]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge branch 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/sysdev.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40
41 #include <asm/processor.h>
42 #include <asm/mce.h>
43 #include <asm/msr.h>
44
45 #include "mce-internal.h"
46
47 static DEFINE_MUTEX(mce_chrdev_read_mutex);
48
49 #define rcu_dereference_check_mce(p) \
50 rcu_dereference_index_check((p), \
51 rcu_read_lock_sched_held() || \
52 lockdep_is_held(&mce_chrdev_read_mutex))
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/mce.h>
56
57 int mce_disabled __read_mostly;
58
59 #define MISC_MCELOG_MINOR 227
60
61 #define SPINUNIT 100 /* 100ns */
62
63 atomic_t mce_entry;
64
65 DEFINE_PER_CPU(unsigned, mce_exception_count);
66
67 /*
68 * Tolerant levels:
69 * 0: always panic on uncorrected errors, log corrected errors
70 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
71 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
72 * 3: never panic or SIGBUS, log all errors (for testing only)
73 */
74 static int tolerant __read_mostly = 1;
75 static int banks __read_mostly;
76 static int rip_msr __read_mostly;
77 static int mce_bootlog __read_mostly = -1;
78 static int monarch_timeout __read_mostly = -1;
79 static int mce_panic_timeout __read_mostly;
80 static int mce_dont_log_ce __read_mostly;
81 int mce_cmci_disabled __read_mostly;
82 int mce_ignore_ce __read_mostly;
83 int mce_ser __read_mostly;
84
85 struct mce_bank *mce_banks __read_mostly;
86
87 /* User mode helper program triggered by machine check event */
88 static unsigned long mce_need_notify;
89 static char mce_helper[128];
90 static char *mce_helper_argv[2] = { mce_helper, NULL };
91
92 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
93
94 static DEFINE_PER_CPU(struct mce, mces_seen);
95 static int cpu_missing;
96
97 /*
98 * CPU/chipset specific EDAC code can register a notifier call here to print
99 * MCE errors in a human-readable form.
100 */
101 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
102 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
103
104 /* MCA banks polled by the period polling timer for corrected events */
105 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
106 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
107 };
108
109 static DEFINE_PER_CPU(struct work_struct, mce_work);
110
111 /* Do initial initialization of a struct mce */
112 void mce_setup(struct mce *m)
113 {
114 memset(m, 0, sizeof(struct mce));
115 m->cpu = m->extcpu = smp_processor_id();
116 rdtscll(m->tsc);
117 /* We hope get_seconds stays lockless */
118 m->time = get_seconds();
119 m->cpuvendor = boot_cpu_data.x86_vendor;
120 m->cpuid = cpuid_eax(1);
121 #ifdef CONFIG_SMP
122 m->socketid = cpu_data(m->extcpu).phys_proc_id;
123 #endif
124 m->apicid = cpu_data(m->extcpu).initial_apicid;
125 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
126 }
127
128 DEFINE_PER_CPU(struct mce, injectm);
129 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
130
131 /*
132 * Lockless MCE logging infrastructure.
133 * This avoids deadlocks on printk locks without having to break locks. Also
134 * separate MCEs from kernel messages to avoid bogus bug reports.
135 */
136
137 static struct mce_log mcelog = {
138 .signature = MCE_LOG_SIGNATURE,
139 .len = MCE_LOG_LEN,
140 .recordlen = sizeof(struct mce),
141 };
142
143 void mce_log(struct mce *mce)
144 {
145 unsigned next, entry;
146 int ret = 0;
147
148 /* Emit the trace record: */
149 trace_mce_record(mce);
150
151 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
152 if (ret == NOTIFY_STOP)
153 return;
154
155 mce->finished = 0;
156 wmb();
157 for (;;) {
158 entry = rcu_dereference_check_mce(mcelog.next);
159 for (;;) {
160
161 /*
162 * When the buffer fills up discard new entries.
163 * Assume that the earlier errors are the more
164 * interesting ones:
165 */
166 if (entry >= MCE_LOG_LEN) {
167 set_bit(MCE_OVERFLOW,
168 (unsigned long *)&mcelog.flags);
169 return;
170 }
171 /* Old left over entry. Skip: */
172 if (mcelog.entry[entry].finished) {
173 entry++;
174 continue;
175 }
176 break;
177 }
178 smp_rmb();
179 next = entry + 1;
180 if (cmpxchg(&mcelog.next, entry, next) == entry)
181 break;
182 }
183 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
184 wmb();
185 mcelog.entry[entry].finished = 1;
186 wmb();
187
188 mce->finished = 1;
189 set_bit(0, &mce_need_notify);
190 }
191
192 static void print_mce(struct mce *m)
193 {
194 int ret = 0;
195
196 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
197 m->extcpu, m->mcgstatus, m->bank, m->status);
198
199 if (m->ip) {
200 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
201 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
202 m->cs, m->ip);
203
204 if (m->cs == __KERNEL_CS)
205 print_symbol("{%s}", m->ip);
206 pr_cont("\n");
207 }
208
209 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
210 if (m->addr)
211 pr_cont("ADDR %llx ", m->addr);
212 if (m->misc)
213 pr_cont("MISC %llx ", m->misc);
214
215 pr_cont("\n");
216 /*
217 * Note this output is parsed by external tools and old fields
218 * should not be changed.
219 */
220 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
221 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
222 cpu_data(m->extcpu).microcode);
223
224 /*
225 * Print out human-readable details about the MCE error,
226 * (if the CPU has an implementation for that)
227 */
228 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
229 if (ret == NOTIFY_STOP)
230 return;
231
232 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
233 }
234
235 #define PANIC_TIMEOUT 5 /* 5 seconds */
236
237 static atomic_t mce_paniced;
238
239 static int fake_panic;
240 static atomic_t mce_fake_paniced;
241
242 /* Panic in progress. Enable interrupts and wait for final IPI */
243 static void wait_for_panic(void)
244 {
245 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
246
247 preempt_disable();
248 local_irq_enable();
249 while (timeout-- > 0)
250 udelay(1);
251 if (panic_timeout == 0)
252 panic_timeout = mce_panic_timeout;
253 panic("Panicing machine check CPU died");
254 }
255
256 static void mce_panic(char *msg, struct mce *final, char *exp)
257 {
258 int i, apei_err = 0;
259
260 if (!fake_panic) {
261 /*
262 * Make sure only one CPU runs in machine check panic
263 */
264 if (atomic_inc_return(&mce_paniced) > 1)
265 wait_for_panic();
266 barrier();
267
268 bust_spinlocks(1);
269 console_verbose();
270 } else {
271 /* Don't log too much for fake panic */
272 if (atomic_inc_return(&mce_fake_paniced) > 1)
273 return;
274 }
275 /* First print corrected ones that are still unlogged */
276 for (i = 0; i < MCE_LOG_LEN; i++) {
277 struct mce *m = &mcelog.entry[i];
278 if (!(m->status & MCI_STATUS_VAL))
279 continue;
280 if (!(m->status & MCI_STATUS_UC)) {
281 print_mce(m);
282 if (!apei_err)
283 apei_err = apei_write_mce(m);
284 }
285 }
286 /* Now print uncorrected but with the final one last */
287 for (i = 0; i < MCE_LOG_LEN; i++) {
288 struct mce *m = &mcelog.entry[i];
289 if (!(m->status & MCI_STATUS_VAL))
290 continue;
291 if (!(m->status & MCI_STATUS_UC))
292 continue;
293 if (!final || memcmp(m, final, sizeof(struct mce))) {
294 print_mce(m);
295 if (!apei_err)
296 apei_err = apei_write_mce(m);
297 }
298 }
299 if (final) {
300 print_mce(final);
301 if (!apei_err)
302 apei_err = apei_write_mce(final);
303 }
304 if (cpu_missing)
305 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
306 if (exp)
307 pr_emerg(HW_ERR "Machine check: %s\n", exp);
308 if (!fake_panic) {
309 if (panic_timeout == 0)
310 panic_timeout = mce_panic_timeout;
311 panic(msg);
312 } else
313 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
314 }
315
316 /* Support code for software error injection */
317
318 static int msr_to_offset(u32 msr)
319 {
320 unsigned bank = __this_cpu_read(injectm.bank);
321
322 if (msr == rip_msr)
323 return offsetof(struct mce, ip);
324 if (msr == MSR_IA32_MCx_STATUS(bank))
325 return offsetof(struct mce, status);
326 if (msr == MSR_IA32_MCx_ADDR(bank))
327 return offsetof(struct mce, addr);
328 if (msr == MSR_IA32_MCx_MISC(bank))
329 return offsetof(struct mce, misc);
330 if (msr == MSR_IA32_MCG_STATUS)
331 return offsetof(struct mce, mcgstatus);
332 return -1;
333 }
334
335 /* MSR access wrappers used for error injection */
336 static u64 mce_rdmsrl(u32 msr)
337 {
338 u64 v;
339
340 if (__this_cpu_read(injectm.finished)) {
341 int offset = msr_to_offset(msr);
342
343 if (offset < 0)
344 return 0;
345 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
346 }
347
348 if (rdmsrl_safe(msr, &v)) {
349 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
350 /*
351 * Return zero in case the access faulted. This should
352 * not happen normally but can happen if the CPU does
353 * something weird, or if the code is buggy.
354 */
355 v = 0;
356 }
357
358 return v;
359 }
360
361 static void mce_wrmsrl(u32 msr, u64 v)
362 {
363 if (__this_cpu_read(injectm.finished)) {
364 int offset = msr_to_offset(msr);
365
366 if (offset >= 0)
367 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
368 return;
369 }
370 wrmsrl(msr, v);
371 }
372
373 /*
374 * Collect all global (w.r.t. this processor) status about this machine
375 * check into our "mce" struct so that we can use it later to assess
376 * the severity of the problem as we read per-bank specific details.
377 */
378 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
379 {
380 mce_setup(m);
381
382 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
383 if (regs) {
384 /*
385 * Get the address of the instruction at the time of
386 * the machine check error.
387 */
388 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
389 m->ip = regs->ip;
390 m->cs = regs->cs;
391 }
392 /* Use accurate RIP reporting if available. */
393 if (rip_msr)
394 m->ip = mce_rdmsrl(rip_msr);
395 }
396 }
397
398 /*
399 * Simple lockless ring to communicate PFNs from the exception handler with the
400 * process context work function. This is vastly simplified because there's
401 * only a single reader and a single writer.
402 */
403 #define MCE_RING_SIZE 16 /* we use one entry less */
404
405 struct mce_ring {
406 unsigned short start;
407 unsigned short end;
408 unsigned long ring[MCE_RING_SIZE];
409 };
410 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
411
412 /* Runs with CPU affinity in workqueue */
413 static int mce_ring_empty(void)
414 {
415 struct mce_ring *r = &__get_cpu_var(mce_ring);
416
417 return r->start == r->end;
418 }
419
420 static int mce_ring_get(unsigned long *pfn)
421 {
422 struct mce_ring *r;
423 int ret = 0;
424
425 *pfn = 0;
426 get_cpu();
427 r = &__get_cpu_var(mce_ring);
428 if (r->start == r->end)
429 goto out;
430 *pfn = r->ring[r->start];
431 r->start = (r->start + 1) % MCE_RING_SIZE;
432 ret = 1;
433 out:
434 put_cpu();
435 return ret;
436 }
437
438 /* Always runs in MCE context with preempt off */
439 static int mce_ring_add(unsigned long pfn)
440 {
441 struct mce_ring *r = &__get_cpu_var(mce_ring);
442 unsigned next;
443
444 next = (r->end + 1) % MCE_RING_SIZE;
445 if (next == r->start)
446 return -1;
447 r->ring[r->end] = pfn;
448 wmb();
449 r->end = next;
450 return 0;
451 }
452
453 int mce_available(struct cpuinfo_x86 *c)
454 {
455 if (mce_disabled)
456 return 0;
457 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
458 }
459
460 static void mce_schedule_work(void)
461 {
462 if (!mce_ring_empty()) {
463 struct work_struct *work = &__get_cpu_var(mce_work);
464 if (!work_pending(work))
465 schedule_work(work);
466 }
467 }
468
469 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
470
471 static void mce_irq_work_cb(struct irq_work *entry)
472 {
473 mce_notify_irq();
474 mce_schedule_work();
475 }
476
477 static void mce_report_event(struct pt_regs *regs)
478 {
479 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
480 mce_notify_irq();
481 /*
482 * Triggering the work queue here is just an insurance
483 * policy in case the syscall exit notify handler
484 * doesn't run soon enough or ends up running on the
485 * wrong CPU (can happen when audit sleeps)
486 */
487 mce_schedule_work();
488 return;
489 }
490
491 irq_work_queue(&__get_cpu_var(mce_irq_work));
492 }
493
494 DEFINE_PER_CPU(unsigned, mce_poll_count);
495
496 /*
497 * Poll for corrected events or events that happened before reset.
498 * Those are just logged through /dev/mcelog.
499 *
500 * This is executed in standard interrupt context.
501 *
502 * Note: spec recommends to panic for fatal unsignalled
503 * errors here. However this would be quite problematic --
504 * we would need to reimplement the Monarch handling and
505 * it would mess up the exclusion between exception handler
506 * and poll hander -- * so we skip this for now.
507 * These cases should not happen anyways, or only when the CPU
508 * is already totally * confused. In this case it's likely it will
509 * not fully execute the machine check handler either.
510 */
511 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
512 {
513 struct mce m;
514 int i;
515
516 percpu_inc(mce_poll_count);
517
518 mce_gather_info(&m, NULL);
519
520 for (i = 0; i < banks; i++) {
521 if (!mce_banks[i].ctl || !test_bit(i, *b))
522 continue;
523
524 m.misc = 0;
525 m.addr = 0;
526 m.bank = i;
527 m.tsc = 0;
528
529 barrier();
530 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
531 if (!(m.status & MCI_STATUS_VAL))
532 continue;
533
534 /*
535 * Uncorrected or signalled events are handled by the exception
536 * handler when it is enabled, so don't process those here.
537 *
538 * TBD do the same check for MCI_STATUS_EN here?
539 */
540 if (!(flags & MCP_UC) &&
541 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
542 continue;
543
544 if (m.status & MCI_STATUS_MISCV)
545 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
546 if (m.status & MCI_STATUS_ADDRV)
547 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
548
549 if (!(flags & MCP_TIMESTAMP))
550 m.tsc = 0;
551 /*
552 * Don't get the IP here because it's unlikely to
553 * have anything to do with the actual error location.
554 */
555 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
556 mce_log(&m);
557
558 /*
559 * Clear state for this bank.
560 */
561 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
562 }
563
564 /*
565 * Don't clear MCG_STATUS here because it's only defined for
566 * exceptions.
567 */
568
569 sync_core();
570 }
571 EXPORT_SYMBOL_GPL(machine_check_poll);
572
573 /*
574 * Do a quick check if any of the events requires a panic.
575 * This decides if we keep the events around or clear them.
576 */
577 static int mce_no_way_out(struct mce *m, char **msg)
578 {
579 int i;
580
581 for (i = 0; i < banks; i++) {
582 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
583 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
584 return 1;
585 }
586 return 0;
587 }
588
589 /*
590 * Variable to establish order between CPUs while scanning.
591 * Each CPU spins initially until executing is equal its number.
592 */
593 static atomic_t mce_executing;
594
595 /*
596 * Defines order of CPUs on entry. First CPU becomes Monarch.
597 */
598 static atomic_t mce_callin;
599
600 /*
601 * Check if a timeout waiting for other CPUs happened.
602 */
603 static int mce_timed_out(u64 *t)
604 {
605 /*
606 * The others already did panic for some reason.
607 * Bail out like in a timeout.
608 * rmb() to tell the compiler that system_state
609 * might have been modified by someone else.
610 */
611 rmb();
612 if (atomic_read(&mce_paniced))
613 wait_for_panic();
614 if (!monarch_timeout)
615 goto out;
616 if ((s64)*t < SPINUNIT) {
617 /* CHECKME: Make panic default for 1 too? */
618 if (tolerant < 1)
619 mce_panic("Timeout synchronizing machine check over CPUs",
620 NULL, NULL);
621 cpu_missing = 1;
622 return 1;
623 }
624 *t -= SPINUNIT;
625 out:
626 touch_nmi_watchdog();
627 return 0;
628 }
629
630 /*
631 * The Monarch's reign. The Monarch is the CPU who entered
632 * the machine check handler first. It waits for the others to
633 * raise the exception too and then grades them. When any
634 * error is fatal panic. Only then let the others continue.
635 *
636 * The other CPUs entering the MCE handler will be controlled by the
637 * Monarch. They are called Subjects.
638 *
639 * This way we prevent any potential data corruption in a unrecoverable case
640 * and also makes sure always all CPU's errors are examined.
641 *
642 * Also this detects the case of a machine check event coming from outer
643 * space (not detected by any CPUs) In this case some external agent wants
644 * us to shut down, so panic too.
645 *
646 * The other CPUs might still decide to panic if the handler happens
647 * in a unrecoverable place, but in this case the system is in a semi-stable
648 * state and won't corrupt anything by itself. It's ok to let the others
649 * continue for a bit first.
650 *
651 * All the spin loops have timeouts; when a timeout happens a CPU
652 * typically elects itself to be Monarch.
653 */
654 static void mce_reign(void)
655 {
656 int cpu;
657 struct mce *m = NULL;
658 int global_worst = 0;
659 char *msg = NULL;
660 char *nmsg = NULL;
661
662 /*
663 * This CPU is the Monarch and the other CPUs have run
664 * through their handlers.
665 * Grade the severity of the errors of all the CPUs.
666 */
667 for_each_possible_cpu(cpu) {
668 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
669 &nmsg);
670 if (severity > global_worst) {
671 msg = nmsg;
672 global_worst = severity;
673 m = &per_cpu(mces_seen, cpu);
674 }
675 }
676
677 /*
678 * Cannot recover? Panic here then.
679 * This dumps all the mces in the log buffer and stops the
680 * other CPUs.
681 */
682 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
683 mce_panic("Fatal Machine check", m, msg);
684
685 /*
686 * For UC somewhere we let the CPU who detects it handle it.
687 * Also must let continue the others, otherwise the handling
688 * CPU could deadlock on a lock.
689 */
690
691 /*
692 * No machine check event found. Must be some external
693 * source or one CPU is hung. Panic.
694 */
695 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
696 mce_panic("Machine check from unknown source", NULL, NULL);
697
698 /*
699 * Now clear all the mces_seen so that they don't reappear on
700 * the next mce.
701 */
702 for_each_possible_cpu(cpu)
703 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
704 }
705
706 static atomic_t global_nwo;
707
708 /*
709 * Start of Monarch synchronization. This waits until all CPUs have
710 * entered the exception handler and then determines if any of them
711 * saw a fatal event that requires panic. Then it executes them
712 * in the entry order.
713 * TBD double check parallel CPU hotunplug
714 */
715 static int mce_start(int *no_way_out)
716 {
717 int order;
718 int cpus = num_online_cpus();
719 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
720
721 if (!timeout)
722 return -1;
723
724 atomic_add(*no_way_out, &global_nwo);
725 /*
726 * global_nwo should be updated before mce_callin
727 */
728 smp_wmb();
729 order = atomic_inc_return(&mce_callin);
730
731 /*
732 * Wait for everyone.
733 */
734 while (atomic_read(&mce_callin) != cpus) {
735 if (mce_timed_out(&timeout)) {
736 atomic_set(&global_nwo, 0);
737 return -1;
738 }
739 ndelay(SPINUNIT);
740 }
741
742 /*
743 * mce_callin should be read before global_nwo
744 */
745 smp_rmb();
746
747 if (order == 1) {
748 /*
749 * Monarch: Starts executing now, the others wait.
750 */
751 atomic_set(&mce_executing, 1);
752 } else {
753 /*
754 * Subject: Now start the scanning loop one by one in
755 * the original callin order.
756 * This way when there are any shared banks it will be
757 * only seen by one CPU before cleared, avoiding duplicates.
758 */
759 while (atomic_read(&mce_executing) < order) {
760 if (mce_timed_out(&timeout)) {
761 atomic_set(&global_nwo, 0);
762 return -1;
763 }
764 ndelay(SPINUNIT);
765 }
766 }
767
768 /*
769 * Cache the global no_way_out state.
770 */
771 *no_way_out = atomic_read(&global_nwo);
772
773 return order;
774 }
775
776 /*
777 * Synchronize between CPUs after main scanning loop.
778 * This invokes the bulk of the Monarch processing.
779 */
780 static int mce_end(int order)
781 {
782 int ret = -1;
783 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
784
785 if (!timeout)
786 goto reset;
787 if (order < 0)
788 goto reset;
789
790 /*
791 * Allow others to run.
792 */
793 atomic_inc(&mce_executing);
794
795 if (order == 1) {
796 /* CHECKME: Can this race with a parallel hotplug? */
797 int cpus = num_online_cpus();
798
799 /*
800 * Monarch: Wait for everyone to go through their scanning
801 * loops.
802 */
803 while (atomic_read(&mce_executing) <= cpus) {
804 if (mce_timed_out(&timeout))
805 goto reset;
806 ndelay(SPINUNIT);
807 }
808
809 mce_reign();
810 barrier();
811 ret = 0;
812 } else {
813 /*
814 * Subject: Wait for Monarch to finish.
815 */
816 while (atomic_read(&mce_executing) != 0) {
817 if (mce_timed_out(&timeout))
818 goto reset;
819 ndelay(SPINUNIT);
820 }
821
822 /*
823 * Don't reset anything. That's done by the Monarch.
824 */
825 return 0;
826 }
827
828 /*
829 * Reset all global state.
830 */
831 reset:
832 atomic_set(&global_nwo, 0);
833 atomic_set(&mce_callin, 0);
834 barrier();
835
836 /*
837 * Let others run again.
838 */
839 atomic_set(&mce_executing, 0);
840 return ret;
841 }
842
843 /*
844 * Check if the address reported by the CPU is in a format we can parse.
845 * It would be possible to add code for most other cases, but all would
846 * be somewhat complicated (e.g. segment offset would require an instruction
847 * parser). So only support physical addresses up to page granuality for now.
848 */
849 static int mce_usable_address(struct mce *m)
850 {
851 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
852 return 0;
853 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
854 return 0;
855 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
856 return 0;
857 return 1;
858 }
859
860 static void mce_clear_state(unsigned long *toclear)
861 {
862 int i;
863
864 for (i = 0; i < banks; i++) {
865 if (test_bit(i, toclear))
866 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
867 }
868 }
869
870 /*
871 * The actual machine check handler. This only handles real
872 * exceptions when something got corrupted coming in through int 18.
873 *
874 * This is executed in NMI context not subject to normal locking rules. This
875 * implies that most kernel services cannot be safely used. Don't even
876 * think about putting a printk in there!
877 *
878 * On Intel systems this is entered on all CPUs in parallel through
879 * MCE broadcast. However some CPUs might be broken beyond repair,
880 * so be always careful when synchronizing with others.
881 */
882 void do_machine_check(struct pt_regs *regs, long error_code)
883 {
884 struct mce m, *final;
885 int i;
886 int worst = 0;
887 int severity;
888 /*
889 * Establish sequential order between the CPUs entering the machine
890 * check handler.
891 */
892 int order;
893 /*
894 * If no_way_out gets set, there is no safe way to recover from this
895 * MCE. If tolerant is cranked up, we'll try anyway.
896 */
897 int no_way_out = 0;
898 /*
899 * If kill_it gets set, there might be a way to recover from this
900 * error.
901 */
902 int kill_it = 0;
903 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
904 char *msg = "Unknown";
905
906 atomic_inc(&mce_entry);
907
908 percpu_inc(mce_exception_count);
909
910 if (!banks)
911 goto out;
912
913 mce_gather_info(&m, regs);
914
915 final = &__get_cpu_var(mces_seen);
916 *final = m;
917
918 no_way_out = mce_no_way_out(&m, &msg);
919
920 barrier();
921
922 /*
923 * When no restart IP must always kill or panic.
924 */
925 if (!(m.mcgstatus & MCG_STATUS_RIPV))
926 kill_it = 1;
927
928 /*
929 * Go through all the banks in exclusion of the other CPUs.
930 * This way we don't report duplicated events on shared banks
931 * because the first one to see it will clear it.
932 */
933 order = mce_start(&no_way_out);
934 for (i = 0; i < banks; i++) {
935 __clear_bit(i, toclear);
936 if (!mce_banks[i].ctl)
937 continue;
938
939 m.misc = 0;
940 m.addr = 0;
941 m.bank = i;
942
943 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
944 if ((m.status & MCI_STATUS_VAL) == 0)
945 continue;
946
947 /*
948 * Non uncorrected or non signaled errors are handled by
949 * machine_check_poll. Leave them alone, unless this panics.
950 */
951 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
952 !no_way_out)
953 continue;
954
955 /*
956 * Set taint even when machine check was not enabled.
957 */
958 add_taint(TAINT_MACHINE_CHECK);
959
960 severity = mce_severity(&m, tolerant, NULL);
961
962 /*
963 * When machine check was for corrected handler don't touch,
964 * unless we're panicing.
965 */
966 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
967 continue;
968 __set_bit(i, toclear);
969 if (severity == MCE_NO_SEVERITY) {
970 /*
971 * Machine check event was not enabled. Clear, but
972 * ignore.
973 */
974 continue;
975 }
976
977 /*
978 * Kill on action required.
979 */
980 if (severity == MCE_AR_SEVERITY)
981 kill_it = 1;
982
983 if (m.status & MCI_STATUS_MISCV)
984 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
985 if (m.status & MCI_STATUS_ADDRV)
986 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
987
988 /*
989 * Action optional error. Queue address for later processing.
990 * When the ring overflows we just ignore the AO error.
991 * RED-PEN add some logging mechanism when
992 * usable_address or mce_add_ring fails.
993 * RED-PEN don't ignore overflow for tolerant == 0
994 */
995 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
996 mce_ring_add(m.addr >> PAGE_SHIFT);
997
998 mce_log(&m);
999
1000 if (severity > worst) {
1001 *final = m;
1002 worst = severity;
1003 }
1004 }
1005
1006 if (!no_way_out)
1007 mce_clear_state(toclear);
1008
1009 /*
1010 * Do most of the synchronization with other CPUs.
1011 * When there's any problem use only local no_way_out state.
1012 */
1013 if (mce_end(order) < 0)
1014 no_way_out = worst >= MCE_PANIC_SEVERITY;
1015
1016 /*
1017 * If we have decided that we just CAN'T continue, and the user
1018 * has not set tolerant to an insane level, give up and die.
1019 *
1020 * This is mainly used in the case when the system doesn't
1021 * support MCE broadcasting or it has been disabled.
1022 */
1023 if (no_way_out && tolerant < 3)
1024 mce_panic("Fatal machine check on current CPU", final, msg);
1025
1026 /*
1027 * If the error seems to be unrecoverable, something should be
1028 * done. Try to kill as little as possible. If we can kill just
1029 * one task, do that. If the user has set the tolerance very
1030 * high, don't try to do anything at all.
1031 */
1032
1033 if (kill_it && tolerant < 3)
1034 force_sig(SIGBUS, current);
1035
1036 /* notify userspace ASAP */
1037 set_thread_flag(TIF_MCE_NOTIFY);
1038
1039 if (worst > 0)
1040 mce_report_event(regs);
1041 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1042 out:
1043 atomic_dec(&mce_entry);
1044 sync_core();
1045 }
1046 EXPORT_SYMBOL_GPL(do_machine_check);
1047
1048 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1049 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1050 {
1051 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1052 }
1053
1054 /*
1055 * Called after mce notification in process context. This code
1056 * is allowed to sleep. Call the high level VM handler to process
1057 * any corrupted pages.
1058 * Assume that the work queue code only calls this one at a time
1059 * per CPU.
1060 * Note we don't disable preemption, so this code might run on the wrong
1061 * CPU. In this case the event is picked up by the scheduled work queue.
1062 * This is merely a fast path to expedite processing in some common
1063 * cases.
1064 */
1065 void mce_notify_process(void)
1066 {
1067 unsigned long pfn;
1068 mce_notify_irq();
1069 while (mce_ring_get(&pfn))
1070 memory_failure(pfn, MCE_VECTOR);
1071 }
1072
1073 static void mce_process_work(struct work_struct *dummy)
1074 {
1075 mce_notify_process();
1076 }
1077
1078 #ifdef CONFIG_X86_MCE_INTEL
1079 /***
1080 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1081 * @cpu: The CPU on which the event occurred.
1082 * @status: Event status information
1083 *
1084 * This function should be called by the thermal interrupt after the
1085 * event has been processed and the decision was made to log the event
1086 * further.
1087 *
1088 * The status parameter will be saved to the 'status' field of 'struct mce'
1089 * and historically has been the register value of the
1090 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1091 */
1092 void mce_log_therm_throt_event(__u64 status)
1093 {
1094 struct mce m;
1095
1096 mce_setup(&m);
1097 m.bank = MCE_THERMAL_BANK;
1098 m.status = status;
1099 mce_log(&m);
1100 }
1101 #endif /* CONFIG_X86_MCE_INTEL */
1102
1103 /*
1104 * Periodic polling timer for "silent" machine check errors. If the
1105 * poller finds an MCE, poll 2x faster. When the poller finds no more
1106 * errors, poll 2x slower (up to check_interval seconds).
1107 */
1108 static int check_interval = 5 * 60; /* 5 minutes */
1109
1110 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1111 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1112
1113 static void mce_start_timer(unsigned long data)
1114 {
1115 struct timer_list *t = &per_cpu(mce_timer, data);
1116 int *n;
1117
1118 WARN_ON(smp_processor_id() != data);
1119
1120 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1121 machine_check_poll(MCP_TIMESTAMP,
1122 &__get_cpu_var(mce_poll_banks));
1123 }
1124
1125 /*
1126 * Alert userspace if needed. If we logged an MCE, reduce the
1127 * polling interval, otherwise increase the polling interval.
1128 */
1129 n = &__get_cpu_var(mce_next_interval);
1130 if (mce_notify_irq())
1131 *n = max(*n/2, HZ/100);
1132 else
1133 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1134
1135 t->expires = jiffies + *n;
1136 add_timer_on(t, smp_processor_id());
1137 }
1138
1139 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1140 static void mce_timer_delete_all(void)
1141 {
1142 int cpu;
1143
1144 for_each_online_cpu(cpu)
1145 del_timer_sync(&per_cpu(mce_timer, cpu));
1146 }
1147
1148 static void mce_do_trigger(struct work_struct *work)
1149 {
1150 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1151 }
1152
1153 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1154
1155 /*
1156 * Notify the user(s) about new machine check events.
1157 * Can be called from interrupt context, but not from machine check/NMI
1158 * context.
1159 */
1160 int mce_notify_irq(void)
1161 {
1162 /* Not more than two messages every minute */
1163 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1164
1165 clear_thread_flag(TIF_MCE_NOTIFY);
1166
1167 if (test_and_clear_bit(0, &mce_need_notify)) {
1168 /* wake processes polling /dev/mcelog */
1169 wake_up_interruptible(&mce_chrdev_wait);
1170
1171 /*
1172 * There is no risk of missing notifications because
1173 * work_pending is always cleared before the function is
1174 * executed.
1175 */
1176 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1177 schedule_work(&mce_trigger_work);
1178
1179 if (__ratelimit(&ratelimit))
1180 pr_info(HW_ERR "Machine check events logged\n");
1181
1182 return 1;
1183 }
1184 return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(mce_notify_irq);
1187
1188 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1189 {
1190 int i;
1191
1192 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1193 if (!mce_banks)
1194 return -ENOMEM;
1195 for (i = 0; i < banks; i++) {
1196 struct mce_bank *b = &mce_banks[i];
1197
1198 b->ctl = -1ULL;
1199 b->init = 1;
1200 }
1201 return 0;
1202 }
1203
1204 /*
1205 * Initialize Machine Checks for a CPU.
1206 */
1207 static int __cpuinit __mcheck_cpu_cap_init(void)
1208 {
1209 unsigned b;
1210 u64 cap;
1211
1212 rdmsrl(MSR_IA32_MCG_CAP, cap);
1213
1214 b = cap & MCG_BANKCNT_MASK;
1215 if (!banks)
1216 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1217
1218 if (b > MAX_NR_BANKS) {
1219 printk(KERN_WARNING
1220 "MCE: Using only %u machine check banks out of %u\n",
1221 MAX_NR_BANKS, b);
1222 b = MAX_NR_BANKS;
1223 }
1224
1225 /* Don't support asymmetric configurations today */
1226 WARN_ON(banks != 0 && b != banks);
1227 banks = b;
1228 if (!mce_banks) {
1229 int err = __mcheck_cpu_mce_banks_init();
1230
1231 if (err)
1232 return err;
1233 }
1234
1235 /* Use accurate RIP reporting if available. */
1236 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1237 rip_msr = MSR_IA32_MCG_EIP;
1238
1239 if (cap & MCG_SER_P)
1240 mce_ser = 1;
1241
1242 return 0;
1243 }
1244
1245 static void __mcheck_cpu_init_generic(void)
1246 {
1247 mce_banks_t all_banks;
1248 u64 cap;
1249 int i;
1250
1251 /*
1252 * Log the machine checks left over from the previous reset.
1253 */
1254 bitmap_fill(all_banks, MAX_NR_BANKS);
1255 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1256
1257 set_in_cr4(X86_CR4_MCE);
1258
1259 rdmsrl(MSR_IA32_MCG_CAP, cap);
1260 if (cap & MCG_CTL_P)
1261 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1262
1263 for (i = 0; i < banks; i++) {
1264 struct mce_bank *b = &mce_banks[i];
1265
1266 if (!b->init)
1267 continue;
1268 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1269 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1270 }
1271 }
1272
1273 /* Add per CPU specific workarounds here */
1274 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1275 {
1276 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1277 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1278 return -EOPNOTSUPP;
1279 }
1280
1281 /* This should be disabled by the BIOS, but isn't always */
1282 if (c->x86_vendor == X86_VENDOR_AMD) {
1283 if (c->x86 == 15 && banks > 4) {
1284 /*
1285 * disable GART TBL walk error reporting, which
1286 * trips off incorrectly with the IOMMU & 3ware
1287 * & Cerberus:
1288 */
1289 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1290 }
1291 if (c->x86 <= 17 && mce_bootlog < 0) {
1292 /*
1293 * Lots of broken BIOS around that don't clear them
1294 * by default and leave crap in there. Don't log:
1295 */
1296 mce_bootlog = 0;
1297 }
1298 /*
1299 * Various K7s with broken bank 0 around. Always disable
1300 * by default.
1301 */
1302 if (c->x86 == 6 && banks > 0)
1303 mce_banks[0].ctl = 0;
1304 }
1305
1306 if (c->x86_vendor == X86_VENDOR_INTEL) {
1307 /*
1308 * SDM documents that on family 6 bank 0 should not be written
1309 * because it aliases to another special BIOS controlled
1310 * register.
1311 * But it's not aliased anymore on model 0x1a+
1312 * Don't ignore bank 0 completely because there could be a
1313 * valid event later, merely don't write CTL0.
1314 */
1315
1316 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1317 mce_banks[0].init = 0;
1318
1319 /*
1320 * All newer Intel systems support MCE broadcasting. Enable
1321 * synchronization with a one second timeout.
1322 */
1323 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1324 monarch_timeout < 0)
1325 monarch_timeout = USEC_PER_SEC;
1326
1327 /*
1328 * There are also broken BIOSes on some Pentium M and
1329 * earlier systems:
1330 */
1331 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1332 mce_bootlog = 0;
1333 }
1334 if (monarch_timeout < 0)
1335 monarch_timeout = 0;
1336 if (mce_bootlog != 0)
1337 mce_panic_timeout = 30;
1338
1339 return 0;
1340 }
1341
1342 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1343 {
1344 if (c->x86 != 5)
1345 return 0;
1346
1347 switch (c->x86_vendor) {
1348 case X86_VENDOR_INTEL:
1349 intel_p5_mcheck_init(c);
1350 return 1;
1351 break;
1352 case X86_VENDOR_CENTAUR:
1353 winchip_mcheck_init(c);
1354 return 1;
1355 break;
1356 }
1357
1358 return 0;
1359 }
1360
1361 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1362 {
1363 switch (c->x86_vendor) {
1364 case X86_VENDOR_INTEL:
1365 mce_intel_feature_init(c);
1366 break;
1367 case X86_VENDOR_AMD:
1368 mce_amd_feature_init(c);
1369 break;
1370 default:
1371 break;
1372 }
1373 }
1374
1375 static void __mcheck_cpu_init_timer(void)
1376 {
1377 struct timer_list *t = &__get_cpu_var(mce_timer);
1378 int *n = &__get_cpu_var(mce_next_interval);
1379
1380 setup_timer(t, mce_start_timer, smp_processor_id());
1381
1382 if (mce_ignore_ce)
1383 return;
1384
1385 *n = check_interval * HZ;
1386 if (!*n)
1387 return;
1388 t->expires = round_jiffies(jiffies + *n);
1389 add_timer_on(t, smp_processor_id());
1390 }
1391
1392 /* Handle unconfigured int18 (should never happen) */
1393 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1394 {
1395 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1396 smp_processor_id());
1397 }
1398
1399 /* Call the installed machine check handler for this CPU setup. */
1400 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1401 unexpected_machine_check;
1402
1403 /*
1404 * Called for each booted CPU to set up machine checks.
1405 * Must be called with preempt off:
1406 */
1407 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1408 {
1409 if (mce_disabled)
1410 return;
1411
1412 if (__mcheck_cpu_ancient_init(c))
1413 return;
1414
1415 if (!mce_available(c))
1416 return;
1417
1418 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1419 mce_disabled = 1;
1420 return;
1421 }
1422
1423 machine_check_vector = do_machine_check;
1424
1425 __mcheck_cpu_init_generic();
1426 __mcheck_cpu_init_vendor(c);
1427 __mcheck_cpu_init_timer();
1428 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1429 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1430 }
1431
1432 /*
1433 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1434 */
1435
1436 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1437 static int mce_chrdev_open_count; /* #times opened */
1438 static int mce_chrdev_open_exclu; /* already open exclusive? */
1439
1440 static int mce_chrdev_open(struct inode *inode, struct file *file)
1441 {
1442 spin_lock(&mce_chrdev_state_lock);
1443
1444 if (mce_chrdev_open_exclu ||
1445 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1446 spin_unlock(&mce_chrdev_state_lock);
1447
1448 return -EBUSY;
1449 }
1450
1451 if (file->f_flags & O_EXCL)
1452 mce_chrdev_open_exclu = 1;
1453 mce_chrdev_open_count++;
1454
1455 spin_unlock(&mce_chrdev_state_lock);
1456
1457 return nonseekable_open(inode, file);
1458 }
1459
1460 static int mce_chrdev_release(struct inode *inode, struct file *file)
1461 {
1462 spin_lock(&mce_chrdev_state_lock);
1463
1464 mce_chrdev_open_count--;
1465 mce_chrdev_open_exclu = 0;
1466
1467 spin_unlock(&mce_chrdev_state_lock);
1468
1469 return 0;
1470 }
1471
1472 static void collect_tscs(void *data)
1473 {
1474 unsigned long *cpu_tsc = (unsigned long *)data;
1475
1476 rdtscll(cpu_tsc[smp_processor_id()]);
1477 }
1478
1479 static int mce_apei_read_done;
1480
1481 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1482 static int __mce_read_apei(char __user **ubuf, size_t usize)
1483 {
1484 int rc;
1485 u64 record_id;
1486 struct mce m;
1487
1488 if (usize < sizeof(struct mce))
1489 return -EINVAL;
1490
1491 rc = apei_read_mce(&m, &record_id);
1492 /* Error or no more MCE record */
1493 if (rc <= 0) {
1494 mce_apei_read_done = 1;
1495 return rc;
1496 }
1497 rc = -EFAULT;
1498 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1499 return rc;
1500 /*
1501 * In fact, we should have cleared the record after that has
1502 * been flushed to the disk or sent to network in
1503 * /sbin/mcelog, but we have no interface to support that now,
1504 * so just clear it to avoid duplication.
1505 */
1506 rc = apei_clear_mce(record_id);
1507 if (rc) {
1508 mce_apei_read_done = 1;
1509 return rc;
1510 }
1511 *ubuf += sizeof(struct mce);
1512
1513 return 0;
1514 }
1515
1516 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1517 size_t usize, loff_t *off)
1518 {
1519 char __user *buf = ubuf;
1520 unsigned long *cpu_tsc;
1521 unsigned prev, next;
1522 int i, err;
1523
1524 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1525 if (!cpu_tsc)
1526 return -ENOMEM;
1527
1528 mutex_lock(&mce_chrdev_read_mutex);
1529
1530 if (!mce_apei_read_done) {
1531 err = __mce_read_apei(&buf, usize);
1532 if (err || buf != ubuf)
1533 goto out;
1534 }
1535
1536 next = rcu_dereference_check_mce(mcelog.next);
1537
1538 /* Only supports full reads right now */
1539 err = -EINVAL;
1540 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1541 goto out;
1542
1543 err = 0;
1544 prev = 0;
1545 do {
1546 for (i = prev; i < next; i++) {
1547 unsigned long start = jiffies;
1548 struct mce *m = &mcelog.entry[i];
1549
1550 while (!m->finished) {
1551 if (time_after_eq(jiffies, start + 2)) {
1552 memset(m, 0, sizeof(*m));
1553 goto timeout;
1554 }
1555 cpu_relax();
1556 }
1557 smp_rmb();
1558 err |= copy_to_user(buf, m, sizeof(*m));
1559 buf += sizeof(*m);
1560 timeout:
1561 ;
1562 }
1563
1564 memset(mcelog.entry + prev, 0,
1565 (next - prev) * sizeof(struct mce));
1566 prev = next;
1567 next = cmpxchg(&mcelog.next, prev, 0);
1568 } while (next != prev);
1569
1570 synchronize_sched();
1571
1572 /*
1573 * Collect entries that were still getting written before the
1574 * synchronize.
1575 */
1576 on_each_cpu(collect_tscs, cpu_tsc, 1);
1577
1578 for (i = next; i < MCE_LOG_LEN; i++) {
1579 struct mce *m = &mcelog.entry[i];
1580
1581 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1582 err |= copy_to_user(buf, m, sizeof(*m));
1583 smp_rmb();
1584 buf += sizeof(*m);
1585 memset(m, 0, sizeof(*m));
1586 }
1587 }
1588
1589 if (err)
1590 err = -EFAULT;
1591
1592 out:
1593 mutex_unlock(&mce_chrdev_read_mutex);
1594 kfree(cpu_tsc);
1595
1596 return err ? err : buf - ubuf;
1597 }
1598
1599 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1600 {
1601 poll_wait(file, &mce_chrdev_wait, wait);
1602 if (rcu_access_index(mcelog.next))
1603 return POLLIN | POLLRDNORM;
1604 if (!mce_apei_read_done && apei_check_mce())
1605 return POLLIN | POLLRDNORM;
1606 return 0;
1607 }
1608
1609 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1610 unsigned long arg)
1611 {
1612 int __user *p = (int __user *)arg;
1613
1614 if (!capable(CAP_SYS_ADMIN))
1615 return -EPERM;
1616
1617 switch (cmd) {
1618 case MCE_GET_RECORD_LEN:
1619 return put_user(sizeof(struct mce), p);
1620 case MCE_GET_LOG_LEN:
1621 return put_user(MCE_LOG_LEN, p);
1622 case MCE_GETCLEAR_FLAGS: {
1623 unsigned flags;
1624
1625 do {
1626 flags = mcelog.flags;
1627 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1628
1629 return put_user(flags, p);
1630 }
1631 default:
1632 return -ENOTTY;
1633 }
1634 }
1635
1636 /* Modified in mce-inject.c, so not static or const */
1637 struct file_operations mce_chrdev_ops = {
1638 .open = mce_chrdev_open,
1639 .release = mce_chrdev_release,
1640 .read = mce_chrdev_read,
1641 .poll = mce_chrdev_poll,
1642 .unlocked_ioctl = mce_chrdev_ioctl,
1643 .llseek = no_llseek,
1644 };
1645 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1646
1647 static struct miscdevice mce_chrdev_device = {
1648 MISC_MCELOG_MINOR,
1649 "mcelog",
1650 &mce_chrdev_ops,
1651 };
1652
1653 /*
1654 * mce=off Disables machine check
1655 * mce=no_cmci Disables CMCI
1656 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1657 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1658 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1659 * monarchtimeout is how long to wait for other CPUs on machine
1660 * check, or 0 to not wait
1661 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1662 * mce=nobootlog Don't log MCEs from before booting.
1663 */
1664 static int __init mcheck_enable(char *str)
1665 {
1666 if (*str == 0) {
1667 enable_p5_mce();
1668 return 1;
1669 }
1670 if (*str == '=')
1671 str++;
1672 if (!strcmp(str, "off"))
1673 mce_disabled = 1;
1674 else if (!strcmp(str, "no_cmci"))
1675 mce_cmci_disabled = 1;
1676 else if (!strcmp(str, "dont_log_ce"))
1677 mce_dont_log_ce = 1;
1678 else if (!strcmp(str, "ignore_ce"))
1679 mce_ignore_ce = 1;
1680 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1681 mce_bootlog = (str[0] == 'b');
1682 else if (isdigit(str[0])) {
1683 get_option(&str, &tolerant);
1684 if (*str == ',') {
1685 ++str;
1686 get_option(&str, &monarch_timeout);
1687 }
1688 } else {
1689 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1690 str);
1691 return 0;
1692 }
1693 return 1;
1694 }
1695 __setup("mce", mcheck_enable);
1696
1697 int __init mcheck_init(void)
1698 {
1699 mcheck_intel_therm_init();
1700
1701 return 0;
1702 }
1703
1704 /*
1705 * mce_syscore: PM support
1706 */
1707
1708 /*
1709 * Disable machine checks on suspend and shutdown. We can't really handle
1710 * them later.
1711 */
1712 static int mce_disable_error_reporting(void)
1713 {
1714 int i;
1715
1716 for (i = 0; i < banks; i++) {
1717 struct mce_bank *b = &mce_banks[i];
1718
1719 if (b->init)
1720 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1721 }
1722 return 0;
1723 }
1724
1725 static int mce_syscore_suspend(void)
1726 {
1727 return mce_disable_error_reporting();
1728 }
1729
1730 static void mce_syscore_shutdown(void)
1731 {
1732 mce_disable_error_reporting();
1733 }
1734
1735 /*
1736 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1737 * Only one CPU is active at this time, the others get re-added later using
1738 * CPU hotplug:
1739 */
1740 static void mce_syscore_resume(void)
1741 {
1742 __mcheck_cpu_init_generic();
1743 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1744 }
1745
1746 static struct syscore_ops mce_syscore_ops = {
1747 .suspend = mce_syscore_suspend,
1748 .shutdown = mce_syscore_shutdown,
1749 .resume = mce_syscore_resume,
1750 };
1751
1752 /*
1753 * mce_sysdev: Sysfs support
1754 */
1755
1756 static void mce_cpu_restart(void *data)
1757 {
1758 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1759 return;
1760 __mcheck_cpu_init_generic();
1761 __mcheck_cpu_init_timer();
1762 }
1763
1764 /* Reinit MCEs after user configuration changes */
1765 static void mce_restart(void)
1766 {
1767 mce_timer_delete_all();
1768 on_each_cpu(mce_cpu_restart, NULL, 1);
1769 }
1770
1771 /* Toggle features for corrected errors */
1772 static void mce_disable_cmci(void *data)
1773 {
1774 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1775 return;
1776 cmci_clear();
1777 }
1778
1779 static void mce_enable_ce(void *all)
1780 {
1781 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1782 return;
1783 cmci_reenable();
1784 cmci_recheck();
1785 if (all)
1786 __mcheck_cpu_init_timer();
1787 }
1788
1789 static struct sysdev_class mce_sysdev_class = {
1790 .name = "machinecheck",
1791 };
1792
1793 DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1794
1795 __cpuinitdata
1796 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1797
1798 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1799 {
1800 return container_of(attr, struct mce_bank, attr);
1801 }
1802
1803 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1804 char *buf)
1805 {
1806 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1807 }
1808
1809 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1810 const char *buf, size_t size)
1811 {
1812 u64 new;
1813
1814 if (strict_strtoull(buf, 0, &new) < 0)
1815 return -EINVAL;
1816
1817 attr_to_bank(attr)->ctl = new;
1818 mce_restart();
1819
1820 return size;
1821 }
1822
1823 static ssize_t
1824 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1825 {
1826 strcpy(buf, mce_helper);
1827 strcat(buf, "\n");
1828 return strlen(mce_helper) + 1;
1829 }
1830
1831 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1832 const char *buf, size_t siz)
1833 {
1834 char *p;
1835
1836 strncpy(mce_helper, buf, sizeof(mce_helper));
1837 mce_helper[sizeof(mce_helper)-1] = 0;
1838 p = strchr(mce_helper, '\n');
1839
1840 if (p)
1841 *p = 0;
1842
1843 return strlen(mce_helper) + !!p;
1844 }
1845
1846 static ssize_t set_ignore_ce(struct sys_device *s,
1847 struct sysdev_attribute *attr,
1848 const char *buf, size_t size)
1849 {
1850 u64 new;
1851
1852 if (strict_strtoull(buf, 0, &new) < 0)
1853 return -EINVAL;
1854
1855 if (mce_ignore_ce ^ !!new) {
1856 if (new) {
1857 /* disable ce features */
1858 mce_timer_delete_all();
1859 on_each_cpu(mce_disable_cmci, NULL, 1);
1860 mce_ignore_ce = 1;
1861 } else {
1862 /* enable ce features */
1863 mce_ignore_ce = 0;
1864 on_each_cpu(mce_enable_ce, (void *)1, 1);
1865 }
1866 }
1867 return size;
1868 }
1869
1870 static ssize_t set_cmci_disabled(struct sys_device *s,
1871 struct sysdev_attribute *attr,
1872 const char *buf, size_t size)
1873 {
1874 u64 new;
1875
1876 if (strict_strtoull(buf, 0, &new) < 0)
1877 return -EINVAL;
1878
1879 if (mce_cmci_disabled ^ !!new) {
1880 if (new) {
1881 /* disable cmci */
1882 on_each_cpu(mce_disable_cmci, NULL, 1);
1883 mce_cmci_disabled = 1;
1884 } else {
1885 /* enable cmci */
1886 mce_cmci_disabled = 0;
1887 on_each_cpu(mce_enable_ce, NULL, 1);
1888 }
1889 }
1890 return size;
1891 }
1892
1893 static ssize_t store_int_with_restart(struct sys_device *s,
1894 struct sysdev_attribute *attr,
1895 const char *buf, size_t size)
1896 {
1897 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1898 mce_restart();
1899 return ret;
1900 }
1901
1902 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1903 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1904 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1905 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1906
1907 static struct sysdev_ext_attribute attr_check_interval = {
1908 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1909 store_int_with_restart),
1910 &check_interval
1911 };
1912
1913 static struct sysdev_ext_attribute attr_ignore_ce = {
1914 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1915 &mce_ignore_ce
1916 };
1917
1918 static struct sysdev_ext_attribute attr_cmci_disabled = {
1919 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1920 &mce_cmci_disabled
1921 };
1922
1923 static struct sysdev_attribute *mce_sysdev_attrs[] = {
1924 &attr_tolerant.attr,
1925 &attr_check_interval.attr,
1926 &attr_trigger,
1927 &attr_monarch_timeout.attr,
1928 &attr_dont_log_ce.attr,
1929 &attr_ignore_ce.attr,
1930 &attr_cmci_disabled.attr,
1931 NULL
1932 };
1933
1934 static cpumask_var_t mce_sysdev_initialized;
1935
1936 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1937 static __cpuinit int mce_sysdev_create(unsigned int cpu)
1938 {
1939 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1940 int err;
1941 int i, j;
1942
1943 if (!mce_available(&boot_cpu_data))
1944 return -EIO;
1945
1946 memset(&sysdev->kobj, 0, sizeof(struct kobject));
1947 sysdev->id = cpu;
1948 sysdev->cls = &mce_sysdev_class;
1949
1950 err = sysdev_register(sysdev);
1951 if (err)
1952 return err;
1953
1954 for (i = 0; mce_sysdev_attrs[i]; i++) {
1955 err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
1956 if (err)
1957 goto error;
1958 }
1959 for (j = 0; j < banks; j++) {
1960 err = sysdev_create_file(sysdev, &mce_banks[j].attr);
1961 if (err)
1962 goto error2;
1963 }
1964 cpumask_set_cpu(cpu, mce_sysdev_initialized);
1965
1966 return 0;
1967 error2:
1968 while (--j >= 0)
1969 sysdev_remove_file(sysdev, &mce_banks[j].attr);
1970 error:
1971 while (--i >= 0)
1972 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1973
1974 sysdev_unregister(sysdev);
1975
1976 return err;
1977 }
1978
1979 static __cpuinit void mce_sysdev_remove(unsigned int cpu)
1980 {
1981 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1982 int i;
1983
1984 if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
1985 return;
1986
1987 for (i = 0; mce_sysdev_attrs[i]; i++)
1988 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1989
1990 for (i = 0; i < banks; i++)
1991 sysdev_remove_file(sysdev, &mce_banks[i].attr);
1992
1993 sysdev_unregister(sysdev);
1994 cpumask_clear_cpu(cpu, mce_sysdev_initialized);
1995 }
1996
1997 /* Make sure there are no machine checks on offlined CPUs. */
1998 static void __cpuinit mce_disable_cpu(void *h)
1999 {
2000 unsigned long action = *(unsigned long *)h;
2001 int i;
2002
2003 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2004 return;
2005
2006 if (!(action & CPU_TASKS_FROZEN))
2007 cmci_clear();
2008 for (i = 0; i < banks; i++) {
2009 struct mce_bank *b = &mce_banks[i];
2010
2011 if (b->init)
2012 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2013 }
2014 }
2015
2016 static void __cpuinit mce_reenable_cpu(void *h)
2017 {
2018 unsigned long action = *(unsigned long *)h;
2019 int i;
2020
2021 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2022 return;
2023
2024 if (!(action & CPU_TASKS_FROZEN))
2025 cmci_reenable();
2026 for (i = 0; i < banks; i++) {
2027 struct mce_bank *b = &mce_banks[i];
2028
2029 if (b->init)
2030 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2031 }
2032 }
2033
2034 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2035 static int __cpuinit
2036 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2037 {
2038 unsigned int cpu = (unsigned long)hcpu;
2039 struct timer_list *t = &per_cpu(mce_timer, cpu);
2040
2041 switch (action) {
2042 case CPU_ONLINE:
2043 case CPU_ONLINE_FROZEN:
2044 mce_sysdev_create(cpu);
2045 if (threshold_cpu_callback)
2046 threshold_cpu_callback(action, cpu);
2047 break;
2048 case CPU_DEAD:
2049 case CPU_DEAD_FROZEN:
2050 if (threshold_cpu_callback)
2051 threshold_cpu_callback(action, cpu);
2052 mce_sysdev_remove(cpu);
2053 break;
2054 case CPU_DOWN_PREPARE:
2055 case CPU_DOWN_PREPARE_FROZEN:
2056 del_timer_sync(t);
2057 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2058 break;
2059 case CPU_DOWN_FAILED:
2060 case CPU_DOWN_FAILED_FROZEN:
2061 if (!mce_ignore_ce && check_interval) {
2062 t->expires = round_jiffies(jiffies +
2063 __get_cpu_var(mce_next_interval));
2064 add_timer_on(t, cpu);
2065 }
2066 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2067 break;
2068 case CPU_POST_DEAD:
2069 /* intentionally ignoring frozen here */
2070 cmci_rediscover(cpu);
2071 break;
2072 }
2073 return NOTIFY_OK;
2074 }
2075
2076 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2077 .notifier_call = mce_cpu_callback,
2078 };
2079
2080 static __init void mce_init_banks(void)
2081 {
2082 int i;
2083
2084 for (i = 0; i < banks; i++) {
2085 struct mce_bank *b = &mce_banks[i];
2086 struct sysdev_attribute *a = &b->attr;
2087
2088 sysfs_attr_init(&a->attr);
2089 a->attr.name = b->attrname;
2090 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2091
2092 a->attr.mode = 0644;
2093 a->show = show_bank;
2094 a->store = set_bank;
2095 }
2096 }
2097
2098 static __init int mcheck_init_device(void)
2099 {
2100 int err;
2101 int i = 0;
2102
2103 if (!mce_available(&boot_cpu_data))
2104 return -EIO;
2105
2106 zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2107
2108 mce_init_banks();
2109
2110 err = sysdev_class_register(&mce_sysdev_class);
2111 if (err)
2112 return err;
2113
2114 for_each_online_cpu(i) {
2115 err = mce_sysdev_create(i);
2116 if (err)
2117 return err;
2118 }
2119
2120 register_syscore_ops(&mce_syscore_ops);
2121 register_hotcpu_notifier(&mce_cpu_notifier);
2122
2123 /* register character device /dev/mcelog */
2124 misc_register(&mce_chrdev_device);
2125
2126 return err;
2127 }
2128 device_initcall(mcheck_init_device);
2129
2130 /*
2131 * Old style boot options parsing. Only for compatibility.
2132 */
2133 static int __init mcheck_disable(char *str)
2134 {
2135 mce_disabled = 1;
2136 return 1;
2137 }
2138 __setup("nomce", mcheck_disable);
2139
2140 #ifdef CONFIG_DEBUG_FS
2141 struct dentry *mce_get_debugfs_dir(void)
2142 {
2143 static struct dentry *dmce;
2144
2145 if (!dmce)
2146 dmce = debugfs_create_dir("mce", NULL);
2147
2148 return dmce;
2149 }
2150
2151 static void mce_reset(void)
2152 {
2153 cpu_missing = 0;
2154 atomic_set(&mce_fake_paniced, 0);
2155 atomic_set(&mce_executing, 0);
2156 atomic_set(&mce_callin, 0);
2157 atomic_set(&global_nwo, 0);
2158 }
2159
2160 static int fake_panic_get(void *data, u64 *val)
2161 {
2162 *val = fake_panic;
2163 return 0;
2164 }
2165
2166 static int fake_panic_set(void *data, u64 val)
2167 {
2168 mce_reset();
2169 fake_panic = val;
2170 return 0;
2171 }
2172
2173 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2174 fake_panic_set, "%llu\n");
2175
2176 static int __init mcheck_debugfs_init(void)
2177 {
2178 struct dentry *dmce, *ffake_panic;
2179
2180 dmce = mce_get_debugfs_dir();
2181 if (!dmce)
2182 return -ENOMEM;
2183 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2184 &fake_panic_fops);
2185 if (!ffake_panic)
2186 return -ENOMEM;
2187
2188 return 0;
2189 }
2190 late_initcall(mcheck_debugfs_init);
2191 #endif