mce_disable_error_reporting(void)
1901 {
1902 int i;
1903
1904 for (i = 0; i < mca_cfg.banks; i++) {
1905 struct mce_bank *b = &mce_banks[i];
1906
1907 if (b->init)
1908 wrmsrl(msr_ops.ctl(i), 0);
1909 }
1910 return;
1911 }
1912
1913 static void vendor_disable_error_reporting(void)
1914 {
1915 /*
1916 * Don't clear on Intel CPUs. Some of these MSRs are socket-wide.
1917 * Disabling them for just a single offlined CPU is bad, since it will
1918 * inhibit reporting for all shared resources on the socket like the
1919 * last level cache (LLC), the integrated memory controller (iMC), etc.
1920 */
1921 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1922 return;
1923
1924 mce_disable_error_reporting();
1925 }
1926
1927 static int mce_syscore_suspend(void)
1928 {
1929 vendor_disable_error_reporting();
1930 return 0;
1931 }
1932
1933 static void mce_syscore_shutdown(void)
1934 {
1935 vendor_disable_error_reporting();
1936 }
1937
1938 /*
1939 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1940 * Only one CPU is active at this time, the others get re-added later using
1941 * CPU hotplug:
1942 */
1943 static void mce_syscore_resume(void)
1944 {
1945 __mcheck_cpu_init_generic();
1946 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
1947 __mcheck_cpu_init_clear_banks();
1948 }
1949
1950 static struct syscore_ops mce_syscore_ops = {
1951 .suspend = mce_syscore_suspend,
1952 .shutdown = mce_syscore_shutdown,
1953 .resume = mce_syscore_resume,
1954 };
1955
1956 /*
1957 * mce_device: Sysfs support
1958 */
1959
1960 static void mce_cpu_restart(void *data)
1961 {
1962 if (!mce_available(raw_cpu_ptr(&cpu_info)))
1963 return;
1964 __mcheck_cpu_init_generic();
1965 __mcheck_cpu_init_clear_banks();
1966 __mcheck_cpu_init_timer();
1967 }
1968
1969 /* Reinit MCEs after user configuration changes */
1970 static void mce_restart(void)
1971 {
1972 mce_timer_delete_all();
1973 on_each_cpu(mce_cpu_restart, NULL, 1);
1974 }
1975
1976 /* Toggle features for corrected errors */
1977 static void mce_disable_cmci(void *data)
1978 {
1979 if (!mce_available(raw_cpu_ptr(&cpu_info)))
1980 return;
1981 cmci_clear();
1982 }
1983
1984 static void mce_enable_ce(void *all)
1985 {
1986 if (!mce_available(raw_cpu_ptr(&cpu_info)))
1987 return;
1988 cmci_reenable();
1989 cmci_recheck();
1990 if (all)
1991 __mcheck_cpu_init_timer();
1992 }
1993
1994 static struct bus_type mce_subsys = {
1995 .name = "machinecheck",
1996 .dev_name = "machinecheck",
1997 };
1998
1999 DEFINE_PER_CPU(struct device *, mce_device);
2000
2001 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2002 {
2003 return container_of(attr, struct mce_bank, attr);
2004 }
2005
2006 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2007 char *buf)
2008 {
2009 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2010 }
2011
2012 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2013 const char *buf, size_t size)
2014 {
2015 u64 new;
2016
2017 if (kstrtou64(buf, 0, &new) < 0)
2018 return -EINVAL;
2019
2020 attr_to_bank(attr)->ctl = new;
2021 mce_restart();
2022
2023 return size;
2024 }
2025
2026 static ssize_t set_ignore_ce(struct device *s,
2027 struct device_attribute *attr,
2028 const char *buf, size_t size)
2029 {
2030 u64 new;
2031
2032 if (kstrtou64(buf, 0, &new) < 0)
2033 return -EINVAL;
2034
2035 if (mca_cfg.ignore_ce ^ !!new) {
2036 if (new) {
2037 /* disable ce features */
2038 mce_timer_delete_all();
2039 on_each_cpu(mce_disable_cmci, NULL, 1);
2040 mca_cfg.ignore_ce = true;
2041 } else {
2042 /* enable ce features */
2043 mca_cfg.ignore_ce = false;
2044 on_each_cpu(mce_enable_ce, (void *)1, 1);
2045 }
2046 }
2047 return size;
2048 }
2049
2050 static ssize_t set_cmci_disabled(struct device *s,
2051 struct device_attribute *attr,
2052 const char *buf, size_t size)
2053 {
2054 u64 new;
2055
2056 if (kstrtou64(buf, 0, &new) < 0)
2057 return -EINVAL;
2058
2059 if (mca_cfg.cmci_disabled ^ !!new) {
2060 if (new) {
2061 /* disable cmci */
2062 on_each_cpu(mce_disable_cmci, NULL, 1);
2063 mca_cfg.cmci_disabled = true;
2064 } else {
2065 /* enable cmci */
2066 mca_cfg.cmci_disabled = false;
2067 on_each_cpu(mce_enable_ce, NULL, 1);
2068 }
2069 }
2070 return size;
2071 }
2072
2073 static ssize_t store_int_with_restart(struct device *s,
2074 struct device_attribute *attr,
2075 const char *buf, size_t size)
2076 {
2077 ssize_t ret = device_store_int(s, attr, buf, size);
2078 mce_restart();
2079 return ret;
2080 }
2081
2082 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2083 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2084 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2085
2086 static struct dev_ext_attribute dev_attr_check_interval = {
2087 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2088 &check_interval
2089 };
2090
2091 static struct dev_ext_attribute dev_attr_ignore_ce = {
2092 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2093 &mca_cfg.ignore_ce
2094 };
2095
2096 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2097 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2098 &mca_cfg.cmci_disabled
2099 };
2100
2101 static struct device_attribute *mce_device_attrs[] = {
2102 &dev_attr_tolerant.attr,
2103 &dev_attr_check_interval.attr,
2104 #ifdef CONFIG_X86_MCELOG_LEGACY
2105 &dev_attr_trigger,
2106 #endif
2107 &dev_attr_monarch_timeout.attr,
2108 &dev_attr_dont_log_ce.attr,
2109 &dev_attr_ignore_ce.attr,
2110 &dev_attr_cmci_disabled.attr,
2111 NULL
2112 };
2113
2114 static cpumask_var_t mce_device_initialized;
2115
2116 static void mce_device_release(struct device *dev)
2117 {
2118 kfree(dev);
2119 }
2120
2121 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2122 static int mce_device_create(unsigned int cpu)
2123 {
2124 struct device *dev;
2125 int err;
2126 int i, j;
2127
2128 if (!mce_available(&boot_cpu_data))
2129 return -EIO;
2130
2131 dev = per_cpu(mce_device, cpu);
2132 if (dev)
2133 return 0;
2134
2135 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2136 if (!dev)
2137 return -ENOMEM;
2138 dev->id = cpu;
2139 dev->bus = &mce_subsys;
2140 dev->release = &mce_device_release;
2141
2142 err = device_register(dev);
2143 if (err) {
2144 put_device(dev);
2145 return err;
2146 }
2147
2148 for (i = 0; mce_device_attrs[i]; i++) {
2149 err = device_create_file(dev, mce_device_attrs[i]);
2150 if (err)
2151 goto error;
2152 }
2153 for (j = 0; j < mca_cfg.banks; j++) {
2154 err = device_create_file(dev, &mce_banks[j].attr);
2155 if (err)
2156 goto error2;
2157 }
2158 cpumask_set_cpu(cpu, mce_device_initialized);
2159 per_cpu(mce_device, cpu) = dev;
2160
2161 return 0;
2162 error2:
2163 while (--j >= 0)
2164 device_remove_file(dev, &mce_banks[j].attr);
2165 error:
2166 while (--i >= 0)
2167 device_remove_file(dev, mce_device_attrs[i]);
2168
2169 device_unregister(dev);
2170
2171 return err;
2172 }
2173
2174 static void mce_device_remove(unsigned int cpu)
2175 {
2176 struct device *dev = per_cpu(mce_device, cpu);
2177 int i;
2178
2179 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2180 return;
2181
2182 for (i = 0; mce_device_attrs[i]; i++)
2183 device_remove_file(dev, mce_device_attrs[i]);
2184
2185 for (i = 0; i < mca_cfg.banks; i++)
2186 device_remove_file(dev, &mce_banks[i].attr);
2187
2188 device_unregister(dev);
2189 cpumask_clear_cpu(cpu, mce_device_initialized);
2190 per_cpu(mce_device, cpu) = NULL;
2191 }
2192
2193 /* Make sure there are no machine checks on offlined CPUs. */
2194 static void mce_disable_cpu(void)
2195 {
2196 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2197 return;
2198
2199 if (!cpuhp_tasks_frozen)
2200 cmci_clear();
2201
2202 vendor_disable_error_reporting();
2203 }
2204
2205 static void mce_reenable_cpu(void)
2206 {
2207 int i;
2208
2209 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2210 return;
2211
2212 if (!cpuhp_tasks_frozen)
2213 cmci_reenable();
2214 for (i = 0; i < mca_cfg.banks; i++) {
2215 struct mce_bank *b = &mce_banks[i];
2216
2217 if (b->init)
2218 wrmsrl(msr_ops.ctl(i), b->ctl);
2219 }
2220 }
2221
2222 static int mce_cpu_dead(unsigned int cpu)
2223 {
2224 mce_intel_hcpu_update(cpu);
2225
2226 /* intentionally ignoring frozen here */
2227 if (!cpuhp_tasks_frozen)
2228 cmci_rediscover();
2229 return 0;
2230 }
2231
2232 static int mce_cpu_online(unsigned int cpu)
2233 {
2234 struct timer_list *t = this_cpu_ptr(&mce_timer);
2235 int ret;
2236
2237 mce_device_create(cpu);
2238
2239 ret = mce_threshold_create_device(cpu);
2240 if (ret) {
2241 mce_device_remove(cpu);
2242 return ret;
2243 }
2244 mce_reenable_cpu();
2245 mce_start_timer(t);
2246 return 0;
2247 }
2248
2249 static int mce_cpu_pre_down(unsigned int cpu)
2250 {
2251 struct timer_list *t = this_cpu_ptr(&mce_timer);
2252
2253 mce_disable_cpu();
2254 del_timer_sync(t);
2255 mce_threshold_remove_device(cpu);
2256 mce_device_remove(cpu);
2257 return 0;
2258 }
2259
2260 static __init void mce_init_banks(void)
2261 {
2262 int i;
2263
2264 for (i = 0; i < mca_cfg.banks; i++) {
2265 struct mce_bank *b = &mce_banks[i];
2266 struct device_attribute *a = &b->attr;
2267
2268 sysfs_attr_init(&a->attr);
2269 a->attr.name = b->attrname;
2270 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2271
2272 a->attr.mode = 0644;
2273 a->show = show_bank;
2274 a->store = set_bank;
2275 }
2276 }
2277
2278 static __init int mcheck_init_device(void)
2279 {
2280 int err;
2281
2282 if (!mce_available(&boot_cpu_data)) {
2283 err = -EIO;
2284 goto err_out;
2285 }
2286
2287 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2288 err = -ENOMEM;
2289 goto err_out;
2290 }
2291
2292 mce_init_banks();
2293
2294 err = subsys_system_register(&mce_subsys, NULL);
2295 if (err)
2296 goto err_out_mem;
2297
2298 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2299 mce_cpu_dead);
2300 if (err)
2301 goto err_out_mem;
2302
2303 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2304 mce_cpu_online, mce_cpu_pre_down);
2305 if (err < 0)
2306 goto err_out_online;
2307
2308 register_syscore_ops(&mce_syscore_ops);
2309
2310 return 0;
2311
2312 err_out_online:
2313 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2314
2315 err_out_mem:
2316 free_cpumask_var(mce_device_initialized);
2317
2318 err_out:
2319 pr_err("Unable to init MCE device (rc: %d)\n", err);
2320
2321 return err;
2322 }
2323 device_initcall_sync(mcheck_init_device);
2324
2325 /*
2326 * Old style boot options parsing. Only for compatibility.
2327 */
2328 static int __init mcheck_disable(char *str)
2329 {
2330 mca_cfg.disabled = true;
2331 return 1;
2332 }
2333 __setup("nomce", mcheck_disable);
2334
2335 #ifdef CONFIG_DEBUG_FS
2336 struct dentry *mce_get_debugfs_dir(void)
2337 {
2338 static struct dentry *dmce;
2339
2340 if (!dmce)
2341 dmce = debugfs_create_dir("mce", NULL);
2342
2343 return dmce;
2344 }
2345
2346 static void mce_reset(void)
2347 {
2348 cpu_missing = 0;
2349 atomic_set(&mce_fake_panicked, 0);
2350 atomic_set(&mce_executing, 0);
2351 atomic_set(&mce_callin, 0);
2352 atomic_set(&global_nwo, 0);
2353 }
2354
2355 static int fake_panic_get(void *data, u64 *val)
2356 {
2357 *val = fake_panic;
2358 return 0;
2359 }
2360
2361 static int fake_panic_set(void *data, u64 val)
2362 {
2363 mce_reset();
2364 fake_panic = val;
2365 return 0;
2366 }
2367
2368 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2369 fake_panic_set, "%llu\n");
2370
2371 static int __init mcheck_debugfs_init(void)
2372 {
2373 struct dentry *dmce, *ffake_panic;
2374
2375 dmce = mce_get_debugfs_dir();
2376 if (!dmce)
2377 return -ENOMEM;
2378 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2379 &fake_panic_fops);
2380 if (!ffake_panic)
2381 return -ENOMEM;
2382
2383 return 0;
2384 }
2385 #else
2386 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2387 #endif
2388
2389 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2390 EXPORT_SYMBOL_GPL(mcsafe_key);
2391
2392 static int __init mcheck_late_init(void)
2393 {
2394 if (mca_cfg.recovery)
2395 static_branch_inc(&mcsafe_key);
2396
2397 mcheck_debugfs_init();
2398 cec_init();
2399
2400 /*
2401 * Flush out everything that has been logged during early boot, now that
2402 * everything has been initialized (workqueues, decoders, ...).
2403 */
2404 mce_schedule_work();
2405
2406 return 0;
2407 }
2408 late_initcall(mcheck_late_init);