]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
45
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52
53 #include "mce-internal.h"
54
55 static DEFINE_MUTEX(mce_chrdev_read_mutex);
56
57 static int mce_chrdev_open_count; /* #times opened */
58
59 #define mce_log_get_idx_check(p) \
60 ({ \
61 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
62 !lockdep_is_held(&mce_chrdev_read_mutex), \
63 "suspicious mce_log_get_idx_check() usage"); \
64 smp_load_acquire(&(p)); \
65 })
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/mce.h>
69
70 #define SPINUNIT 100 /* 100ns */
71
72 DEFINE_PER_CPU(unsigned, mce_exception_count);
73
74 struct mce_bank *mce_banks __read_mostly;
75 struct mce_vendor_flags mce_flags __read_mostly;
76
77 struct mca_config mca_cfg __read_mostly = {
78 .bootlog = -1,
79 /*
80 * Tolerant levels:
81 * 0: always panic on uncorrected errors, log corrected errors
82 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
83 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
84 * 3: never panic or SIGBUS, log all errors (for testing only)
85 */
86 .tolerant = 1,
87 .monarch_timeout = -1
88 };
89
90 /* User mode helper program triggered by machine check event */
91 static unsigned long mce_need_notify;
92 static char mce_helper[128];
93 static char *mce_helper_argv[2] = { mce_helper, NULL };
94
95 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
96
97 static DEFINE_PER_CPU(struct mce, mces_seen);
98 static int cpu_missing;
99
100 /*
101 * MCA banks polled by the period polling timer for corrected events.
102 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
103 */
104 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
105 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
106 };
107
108 /*
109 * MCA banks controlled through firmware first for corrected errors.
110 * This is a global list of banks for which we won't enable CMCI and we
111 * won't poll. Firmware controls these banks and is responsible for
112 * reporting corrected errors through GHES. Uncorrected/recoverable
113 * errors are still notified through a machine check.
114 */
115 mce_banks_t mce_banks_ce_disabled;
116
117 static struct work_struct mce_work;
118 static struct irq_work mce_irq_work;
119
120 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
121
122 /*
123 * CPU/chipset specific EDAC code can register a notifier call here to print
124 * MCE errors in a human-readable form.
125 */
126 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
127
128 /* Do initial initialization of a struct mce */
129 void mce_setup(struct mce *m)
130 {
131 memset(m, 0, sizeof(struct mce));
132 m->cpu = m->extcpu = smp_processor_id();
133 /* We hope get_seconds stays lockless */
134 m->time = get_seconds();
135 m->cpuvendor = boot_cpu_data.x86_vendor;
136 m->cpuid = cpuid_eax(1);
137 m->socketid = cpu_data(m->extcpu).phys_proc_id;
138 m->apicid = cpu_data(m->extcpu).initial_apicid;
139 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
140
141 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
142 rdmsrl(MSR_PPIN, m->ppin);
143 }
144
145 DEFINE_PER_CPU(struct mce, injectm);
146 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
147
148 /*
149 * Lockless MCE logging infrastructure.
150 * This avoids deadlocks on printk locks without having to break locks. Also
151 * separate MCEs from kernel messages to avoid bogus bug reports.
152 */
153
154 static struct mce_log mcelog = {
155 .signature = MCE_LOG_SIGNATURE,
156 .len = MCE_LOG_LEN,
157 .recordlen = sizeof(struct mce),
158 };
159
160 void mce_log(struct mce *mce)
161 {
162 unsigned next, entry;
163
164 /* Emit the trace record: */
165 trace_mce_record(mce);
166
167 if (!mce_gen_pool_add(mce))
168 irq_work_queue(&mce_irq_work);
169
170 wmb();
171 for (;;) {
172 entry = mce_log_get_idx_check(mcelog.next);
173 for (;;) {
174
175 /*
176 * When the buffer fills up discard new entries.
177 * Assume that the earlier errors are the more
178 * interesting ones:
179 */
180 if (entry >= MCE_LOG_LEN) {
181 set_bit(MCE_OVERFLOW,
182 (unsigned long *)&mcelog.flags);
183 return;
184 }
185 /* Old left over entry. Skip: */
186 if (mcelog.entry[entry].finished) {
187 entry++;
188 continue;
189 }
190 break;
191 }
192 smp_rmb();
193 next = entry + 1;
194 if (cmpxchg(&mcelog.next, entry, next) == entry)
195 break;
196 }
197 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
198 wmb();
199 mcelog.entry[entry].finished = 1;
200 wmb();
201
202 set_bit(0, &mce_need_notify);
203 }
204
205 void mce_inject_log(struct mce *m)
206 {
207 mutex_lock(&mce_chrdev_read_mutex);
208 mce_log(m);
209 mutex_unlock(&mce_chrdev_read_mutex);
210 }
211 EXPORT_SYMBOL_GPL(mce_inject_log);
212
213 static struct notifier_block mce_srao_nb;
214
215 static atomic_t num_notifiers;
216
217 void mce_register_decode_chain(struct notifier_block *nb)
218 {
219 atomic_inc(&num_notifiers);
220
221 WARN_ON(nb->priority > MCE_PRIO_LOWEST && nb->priority < MCE_PRIO_EDAC);
222
223 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
224 }
225 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
226
227 void mce_unregister_decode_chain(struct notifier_block *nb)
228 {
229 atomic_dec(&num_notifiers);
230
231 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
232 }
233 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
234
235 static inline u32 ctl_reg(int bank)
236 {
237 return MSR_IA32_MCx_CTL(bank);
238 }
239
240 static inline u32 status_reg(int bank)
241 {
242 return MSR_IA32_MCx_STATUS(bank);
243 }
244
245 static inline u32 addr_reg(int bank)
246 {
247 return MSR_IA32_MCx_ADDR(bank);
248 }
249
250 static inline u32 misc_reg(int bank)
251 {
252 return MSR_IA32_MCx_MISC(bank);
253 }
254
255 static inline u32 smca_ctl_reg(int bank)
256 {
257 return MSR_AMD64_SMCA_MCx_CTL(bank);
258 }
259
260 static inline u32 smca_status_reg(int bank)
261 {
262 return MSR_AMD64_SMCA_MCx_STATUS(bank);
263 }
264
265 static inline u32 smca_addr_reg(int bank)
266 {
267 return MSR_AMD64_SMCA_MCx_ADDR(bank);
268 }
269
270 static inline u32 smca_misc_reg(int bank)
271 {
272 return MSR_AMD64_SMCA_MCx_MISC(bank);
273 }
274
275 struct mca_msr_regs msr_ops = {
276 .ctl = ctl_reg,
277 .status = status_reg,
278 .addr = addr_reg,
279 .misc = misc_reg
280 };
281
282 static void __print_mce(struct mce *m)
283 {
284 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
285 m->extcpu,
286 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
287 m->mcgstatus, m->bank, m->status);
288
289 if (m->ip) {
290 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
291 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
292 m->cs, m->ip);
293
294 if (m->cs == __KERNEL_CS)
295 print_symbol("{%s}", m->ip);
296 pr_cont("\n");
297 }
298
299 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
300 if (m->addr)
301 pr_cont("ADDR %llx ", m->addr);
302 if (m->misc)
303 pr_cont("MISC %llx ", m->misc);
304
305 if (mce_flags.smca) {
306 if (m->synd)
307 pr_cont("SYND %llx ", m->synd);
308 if (m->ipid)
309 pr_cont("IPID %llx ", m->ipid);
310 }
311
312 pr_cont("\n");
313 /*
314 * Note this output is parsed by external tools and old fields
315 * should not be changed.
316 */
317 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
318 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
319 cpu_data(m->extcpu).microcode);
320 }
321
322 static void print_mce(struct mce *m)
323 {
324 __print_mce(m);
325 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
326 }
327
328 #define PANIC_TIMEOUT 5 /* 5 seconds */
329
330 static atomic_t mce_panicked;
331
332 static int fake_panic;
333 static atomic_t mce_fake_panicked;
334
335 /* Panic in progress. Enable interrupts and wait for final IPI */
336 static void wait_for_panic(void)
337 {
338 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
339
340 preempt_disable();
341 local_irq_enable();
342 while (timeout-- > 0)
343 udelay(1);
344 if (panic_timeout == 0)
345 panic_timeout = mca_cfg.panic_timeout;
346 panic("Panicing machine check CPU died");
347 }
348
349 static void mce_panic(const char *msg, struct mce *final, char *exp)
350 {
351 int apei_err = 0;
352 struct llist_node *pending;
353 struct mce_evt_llist *l;
354
355 if (!fake_panic) {
356 /*
357 * Make sure only one CPU runs in machine check panic
358 */
359 if (atomic_inc_return(&mce_panicked) > 1)
360 wait_for_panic();
361 barrier();
362
363 bust_spinlocks(1);
364 console_verbose();
365 } else {
366 /* Don't log too much for fake panic */
367 if (atomic_inc_return(&mce_fake_panicked) > 1)
368 return;
369 }
370 pending = mce_gen_pool_prepare_records();
371 /* First print corrected ones that are still unlogged */
372 llist_for_each_entry(l, pending, llnode) {
373 struct mce *m = &l->mce;
374 if (!(m->status & MCI_STATUS_UC)) {
375 print_mce(m);
376 if (!apei_err)
377 apei_err = apei_write_mce(m);
378 }
379 }
380 /* Now print uncorrected but with the final one last */
381 llist_for_each_entry(l, pending, llnode) {
382 struct mce *m = &l->mce;
383 if (!(m->status & MCI_STATUS_UC))
384 continue;
385 if (!final || mce_cmp(m, final)) {
386 print_mce(m);
387 if (!apei_err)
388 apei_err = apei_write_mce(m);
389 }
390 }
391 if (final) {
392 print_mce(final);
393 if (!apei_err)
394 apei_err = apei_write_mce(final);
395 }
396 if (cpu_missing)
397 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
398 if (exp)
399 pr_emerg(HW_ERR "Machine check: %s\n", exp);
400 if (!fake_panic) {
401 if (panic_timeout == 0)
402 panic_timeout = mca_cfg.panic_timeout;
403 panic(msg);
404 } else
405 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
406 }
407
408 /* Support code for software error injection */
409
410 static int msr_to_offset(u32 msr)
411 {
412 unsigned bank = __this_cpu_read(injectm.bank);
413
414 if (msr == mca_cfg.rip_msr)
415 return offsetof(struct mce, ip);
416 if (msr == msr_ops.status(bank))
417 return offsetof(struct mce, status);
418 if (msr == msr_ops.addr(bank))
419 return offsetof(struct mce, addr);
420 if (msr == msr_ops.misc(bank))
421 return offsetof(struct mce, misc);
422 if (msr == MSR_IA32_MCG_STATUS)
423 return offsetof(struct mce, mcgstatus);
424 return -1;
425 }
426
427 /* MSR access wrappers used for error injection */
428 static u64 mce_rdmsrl(u32 msr)
429 {
430 u64 v;
431
432 if (__this_cpu_read(injectm.finished)) {
433 int offset = msr_to_offset(msr);
434
435 if (offset < 0)
436 return 0;
437 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
438 }
439
440 if (rdmsrl_safe(msr, &v)) {
441 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
442 /*
443 * Return zero in case the access faulted. This should
444 * not happen normally but can happen if the CPU does
445 * something weird, or if the code is buggy.
446 */
447 v = 0;
448 }
449
450 return v;
451 }
452
453 static void mce_wrmsrl(u32 msr, u64 v)
454 {
455 if (__this_cpu_read(injectm.finished)) {
456 int offset = msr_to_offset(msr);
457
458 if (offset >= 0)
459 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
460 return;
461 }
462 wrmsrl(msr, v);
463 }
464
465 /*
466 * Collect all global (w.r.t. this processor) status about this machine
467 * check into our "mce" struct so that we can use it later to assess
468 * the severity of the problem as we read per-bank specific details.
469 */
470 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
471 {
472 mce_setup(m);
473
474 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
475 if (regs) {
476 /*
477 * Get the address of the instruction at the time of
478 * the machine check error.
479 */
480 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
481 m->ip = regs->ip;
482 m->cs = regs->cs;
483
484 /*
485 * When in VM86 mode make the cs look like ring 3
486 * always. This is a lie, but it's better than passing
487 * the additional vm86 bit around everywhere.
488 */
489 if (v8086_mode(regs))
490 m->cs |= 3;
491 }
492 /* Use accurate RIP reporting if available. */
493 if (mca_cfg.rip_msr)
494 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
495 }
496 }
497
498 int mce_available(struct cpuinfo_x86 *c)
499 {
500 if (mca_cfg.disabled)
501 return 0;
502 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
503 }
504
505 static void mce_schedule_work(void)
506 {
507 if (!mce_gen_pool_empty())
508 schedule_work(&mce_work);
509 }
510
511 static void mce_irq_work_cb(struct irq_work *entry)
512 {
513 mce_notify_irq();
514 mce_schedule_work();
515 }
516
517 static void mce_report_event(struct pt_regs *regs)
518 {
519 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
520 mce_notify_irq();
521 /*
522 * Triggering the work queue here is just an insurance
523 * policy in case the syscall exit notify handler
524 * doesn't run soon enough or ends up running on the
525 * wrong CPU (can happen when audit sleeps)
526 */
527 mce_schedule_work();
528 return;
529 }
530
531 irq_work_queue(&mce_irq_work);
532 }
533
534 /*
535 * Check if the address reported by the CPU is in a format we can parse.
536 * It would be possible to add code for most other cases, but all would
537 * be somewhat complicated (e.g. segment offset would require an instruction
538 * parser). So only support physical addresses up to page granuality for now.
539 */
540 static int mce_usable_address(struct mce *m)
541 {
542 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
543 return 0;
544
545 /* Checks after this one are Intel-specific: */
546 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
547 return 1;
548
549 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
550 return 0;
551 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
552 return 0;
553 return 1;
554 }
555
556 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
557 void *data)
558 {
559 struct mce *mce = (struct mce *)data;
560 unsigned long pfn;
561
562 if (!mce)
563 return NOTIFY_DONE;
564
565 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
566 pfn = mce->addr >> PAGE_SHIFT;
567 memory_failure(pfn, MCE_VECTOR, 0);
568 }
569
570 return NOTIFY_OK;
571 }
572 static struct notifier_block mce_srao_nb = {
573 .notifier_call = srao_decode_notifier,
574 .priority = MCE_PRIO_SRAO,
575 };
576
577 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
578 void *data)
579 {
580 struct mce *m = (struct mce *)data;
581
582 if (!m)
583 return NOTIFY_DONE;
584
585 /*
586 * Run the default notifier if we have only the SRAO
587 * notifier and us registered.
588 */
589 if (atomic_read(&num_notifiers) > 2)
590 return NOTIFY_DONE;
591
592 /* Don't print when mcelog is running */
593 if (mce_chrdev_open_count > 0)
594 return NOTIFY_DONE;
595
596 __print_mce(m);
597
598 return NOTIFY_DONE;
599 }
600
601 static struct notifier_block mce_default_nb = {
602 .notifier_call = mce_default_notifier,
603 /* lowest prio, we want it to run last. */
604 .priority = MCE_PRIO_LOWEST,
605 };
606
607 /*
608 * Read ADDR and MISC registers.
609 */
610 static void mce_read_aux(struct mce *m, int i)
611 {
612 if (m->status & MCI_STATUS_MISCV)
613 m->misc = mce_rdmsrl(msr_ops.misc(i));
614
615 if (m->status & MCI_STATUS_ADDRV) {
616 m->addr = mce_rdmsrl(msr_ops.addr(i));
617
618 /*
619 * Mask the reported address by the reported granularity.
620 */
621 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
622 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
623 m->addr >>= shift;
624 m->addr <<= shift;
625 }
626
627 /*
628 * Extract [55:<lsb>] where lsb is the least significant
629 * *valid* bit of the address bits.
630 */
631 if (mce_flags.smca) {
632 u8 lsb = (m->addr >> 56) & 0x3f;
633
634 m->addr &= GENMASK_ULL(55, lsb);
635 }
636 }
637
638 if (mce_flags.smca) {
639 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
640
641 if (m->status & MCI_STATUS_SYNDV)
642 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
643 }
644 }
645
646 static bool memory_error(struct mce *m)
647 {
648 struct cpuinfo_x86 *c = &boot_cpu_data;
649
650 if (c->x86_vendor == X86_VENDOR_AMD) {
651 /* ErrCodeExt[20:16] */
652 u8 xec = (m->status >> 16) & 0x1f;
653
654 return (xec == 0x0 || xec == 0x8);
655 } else if (c->x86_vendor == X86_VENDOR_INTEL) {
656 /*
657 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
658 *
659 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
660 * indicating a memory error. Bit 8 is used for indicating a
661 * cache hierarchy error. The combination of bit 2 and bit 3
662 * is used for indicating a `generic' cache hierarchy error
663 * But we can't just blindly check the above bits, because if
664 * bit 11 is set, then it is a bus/interconnect error - and
665 * either way the above bits just gives more detail on what
666 * bus/interconnect error happened. Note that bit 12 can be
667 * ignored, as it's the "filter" bit.
668 */
669 return (m->status & 0xef80) == BIT(7) ||
670 (m->status & 0xef00) == BIT(8) ||
671 (m->status & 0xeffc) == 0xc;
672 }
673
674 return false;
675 }
676
677 DEFINE_PER_CPU(unsigned, mce_poll_count);
678
679 /*
680 * Poll for corrected events or events that happened before reset.
681 * Those are just logged through /dev/mcelog.
682 *
683 * This is executed in standard interrupt context.
684 *
685 * Note: spec recommends to panic for fatal unsignalled
686 * errors here. However this would be quite problematic --
687 * we would need to reimplement the Monarch handling and
688 * it would mess up the exclusion between exception handler
689 * and poll hander -- * so we skip this for now.
690 * These cases should not happen anyways, or only when the CPU
691 * is already totally * confused. In this case it's likely it will
692 * not fully execute the machine check handler either.
693 */
694 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
695 {
696 bool error_seen = false;
697 struct mce m;
698 int severity;
699 int i;
700
701 this_cpu_inc(mce_poll_count);
702
703 mce_gather_info(&m, NULL);
704
705 if (flags & MCP_TIMESTAMP)
706 m.tsc = rdtsc();
707
708 for (i = 0; i < mca_cfg.banks; i++) {
709 if (!mce_banks[i].ctl || !test_bit(i, *b))
710 continue;
711
712 m.misc = 0;
713 m.addr = 0;
714 m.bank = i;
715
716 barrier();
717 m.status = mce_rdmsrl(msr_ops.status(i));
718 if (!(m.status & MCI_STATUS_VAL))
719 continue;
720
721 /*
722 * Uncorrected or signalled events are handled by the exception
723 * handler when it is enabled, so don't process those here.
724 *
725 * TBD do the same check for MCI_STATUS_EN here?
726 */
727 if (!(flags & MCP_UC) &&
728 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
729 continue;
730
731 error_seen = true;
732
733 mce_read_aux(&m, i);
734
735 severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
736
737 if (severity == MCE_DEFERRED_SEVERITY && memory_error(&m))
738 if (m.status & MCI_STATUS_ADDRV)
739 m.severity = severity;
740
741 /*
742 * Don't get the IP here because it's unlikely to
743 * have anything to do with the actual error location.
744 */
745 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
746 mce_log(&m);
747 else if (mce_usable_address(&m)) {
748 /*
749 * Although we skipped logging this, we still want
750 * to take action. Add to the pool so the registered
751 * notifiers will see it.
752 */
753 if (!mce_gen_pool_add(&m))
754 mce_schedule_work();
755 }
756
757 /*
758 * Clear state for this bank.
759 */
760 mce_wrmsrl(msr_ops.status(i), 0);
761 }
762
763 /*
764 * Don't clear MCG_STATUS here because it's only defined for
765 * exceptions.
766 */
767
768 sync_core();
769
770 return error_seen;
771 }
772 EXPORT_SYMBOL_GPL(machine_check_poll);
773
774 /*
775 * Do a quick check if any of the events requires a panic.
776 * This decides if we keep the events around or clear them.
777 */
778 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
779 struct pt_regs *regs)
780 {
781 int i, ret = 0;
782 char *tmp;
783
784 for (i = 0; i < mca_cfg.banks; i++) {
785 m->status = mce_rdmsrl(msr_ops.status(i));
786 if (m->status & MCI_STATUS_VAL) {
787 __set_bit(i, validp);
788 if (quirk_no_way_out)
789 quirk_no_way_out(i, m, regs);
790 }
791
792 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
793 *msg = tmp;
794 ret = 1;
795 }
796 }
797 return ret;
798 }
799
800 /*
801 * Variable to establish order between CPUs while scanning.
802 * Each CPU spins initially until executing is equal its number.
803 */
804 static atomic_t mce_executing;
805
806 /*
807 * Defines order of CPUs on entry. First CPU becomes Monarch.
808 */
809 static atomic_t mce_callin;
810
811 /*
812 * Check if a timeout waiting for other CPUs happened.
813 */
814 static int mce_timed_out(u64 *t, const char *msg)
815 {
816 /*
817 * The others already did panic for some reason.
818 * Bail out like in a timeout.
819 * rmb() to tell the compiler that system_state
820 * might have been modified by someone else.
821 */
822 rmb();
823 if (atomic_read(&mce_panicked))
824 wait_for_panic();
825 if (!mca_cfg.monarch_timeout)
826 goto out;
827 if ((s64)*t < SPINUNIT) {
828 if (mca_cfg.tolerant <= 1)
829 mce_panic(msg, NULL, NULL);
830 cpu_missing = 1;
831 return 1;
832 }
833 *t -= SPINUNIT;
834 out:
835 touch_nmi_watchdog();
836 return 0;
837 }
838
839 /*
840 * The Monarch's reign. The Monarch is the CPU who entered
841 * the machine check handler first. It waits for the others to
842 * raise the exception too and then grades them. When any
843 * error is fatal panic. Only then let the others continue.
844 *
845 * The other CPUs entering the MCE handler will be controlled by the
846 * Monarch. They are called Subjects.
847 *
848 * This way we prevent any potential data corruption in a unrecoverable case
849 * and also makes sure always all CPU's errors are examined.
850 *
851 * Also this detects the case of a machine check event coming from outer
852 * space (not detected by any CPUs) In this case some external agent wants
853 * us to shut down, so panic too.
854 *
855 * The other CPUs might still decide to panic if the handler happens
856 * in a unrecoverable place, but in this case the system is in a semi-stable
857 * state and won't corrupt anything by itself. It's ok to let the others
858 * continue for a bit first.
859 *
860 * All the spin loops have timeouts; when a timeout happens a CPU
861 * typically elects itself to be Monarch.
862 */
863 static void mce_reign(void)
864 {
865 int cpu;
866 struct mce *m = NULL;
867 int global_worst = 0;
868 char *msg = NULL;
869 char *nmsg = NULL;
870
871 /*
872 * This CPU is the Monarch and the other CPUs have run
873 * through their handlers.
874 * Grade the severity of the errors of all the CPUs.
875 */
876 for_each_possible_cpu(cpu) {
877 int severity = mce_severity(&per_cpu(mces_seen, cpu),
878 mca_cfg.tolerant,
879 &nmsg, true);
880 if (severity > global_worst) {
881 msg = nmsg;
882 global_worst = severity;
883 m = &per_cpu(mces_seen, cpu);
884 }
885 }
886
887 /*
888 * Cannot recover? Panic here then.
889 * This dumps all the mces in the log buffer and stops the
890 * other CPUs.
891 */
892 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
893 mce_panic("Fatal machine check", m, msg);
894
895 /*
896 * For UC somewhere we let the CPU who detects it handle it.
897 * Also must let continue the others, otherwise the handling
898 * CPU could deadlock on a lock.
899 */
900
901 /*
902 * No machine check event found. Must be some external
903 * source or one CPU is hung. Panic.
904 */
905 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
906 mce_panic("Fatal machine check from unknown source", NULL, NULL);
907
908 /*
909 * Now clear all the mces_seen so that they don't reappear on
910 * the next mce.
911 */
912 for_each_possible_cpu(cpu)
913 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
914 }
915
916 static atomic_t global_nwo;
917
918 /*
919 * Start of Monarch synchronization. This waits until all CPUs have
920 * entered the exception handler and then determines if any of them
921 * saw a fatal event that requires panic. Then it executes them
922 * in the entry order.
923 * TBD double check parallel CPU hotunplug
924 */
925 static int mce_start(int *no_way_out)
926 {
927 int order;
928 int cpus = num_online_cpus();
929 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
930
931 if (!timeout)
932 return -1;
933
934 atomic_add(*no_way_out, &global_nwo);
935 /*
936 * Rely on the implied barrier below, such that global_nwo
937 * is updated before mce_callin.
938 */
939 order = atomic_inc_return(&mce_callin);
940
941 /*
942 * Wait for everyone.
943 */
944 while (atomic_read(&mce_callin) != cpus) {
945 if (mce_timed_out(&timeout,
946 "Timeout: Not all CPUs entered broadcast exception handler")) {
947 atomic_set(&global_nwo, 0);
948 return -1;
949 }
950 ndelay(SPINUNIT);
951 }
952
953 /*
954 * mce_callin should be read before global_nwo
955 */
956 smp_rmb();
957
958 if (order == 1) {
959 /*
960 * Monarch: Starts executing now, the others wait.
961 */
962 atomic_set(&mce_executing, 1);
963 } else {
964 /*
965 * Subject: Now start the scanning loop one by one in
966 * the original callin order.
967 * This way when there are any shared banks it will be
968 * only seen by one CPU before cleared, avoiding duplicates.
969 */
970 while (atomic_read(&mce_executing) < order) {
971 if (mce_timed_out(&timeout,
972 "Timeout: Subject CPUs unable to finish machine check processing")) {
973 atomic_set(&global_nwo, 0);
974 return -1;
975 }
976 ndelay(SPINUNIT);
977 }
978 }
979
980 /*
981 * Cache the global no_way_out state.
982 */
983 *no_way_out = atomic_read(&global_nwo);
984
985 return order;
986 }
987
988 /*
989 * Synchronize between CPUs after main scanning loop.
990 * This invokes the bulk of the Monarch processing.
991 */
992 static int mce_end(int order)
993 {
994 int ret = -1;
995 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
996
997 if (!timeout)
998 goto reset;
999 if (order < 0)
1000 goto reset;
1001
1002 /*
1003 * Allow others to run.
1004 */
1005 atomic_inc(&mce_executing);
1006
1007 if (order == 1) {
1008 /* CHECKME: Can this race with a parallel hotplug? */
1009 int cpus = num_online_cpus();
1010
1011 /*
1012 * Monarch: Wait for everyone to go through their scanning
1013 * loops.
1014 */
1015 while (atomic_read(&mce_executing) <= cpus) {
1016 if (mce_timed_out(&timeout,
1017 "Timeout: Monarch CPU unable to finish machine check processing"))
1018 goto reset;
1019 ndelay(SPINUNIT);
1020 }
1021
1022 mce_reign();
1023 barrier();
1024 ret = 0;
1025 } else {
1026 /*
1027 * Subject: Wait for Monarch to finish.
1028 */
1029 while (atomic_read(&mce_executing) != 0) {
1030 if (mce_timed_out(&timeout,
1031 "Timeout: Monarch CPU did not finish machine check processing"))
1032 goto reset;
1033 ndelay(SPINUNIT);
1034 }
1035
1036 /*
1037 * Don't reset anything. That's done by the Monarch.
1038 */
1039 return 0;
1040 }
1041
1042 /*
1043 * Reset all global state.
1044 */
1045 reset:
1046 atomic_set(&global_nwo, 0);
1047 atomic_set(&mce_callin, 0);
1048 barrier();
1049
1050 /*
1051 * Let others run again.
1052 */
1053 atomic_set(&mce_executing, 0);
1054 return ret;
1055 }
1056
1057 static void mce_clear_state(unsigned long *toclear)
1058 {
1059 int i;
1060
1061 for (i = 0; i < mca_cfg.banks; i++) {
1062 if (test_bit(i, toclear))
1063 mce_wrmsrl(msr_ops.status(i), 0);
1064 }
1065 }
1066
1067 static int do_memory_failure(struct mce *m)
1068 {
1069 int flags = MF_ACTION_REQUIRED;
1070 int ret;
1071
1072 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1073 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1074 flags |= MF_MUST_KILL;
1075 ret = memory_failure(m->addr >> PAGE_SHIFT, MCE_VECTOR, flags);
1076 if (ret)
1077 pr_err("Memory error not recovered");
1078 return ret;
1079 }
1080
1081 /*
1082 * The actual machine check handler. This only handles real
1083 * exceptions when something got corrupted coming in through int 18.
1084 *
1085 * This is executed in NMI context not subject to normal locking rules. This
1086 * implies that most kernel services cannot be safely used. Don't even
1087 * think about putting a printk in there!
1088 *
1089 * On Intel systems this is entered on all CPUs in parallel through
1090 * MCE broadcast. However some CPUs might be broken beyond repair,
1091 * so be always careful when synchronizing with others.
1092 */
1093 void do_machine_check(struct pt_regs *regs, long error_code)
1094 {
1095 struct mca_config *cfg = &mca_cfg;
1096 struct mce m, *final;
1097 int i;
1098 int worst = 0;
1099 int severity;
1100
1101 /*
1102 * Establish sequential order between the CPUs entering the machine
1103 * check handler.
1104 */
1105 int order = -1;
1106 /*
1107 * If no_way_out gets set, there is no safe way to recover from this
1108 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1109 */
1110 int no_way_out = 0;
1111 /*
1112 * If kill_it gets set, there might be a way to recover from this
1113 * error.
1114 */
1115 int kill_it = 0;
1116 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1117 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1118 char *msg = "Unknown";
1119
1120 /*
1121 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1122 * on Intel.
1123 */
1124 int lmce = 1;
1125
1126 /* If this CPU is offline, just bail out. */
1127 if (cpu_is_offline(smp_processor_id())) {
1128 u64 mcgstatus;
1129
1130 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1131 if (mcgstatus & MCG_STATUS_RIPV) {
1132 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1133 return;
1134 }
1135 }
1136
1137 ist_enter(regs);
1138
1139 this_cpu_inc(mce_exception_count);
1140
1141 if (!cfg->banks)
1142 goto out;
1143
1144 mce_gather_info(&m, regs);
1145 m.tsc = rdtsc();
1146
1147 final = this_cpu_ptr(&mces_seen);
1148 *final = m;
1149
1150 memset(valid_banks, 0, sizeof(valid_banks));
1151 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1152
1153 barrier();
1154
1155 /*
1156 * When no restart IP might need to kill or panic.
1157 * Assume the worst for now, but if we find the
1158 * severity is MCE_AR_SEVERITY we have other options.
1159 */
1160 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1161 kill_it = 1;
1162
1163 /*
1164 * Check if this MCE is signaled to only this logical processor,
1165 * on Intel only.
1166 */
1167 if (m.cpuvendor == X86_VENDOR_INTEL)
1168 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1169
1170 /*
1171 * Go through all banks in exclusion of the other CPUs. This way we
1172 * don't report duplicated events on shared banks because the first one
1173 * to see it will clear it. If this is a Local MCE, then no need to
1174 * perform rendezvous.
1175 */
1176 if (!lmce)
1177 order = mce_start(&no_way_out);
1178
1179 for (i = 0; i < cfg->banks; i++) {
1180 __clear_bit(i, toclear);
1181 if (!test_bit(i, valid_banks))
1182 continue;
1183 if (!mce_banks[i].ctl)
1184 continue;
1185
1186 m.misc = 0;
1187 m.addr = 0;
1188 m.bank = i;
1189
1190 m.status = mce_rdmsrl(msr_ops.status(i));
1191 if ((m.status & MCI_STATUS_VAL) == 0)
1192 continue;
1193
1194 /*
1195 * Non uncorrected or non signaled errors are handled by
1196 * machine_check_poll. Leave them alone, unless this panics.
1197 */
1198 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1199 !no_way_out)
1200 continue;
1201
1202 /*
1203 * Set taint even when machine check was not enabled.
1204 */
1205 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1206
1207 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1208
1209 /*
1210 * When machine check was for corrected/deferred handler don't
1211 * touch, unless we're panicing.
1212 */
1213 if ((severity == MCE_KEEP_SEVERITY ||
1214 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1215 continue;
1216 __set_bit(i, toclear);
1217 if (severity == MCE_NO_SEVERITY) {
1218 /*
1219 * Machine check event was not enabled. Clear, but
1220 * ignore.
1221 */
1222 continue;
1223 }
1224
1225 mce_read_aux(&m, i);
1226
1227 /* assuming valid severity level != 0 */
1228 m.severity = severity;
1229
1230 mce_log(&m);
1231
1232 if (severity > worst) {
1233 *final = m;
1234 worst = severity;
1235 }
1236 }
1237
1238 /* mce_clear_state will clear *final, save locally for use later */
1239 m = *final;
1240
1241 if (!no_way_out)
1242 mce_clear_state(toclear);
1243
1244 /*
1245 * Do most of the synchronization with other CPUs.
1246 * When there's any problem use only local no_way_out state.
1247 */
1248 if (!lmce) {
1249 if (mce_end(order) < 0)
1250 no_way_out = worst >= MCE_PANIC_SEVERITY;
1251 } else {
1252 /*
1253 * Local MCE skipped calling mce_reign()
1254 * If we found a fatal error, we need to panic here.
1255 */
1256 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1257 mce_panic("Machine check from unknown source",
1258 NULL, NULL);
1259 }
1260
1261 /*
1262 * If tolerant is at an insane level we drop requests to kill
1263 * processes and continue even when there is no way out.
1264 */
1265 if (cfg->tolerant == 3)
1266 kill_it = 0;
1267 else if (no_way_out)
1268 mce_panic("Fatal machine check on current CPU", &m, msg);
1269
1270 if (worst > 0)
1271 mce_report_event(regs);
1272 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1273 out:
1274 sync_core();
1275
1276 if (worst != MCE_AR_SEVERITY && !kill_it)
1277 goto out_ist;
1278
1279 /* Fault was in user mode and we need to take some action */
1280 if ((m.cs & 3) == 3) {
1281 ist_begin_non_atomic(regs);
1282 local_irq_enable();
1283
1284 if (kill_it || do_memory_failure(&m))
1285 force_sig(SIGBUS, current);
1286 local_irq_disable();
1287 ist_end_non_atomic();
1288 } else {
1289 if (!fixup_exception(regs, X86_TRAP_MC))
1290 mce_panic("Failed kernel mode recovery", &m, NULL);
1291 }
1292
1293 out_ist:
1294 ist_exit(regs);
1295 }
1296 EXPORT_SYMBOL_GPL(do_machine_check);
1297
1298 #ifndef CONFIG_MEMORY_FAILURE
1299 int memory_failure(unsigned long pfn, int vector, int flags)
1300 {
1301 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1302 BUG_ON(flags & MF_ACTION_REQUIRED);
1303 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1304 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1305 pfn);
1306
1307 return 0;
1308 }
1309 #endif
1310
1311 /*
1312 * Periodic polling timer for "silent" machine check errors. If the
1313 * poller finds an MCE, poll 2x faster. When the poller finds no more
1314 * errors, poll 2x slower (up to check_interval seconds).
1315 */
1316 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1317
1318 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1319 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1320
1321 static unsigned long mce_adjust_timer_default(unsigned long interval)
1322 {
1323 return interval;
1324 }
1325
1326 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1327
1328 static void __start_timer(struct timer_list *t, unsigned long interval)
1329 {
1330 unsigned long when = jiffies + interval;
1331 unsigned long flags;
1332
1333 local_irq_save(flags);
1334
1335 if (!timer_pending(t) || time_before(when, t->expires))
1336 mod_timer(t, round_jiffies(when));
1337
1338 local_irq_restore(flags);
1339 }
1340
1341 static void mce_timer_fn(unsigned long data)
1342 {
1343 struct timer_list *t = this_cpu_ptr(&mce_timer);
1344 int cpu = smp_processor_id();
1345 unsigned long iv;
1346
1347 WARN_ON(cpu != data);
1348
1349 iv = __this_cpu_read(mce_next_interval);
1350
1351 if (mce_available(this_cpu_ptr(&cpu_info))) {
1352 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1353
1354 if (mce_intel_cmci_poll()) {
1355 iv = mce_adjust_timer(iv);
1356 goto done;
1357 }
1358 }
1359
1360 /*
1361 * Alert userspace if needed. If we logged an MCE, reduce the polling
1362 * interval, otherwise increase the polling interval.
1363 */
1364 if (mce_notify_irq())
1365 iv = max(iv / 2, (unsigned long) HZ/100);
1366 else
1367 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1368
1369 done:
1370 __this_cpu_write(mce_next_interval, iv);
1371 __start_timer(t, iv);
1372 }
1373
1374 /*
1375 * Ensure that the timer is firing in @interval from now.
1376 */
1377 void mce_timer_kick(unsigned long interval)
1378 {
1379 struct timer_list *t = this_cpu_ptr(&mce_timer);
1380 unsigned long iv = __this_cpu_read(mce_next_interval);
1381
1382 __start_timer(t, interval);
1383
1384 if (interval < iv)
1385 __this_cpu_write(mce_next_interval, interval);
1386 }
1387
1388 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1389 static void mce_timer_delete_all(void)
1390 {
1391 int cpu;
1392
1393 for_each_online_cpu(cpu)
1394 del_timer_sync(&per_cpu(mce_timer, cpu));
1395 }
1396
1397 static void mce_do_trigger(struct work_struct *work)
1398 {
1399 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1400 }
1401
1402 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1403
1404 /*
1405 * Notify the user(s) about new machine check events.
1406 * Can be called from interrupt context, but not from machine check/NMI
1407 * context.
1408 */
1409 int mce_notify_irq(void)
1410 {
1411 /* Not more than two messages every minute */
1412 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1413
1414 if (test_and_clear_bit(0, &mce_need_notify)) {
1415 /* wake processes polling /dev/mcelog */
1416 wake_up_interruptible(&mce_chrdev_wait);
1417
1418 if (mce_helper[0])
1419 schedule_work(&mce_trigger_work);
1420
1421 if (__ratelimit(&ratelimit))
1422 pr_info(HW_ERR "Machine check events logged\n");
1423
1424 return 1;
1425 }
1426 return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(mce_notify_irq);
1429
1430 static int __mcheck_cpu_mce_banks_init(void)
1431 {
1432 int i;
1433 u8 num_banks = mca_cfg.banks;
1434
1435 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1436 if (!mce_banks)
1437 return -ENOMEM;
1438
1439 for (i = 0; i < num_banks; i++) {
1440 struct mce_bank *b = &mce_banks[i];
1441
1442 b->ctl = -1ULL;
1443 b->init = 1;
1444 }
1445 return 0;
1446 }
1447
1448 /*
1449 * Initialize Machine Checks for a CPU.
1450 */
1451 static int __mcheck_cpu_cap_init(void)
1452 {
1453 unsigned b;
1454 u64 cap;
1455
1456 rdmsrl(MSR_IA32_MCG_CAP, cap);
1457
1458 b = cap & MCG_BANKCNT_MASK;
1459 if (!mca_cfg.banks)
1460 pr_info("CPU supports %d MCE banks\n", b);
1461
1462 if (b > MAX_NR_BANKS) {
1463 pr_warn("Using only %u machine check banks out of %u\n",
1464 MAX_NR_BANKS, b);
1465 b = MAX_NR_BANKS;
1466 }
1467
1468 /* Don't support asymmetric configurations today */
1469 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1470 mca_cfg.banks = b;
1471
1472 if (!mce_banks) {
1473 int err = __mcheck_cpu_mce_banks_init();
1474
1475 if (err)
1476 return err;
1477 }
1478
1479 /* Use accurate RIP reporting if available. */
1480 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1481 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1482
1483 if (cap & MCG_SER_P)
1484 mca_cfg.ser = true;
1485
1486 return 0;
1487 }
1488
1489 static void __mcheck_cpu_init_generic(void)
1490 {
1491 enum mcp_flags m_fl = 0;
1492 mce_banks_t all_banks;
1493 u64 cap;
1494
1495 if (!mca_cfg.bootlog)
1496 m_fl = MCP_DONTLOG;
1497
1498 /*
1499 * Log the machine checks left over from the previous reset.
1500 */
1501 bitmap_fill(all_banks, MAX_NR_BANKS);
1502 machine_check_poll(MCP_UC | m_fl, &all_banks);
1503
1504 cr4_set_bits(X86_CR4_MCE);
1505
1506 rdmsrl(MSR_IA32_MCG_CAP, cap);
1507 if (cap & MCG_CTL_P)
1508 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1509 }
1510
1511 static void __mcheck_cpu_init_clear_banks(void)
1512 {
1513 int i;
1514
1515 for (i = 0; i < mca_cfg.banks; i++) {
1516 struct mce_bank *b = &mce_banks[i];
1517
1518 if (!b->init)
1519 continue;
1520 wrmsrl(msr_ops.ctl(i), b->ctl);
1521 wrmsrl(msr_ops.status(i), 0);
1522 }
1523 }
1524
1525 /*
1526 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1527 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1528 * Vol 3B Table 15-20). But this confuses both the code that determines
1529 * whether the machine check occurred in kernel or user mode, and also
1530 * the severity assessment code. Pretend that EIPV was set, and take the
1531 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1532 */
1533 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1534 {
1535 if (bank != 0)
1536 return;
1537 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1538 return;
1539 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1540 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1541 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1542 MCACOD)) !=
1543 (MCI_STATUS_UC|MCI_STATUS_EN|
1544 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1545 MCI_STATUS_AR|MCACOD_INSTR))
1546 return;
1547
1548 m->mcgstatus |= MCG_STATUS_EIPV;
1549 m->ip = regs->ip;
1550 m->cs = regs->cs;
1551 }
1552
1553 /* Add per CPU specific workarounds here */
1554 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1555 {
1556 struct mca_config *cfg = &mca_cfg;
1557
1558 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1559 pr_info("unknown CPU type - not enabling MCE support\n");
1560 return -EOPNOTSUPP;
1561 }
1562
1563 /* This should be disabled by the BIOS, but isn't always */
1564 if (c->x86_vendor == X86_VENDOR_AMD) {
1565 if (c->x86 == 15 && cfg->banks > 4) {
1566 /*
1567 * disable GART TBL walk error reporting, which
1568 * trips off incorrectly with the IOMMU & 3ware
1569 * & Cerberus:
1570 */
1571 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1572 }
1573 if (c->x86 < 17 && cfg->bootlog < 0) {
1574 /*
1575 * Lots of broken BIOS around that don't clear them
1576 * by default and leave crap in there. Don't log:
1577 */
1578 cfg->bootlog = 0;
1579 }
1580 /*
1581 * Various K7s with broken bank 0 around. Always disable
1582 * by default.
1583 */
1584 if (c->x86 == 6 && cfg->banks > 0)
1585 mce_banks[0].ctl = 0;
1586
1587 /*
1588 * overflow_recov is supported for F15h Models 00h-0fh
1589 * even though we don't have a CPUID bit for it.
1590 */
1591 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1592 mce_flags.overflow_recov = 1;
1593
1594 /*
1595 * Turn off MC4_MISC thresholding banks on those models since
1596 * they're not supported there.
1597 */
1598 if (c->x86 == 0x15 &&
1599 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1600 int i;
1601 u64 hwcr;
1602 bool need_toggle;
1603 u32 msrs[] = {
1604 0x00000413, /* MC4_MISC0 */
1605 0xc0000408, /* MC4_MISC1 */
1606 };
1607
1608 rdmsrl(MSR_K7_HWCR, hwcr);
1609
1610 /* McStatusWrEn has to be set */
1611 need_toggle = !(hwcr & BIT(18));
1612
1613 if (need_toggle)
1614 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1615
1616 /* Clear CntP bit safely */
1617 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1618 msr_clear_bit(msrs[i], 62);
1619
1620 /* restore old settings */
1621 if (need_toggle)
1622 wrmsrl(MSR_K7_HWCR, hwcr);
1623 }
1624 }
1625
1626 if (c->x86_vendor == X86_VENDOR_INTEL) {
1627 /*
1628 * SDM documents that on family 6 bank 0 should not be written
1629 * because it aliases to another special BIOS controlled
1630 * register.
1631 * But it's not aliased anymore on model 0x1a+
1632 * Don't ignore bank 0 completely because there could be a
1633 * valid event later, merely don't write CTL0.
1634 */
1635
1636 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1637 mce_banks[0].init = 0;
1638
1639 /*
1640 * All newer Intel systems support MCE broadcasting. Enable
1641 * synchronization with a one second timeout.
1642 */
1643 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1644 cfg->monarch_timeout < 0)
1645 cfg->monarch_timeout = USEC_PER_SEC;
1646
1647 /*
1648 * There are also broken BIOSes on some Pentium M and
1649 * earlier systems:
1650 */
1651 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1652 cfg->bootlog = 0;
1653
1654 if (c->x86 == 6 && c->x86_model == 45)
1655 quirk_no_way_out = quirk_sandybridge_ifu;
1656 }
1657 if (cfg->monarch_timeout < 0)
1658 cfg->monarch_timeout = 0;
1659 if (cfg->bootlog != 0)
1660 cfg->panic_timeout = 30;
1661
1662 return 0;
1663 }
1664
1665 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1666 {
1667 if (c->x86 != 5)
1668 return 0;
1669
1670 switch (c->x86_vendor) {
1671 case X86_VENDOR_INTEL:
1672 intel_p5_mcheck_init(c);
1673 return 1;
1674 break;
1675 case X86_VENDOR_CENTAUR:
1676 winchip_mcheck_init(c);
1677 return 1;
1678 break;
1679 default:
1680 return 0;
1681 }
1682
1683 return 0;
1684 }
1685
1686 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1687 {
1688 switch (c->x86_vendor) {
1689 case X86_VENDOR_INTEL:
1690 mce_intel_feature_init(c);
1691 mce_adjust_timer = cmci_intel_adjust_timer;
1692 break;
1693
1694 case X86_VENDOR_AMD: {
1695 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1696 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1697 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1698
1699 /*
1700 * Install proper ops for Scalable MCA enabled processors
1701 */
1702 if (mce_flags.smca) {
1703 msr_ops.ctl = smca_ctl_reg;
1704 msr_ops.status = smca_status_reg;
1705 msr_ops.addr = smca_addr_reg;
1706 msr_ops.misc = smca_misc_reg;
1707 }
1708 mce_amd_feature_init(c);
1709
1710 break;
1711 }
1712
1713 default:
1714 break;
1715 }
1716 }
1717
1718 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1719 {
1720 switch (c->x86_vendor) {
1721 case X86_VENDOR_INTEL:
1722 mce_intel_feature_clear(c);
1723 break;
1724 default:
1725 break;
1726 }
1727 }
1728
1729 static void mce_start_timer(struct timer_list *t)
1730 {
1731 unsigned long iv = check_interval * HZ;
1732
1733 if (mca_cfg.ignore_ce || !iv)
1734 return;
1735
1736 this_cpu_write(mce_next_interval, iv);
1737 __start_timer(t, iv);
1738 }
1739
1740 static void __mcheck_cpu_setup_timer(void)
1741 {
1742 struct timer_list *t = this_cpu_ptr(&mce_timer);
1743 unsigned int cpu = smp_processor_id();
1744
1745 setup_pinned_timer(t, mce_timer_fn, cpu);
1746 }
1747
1748 static void __mcheck_cpu_init_timer(void)
1749 {
1750 struct timer_list *t = this_cpu_ptr(&mce_timer);
1751 unsigned int cpu = smp_processor_id();
1752
1753 setup_pinned_timer(t, mce_timer_fn, cpu);
1754 mce_start_timer(t);
1755 }
1756
1757 /* Handle unconfigured int18 (should never happen) */
1758 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1759 {
1760 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1761 smp_processor_id());
1762 }
1763
1764 /* Call the installed machine check handler for this CPU setup. */
1765 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1766 unexpected_machine_check;
1767
1768 /*
1769 * Called for each booted CPU to set up machine checks.
1770 * Must be called with preempt off:
1771 */
1772 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1773 {
1774 if (mca_cfg.disabled)
1775 return;
1776
1777 if (__mcheck_cpu_ancient_init(c))
1778 return;
1779
1780 if (!mce_available(c))
1781 return;
1782
1783 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1784 mca_cfg.disabled = true;
1785 return;
1786 }
1787
1788 if (mce_gen_pool_init()) {
1789 mca_cfg.disabled = true;
1790 pr_emerg("Couldn't allocate MCE records pool!\n");
1791 return;
1792 }
1793
1794 machine_check_vector = do_machine_check;
1795
1796 __mcheck_cpu_init_generic();
1797 __mcheck_cpu_init_vendor(c);
1798 __mcheck_cpu_init_clear_banks();
1799 __mcheck_cpu_setup_timer();
1800 }
1801
1802 /*
1803 * Called for each booted CPU to clear some machine checks opt-ins
1804 */
1805 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1806 {
1807 if (mca_cfg.disabled)
1808 return;
1809
1810 if (!mce_available(c))
1811 return;
1812
1813 /*
1814 * Possibly to clear general settings generic to x86
1815 * __mcheck_cpu_clear_generic(c);
1816 */
1817 __mcheck_cpu_clear_vendor(c);
1818
1819 }
1820
1821 /*
1822 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1823 */
1824
1825 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1826 static int mce_chrdev_open_exclu; /* already open exclusive? */
1827
1828 static int mce_chrdev_open(struct inode *inode, struct file *file)
1829 {
1830 spin_lock(&mce_chrdev_state_lock);
1831
1832 if (mce_chrdev_open_exclu ||
1833 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1834 spin_unlock(&mce_chrdev_state_lock);
1835
1836 return -EBUSY;
1837 }
1838
1839 if (file->f_flags & O_EXCL)
1840 mce_chrdev_open_exclu = 1;
1841 mce_chrdev_open_count++;
1842
1843 spin_unlock(&mce_chrdev_state_lock);
1844
1845 return nonseekable_open(inode, file);
1846 }
1847
1848 static int mce_chrdev_release(struct inode *inode, struct file *file)
1849 {
1850 spin_lock(&mce_chrdev_state_lock);
1851
1852 mce_chrdev_open_count--;
1853 mce_chrdev_open_exclu = 0;
1854
1855 spin_unlock(&mce_chrdev_state_lock);
1856
1857 return 0;
1858 }
1859
1860 static void collect_tscs(void *data)
1861 {
1862 unsigned long *cpu_tsc = (unsigned long *)data;
1863
1864 cpu_tsc[smp_processor_id()] = rdtsc();
1865 }
1866
1867 static int mce_apei_read_done;
1868
1869 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1870 static int __mce_read_apei(char __user **ubuf, size_t usize)
1871 {
1872 int rc;
1873 u64 record_id;
1874 struct mce m;
1875
1876 if (usize < sizeof(struct mce))
1877 return -EINVAL;
1878
1879 rc = apei_read_mce(&m, &record_id);
1880 /* Error or no more MCE record */
1881 if (rc <= 0) {
1882 mce_apei_read_done = 1;
1883 /*
1884 * When ERST is disabled, mce_chrdev_read() should return
1885 * "no record" instead of "no device."
1886 */
1887 if (rc == -ENODEV)
1888 return 0;
1889 return rc;
1890 }
1891 rc = -EFAULT;
1892 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1893 return rc;
1894 /*
1895 * In fact, we should have cleared the record after that has
1896 * been flushed to the disk or sent to network in
1897 * /sbin/mcelog, but we have no interface to support that now,
1898 * so just clear it to avoid duplication.
1899 */
1900 rc = apei_clear_mce(record_id);
1901 if (rc) {
1902 mce_apei_read_done = 1;
1903 return rc;
1904 }
1905 *ubuf += sizeof(struct mce);
1906
1907 return 0;
1908 }
1909
1910 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1911 size_t usize, loff_t *off)
1912 {
1913 char __user *buf = ubuf;
1914 unsigned long *cpu_tsc;
1915 unsigned prev, next;
1916 int i, err;
1917
1918 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1919 if (!cpu_tsc)
1920 return -ENOMEM;
1921
1922 mutex_lock(&mce_chrdev_read_mutex);
1923
1924 if (!mce_apei_read_done) {
1925 err = __mce_read_apei(&buf, usize);
1926 if (err || buf != ubuf)
1927 goto out;
1928 }
1929
1930 next = mce_log_get_idx_check(mcelog.next);
1931
1932 /* Only supports full reads right now */
1933 err = -EINVAL;
1934 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1935 goto out;
1936
1937 err = 0;
1938 prev = 0;
1939 do {
1940 for (i = prev; i < next; i++) {
1941 unsigned long start = jiffies;
1942 struct mce *m = &mcelog.entry[i];
1943
1944 while (!m->finished) {
1945 if (time_after_eq(jiffies, start + 2)) {
1946 memset(m, 0, sizeof(*m));
1947 goto timeout;
1948 }
1949 cpu_relax();
1950 }
1951 smp_rmb();
1952 err |= copy_to_user(buf, m, sizeof(*m));
1953 buf += sizeof(*m);
1954 timeout:
1955 ;
1956 }
1957
1958 memset(mcelog.entry + prev, 0,
1959 (next - prev) * sizeof(struct mce));
1960 prev = next;
1961 next = cmpxchg(&mcelog.next, prev, 0);
1962 } while (next != prev);
1963
1964 synchronize_sched();
1965
1966 /*
1967 * Collect entries that were still getting written before the
1968 * synchronize.
1969 */
1970 on_each_cpu(collect_tscs, cpu_tsc, 1);
1971
1972 for (i = next; i < MCE_LOG_LEN; i++) {
1973 struct mce *m = &mcelog.entry[i];
1974
1975 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1976 err |= copy_to_user(buf, m, sizeof(*m));
1977 smp_rmb();
1978 buf += sizeof(*m);
1979 memset(m, 0, sizeof(*m));
1980 }
1981 }
1982
1983 if (err)
1984 err = -EFAULT;
1985
1986 out:
1987 mutex_unlock(&mce_chrdev_read_mutex);
1988 kfree(cpu_tsc);
1989
1990 return err ? err : buf - ubuf;
1991 }
1992
1993 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1994 {
1995 poll_wait(file, &mce_chrdev_wait, wait);
1996 if (READ_ONCE(mcelog.next))
1997 return POLLIN | POLLRDNORM;
1998 if (!mce_apei_read_done && apei_check_mce())
1999 return POLLIN | POLLRDNORM;
2000 return 0;
2001 }
2002
2003 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
2004 unsigned long arg)
2005 {
2006 int __user *p = (int __user *)arg;
2007
2008 if (!capable(CAP_SYS_ADMIN))
2009 return -EPERM;
2010
2011 switch (cmd) {
2012 case MCE_GET_RECORD_LEN:
2013 return put_user(sizeof(struct mce), p);
2014 case MCE_GET_LOG_LEN:
2015 return put_user(MCE_LOG_LEN, p);
2016 case MCE_GETCLEAR_FLAGS: {
2017 unsigned flags;
2018
2019 do {
2020 flags = mcelog.flags;
2021 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
2022
2023 return put_user(flags, p);
2024 }
2025 default:
2026 return -ENOTTY;
2027 }
2028 }
2029
2030 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
2031 size_t usize, loff_t *off);
2032
2033 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
2034 const char __user *ubuf,
2035 size_t usize, loff_t *off))
2036 {
2037 mce_write = fn;
2038 }
2039 EXPORT_SYMBOL_GPL(register_mce_write_callback);
2040
2041 static ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
2042 size_t usize, loff_t *off)
2043 {
2044 if (mce_write)
2045 return mce_write(filp, ubuf, usize, off);
2046 else
2047 return -EINVAL;
2048 }
2049
2050 static const struct file_operations mce_chrdev_ops = {
2051 .open = mce_chrdev_open,
2052 .release = mce_chrdev_release,
2053 .read = mce_chrdev_read,
2054 .write = mce_chrdev_write,
2055 .poll = mce_chrdev_poll,
2056 .unlocked_ioctl = mce_chrdev_ioctl,
2057 .llseek = no_llseek,
2058 };
2059
2060 static struct miscdevice mce_chrdev_device = {
2061 MISC_MCELOG_MINOR,
2062 "mcelog",
2063 &mce_chrdev_ops,
2064 };
2065
2066 static void __mce_disable_bank(void *arg)
2067 {
2068 int bank = *((int *)arg);
2069 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2070 cmci_disable_bank(bank);
2071 }
2072
2073 void mce_disable_bank(int bank)
2074 {
2075 if (bank >= mca_cfg.banks) {
2076 pr_warn(FW_BUG
2077 "Ignoring request to disable invalid MCA bank %d.\n",
2078 bank);
2079 return;
2080 }
2081 set_bit(bank, mce_banks_ce_disabled);
2082 on_each_cpu(__mce_disable_bank, &bank, 1);
2083 }
2084
2085 /*
2086 * mce=off Disables machine check
2087 * mce=no_cmci Disables CMCI
2088 * mce=no_lmce Disables LMCE
2089 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2090 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2091 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2092 * monarchtimeout is how long to wait for other CPUs on machine
2093 * check, or 0 to not wait
2094 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
2095 * mce=nobootlog Don't log MCEs from before booting.
2096 * mce=bios_cmci_threshold Don't program the CMCI threshold
2097 * mce=recovery force enable memcpy_mcsafe()
2098 */
2099 static int __init mcheck_enable(char *str)
2100 {
2101 struct mca_config *cfg = &mca_cfg;
2102
2103 if (*str == 0) {
2104 enable_p5_mce();
2105 return 1;
2106 }
2107 if (*str == '=')
2108 str++;
2109 if (!strcmp(str, "off"))
2110 cfg->disabled = true;
2111 else if (!strcmp(str, "no_cmci"))
2112 cfg->cmci_disabled = true;
2113 else if (!strcmp(str, "no_lmce"))
2114 cfg->lmce_disabled = true;
2115 else if (!strcmp(str, "dont_log_ce"))
2116 cfg->dont_log_ce = true;
2117 else if (!strcmp(str, "ignore_ce"))
2118 cfg->ignore_ce = true;
2119 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2120 cfg->bootlog = (str[0] == 'b');
2121 else if (!strcmp(str, "bios_cmci_threshold"))
2122 cfg->bios_cmci_threshold = true;
2123 else if (!strcmp(str, "recovery"))
2124 cfg->recovery = true;
2125 else if (isdigit(str[0])) {
2126 if (get_option(&str, &cfg->tolerant) == 2)
2127 get_option(&str, &(cfg->monarch_timeout));
2128 } else {
2129 pr_info("mce argument %s ignored. Please use /sys\n", str);
2130 return 0;
2131 }
2132 return 1;
2133 }
2134 __setup("mce", mcheck_enable);
2135
2136 int __init mcheck_init(void)
2137 {
2138 mcheck_intel_therm_init();
2139 mce_register_decode_chain(&mce_srao_nb);
2140 mce_register_decode_chain(&mce_default_nb);
2141 mcheck_vendor_init_severity();
2142
2143 INIT_WORK(&mce_work, mce_gen_pool_process);
2144 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2145
2146 return 0;
2147 }
2148
2149 /*
2150 * mce_syscore: PM support
2151 */
2152
2153 /*
2154 * Disable machine checks on suspend and shutdown. We can't really handle
2155 * them later.
2156 */
2157 static void mce_disable_error_reporting(void)
2158 {
2159 int i;
2160
2161 for (i = 0; i < mca_cfg.banks; i++) {
2162 struct mce_bank *b = &mce_banks[i];
2163
2164 if (b->init)
2165 wrmsrl(msr_ops.ctl(i), 0);
2166 }
2167 return;
2168 }
2169
2170 static void vendor_disable_error_reporting(void)
2171 {
2172 /*
2173 * Don't clear on Intel CPUs. Some of these MSRs are socket-wide.
2174 * Disabling them for just a single offlined CPU is bad, since it will
2175 * inhibit reporting for all shared resources on the socket like the
2176 * last level cache (LLC), the integrated memory controller (iMC), etc.
2177 */
2178 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2179 return;
2180
2181 mce_disable_error_reporting();
2182 }
2183
2184 static int mce_syscore_suspend(void)
2185 {
2186 vendor_disable_error_reporting();
2187 return 0;
2188 }
2189
2190 static void mce_syscore_shutdown(void)
2191 {
2192 vendor_disable_error_reporting();
2193 }
2194
2195 /*
2196 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2197 * Only one CPU is active at this time, the others get re-added later using
2198 * CPU hotplug:
2199 */
2200 static void mce_syscore_resume(void)
2201 {
2202 __mcheck_cpu_init_generic();
2203 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2204 __mcheck_cpu_init_clear_banks();
2205 }
2206
2207 static struct syscore_ops mce_syscore_ops = {
2208 .suspend = mce_syscore_suspend,
2209 .shutdown = mce_syscore_shutdown,
2210 .resume = mce_syscore_resume,
2211 };
2212
2213 /*
2214 * mce_device: Sysfs support
2215 */
2216
2217 static void mce_cpu_restart(void *data)
2218 {
2219 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2220 return;
2221 __mcheck_cpu_init_generic();
2222 __mcheck_cpu_init_clear_banks();
2223 __mcheck_cpu_init_timer();
2224 }
2225
2226 /* Reinit MCEs after user configuration changes */
2227 static void mce_restart(void)
2228 {
2229 mce_timer_delete_all();
2230 on_each_cpu(mce_cpu_restart, NULL, 1);
2231 }
2232
2233 /* Toggle features for corrected errors */
2234 static void mce_disable_cmci(void *data)
2235 {
2236 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2237 return;
2238 cmci_clear();
2239 }
2240
2241 static void mce_enable_ce(void *all)
2242 {
2243 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2244 return;
2245 cmci_reenable();
2246 cmci_recheck();
2247 if (all)
2248 __mcheck_cpu_init_timer();
2249 }
2250
2251 static struct bus_type mce_subsys = {
2252 .name = "machinecheck",
2253 .dev_name = "machinecheck",
2254 };
2255
2256 DEFINE_PER_CPU(struct device *, mce_device);
2257
2258 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2259 {
2260 return container_of(attr, struct mce_bank, attr);
2261 }
2262
2263 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2264 char *buf)
2265 {
2266 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2267 }
2268
2269 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2270 const char *buf, size_t size)
2271 {
2272 u64 new;
2273
2274 if (kstrtou64(buf, 0, &new) < 0)
2275 return -EINVAL;
2276
2277 attr_to_bank(attr)->ctl = new;
2278 mce_restart();
2279
2280 return size;
2281 }
2282
2283 static ssize_t
2284 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2285 {
2286 strcpy(buf, mce_helper);
2287 strcat(buf, "\n");
2288 return strlen(mce_helper) + 1;
2289 }
2290
2291 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2292 const char *buf, size_t siz)
2293 {
2294 char *p;
2295
2296 strncpy(mce_helper, buf, sizeof(mce_helper));
2297 mce_helper[sizeof(mce_helper)-1] = 0;
2298 p = strchr(mce_helper, '\n');
2299
2300 if (p)
2301 *p = 0;
2302
2303 return strlen(mce_helper) + !!p;
2304 }
2305
2306 static ssize_t set_ignore_ce(struct device *s,
2307 struct device_attribute *attr,
2308 const char *buf, size_t size)
2309 {
2310 u64 new;
2311
2312 if (kstrtou64(buf, 0, &new) < 0)
2313 return -EINVAL;
2314
2315 if (mca_cfg.ignore_ce ^ !!new) {
2316 if (new) {
2317 /* disable ce features */
2318 mce_timer_delete_all();
2319 on_each_cpu(mce_disable_cmci, NULL, 1);
2320 mca_cfg.ignore_ce = true;
2321 } else {
2322 /* enable ce features */
2323 mca_cfg.ignore_ce = false;
2324 on_each_cpu(mce_enable_ce, (void *)1, 1);
2325 }
2326 }
2327 return size;
2328 }
2329
2330 static ssize_t set_cmci_disabled(struct device *s,
2331 struct device_attribute *attr,
2332 const char *buf, size_t size)
2333 {
2334 u64 new;
2335
2336 if (kstrtou64(buf, 0, &new) < 0)
2337 return -EINVAL;
2338
2339 if (mca_cfg.cmci_disabled ^ !!new) {
2340 if (new) {
2341 /* disable cmci */
2342 on_each_cpu(mce_disable_cmci, NULL, 1);
2343 mca_cfg.cmci_disabled = true;
2344 } else {
2345 /* enable cmci */
2346 mca_cfg.cmci_disabled = false;
2347 on_each_cpu(mce_enable_ce, NULL, 1);
2348 }
2349 }
2350 return size;
2351 }
2352
2353 static ssize_t store_int_with_restart(struct device *s,
2354 struct device_attribute *attr,
2355 const char *buf, size_t size)
2356 {
2357 ssize_t ret = device_store_int(s, attr, buf, size);
2358 mce_restart();
2359 return ret;
2360 }
2361
2362 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2363 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2364 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2365 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2366
2367 static struct dev_ext_attribute dev_attr_check_interval = {
2368 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2369 &check_interval
2370 };
2371
2372 static struct dev_ext_attribute dev_attr_ignore_ce = {
2373 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2374 &mca_cfg.ignore_ce
2375 };
2376
2377 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2378 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2379 &mca_cfg.cmci_disabled
2380 };
2381
2382 static struct device_attribute *mce_device_attrs[] = {
2383 &dev_attr_tolerant.attr,
2384 &dev_attr_check_interval.attr,
2385 &dev_attr_trigger,
2386 &dev_attr_monarch_timeout.attr,
2387 &dev_attr_dont_log_ce.attr,
2388 &dev_attr_ignore_ce.attr,
2389 &dev_attr_cmci_disabled.attr,
2390 NULL
2391 };
2392
2393 static cpumask_var_t mce_device_initialized;
2394
2395 static void mce_device_release(struct device *dev)
2396 {
2397 kfree(dev);
2398 }
2399
2400 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2401 static int mce_device_create(unsigned int cpu)
2402 {
2403 struct device *dev;
2404 int err;
2405 int i, j;
2406
2407 if (!mce_available(&boot_cpu_data))
2408 return -EIO;
2409
2410 dev = per_cpu(mce_device, cpu);
2411 if (dev)
2412 return 0;
2413
2414 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2415 if (!dev)
2416 return -ENOMEM;
2417 dev->id = cpu;
2418 dev->bus = &mce_subsys;
2419 dev->release = &mce_device_release;
2420
2421 err = device_register(dev);
2422 if (err) {
2423 put_device(dev);
2424 return err;
2425 }
2426
2427 for (i = 0; mce_device_attrs[i]; i++) {
2428 err = device_create_file(dev, mce_device_attrs[i]);
2429 if (err)
2430 goto error;
2431 }
2432 for (j = 0; j < mca_cfg.banks; j++) {
2433 err = device_create_file(dev, &mce_banks[j].attr);
2434 if (err)
2435 goto error2;
2436 }
2437 cpumask_set_cpu(cpu, mce_device_initialized);
2438 per_cpu(mce_device, cpu) = dev;
2439
2440 return 0;
2441 error2:
2442 while (--j >= 0)
2443 device_remove_file(dev, &mce_banks[j].attr);
2444 error:
2445 while (--i >= 0)
2446 device_remove_file(dev, mce_device_attrs[i]);
2447
2448 device_unregister(dev);
2449
2450 return err;
2451 }
2452
2453 static void mce_device_remove(unsigned int cpu)
2454 {
2455 struct device *dev = per_cpu(mce_device, cpu);
2456 int i;
2457
2458 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2459 return;
2460
2461 for (i = 0; mce_device_attrs[i]; i++)
2462 device_remove_file(dev, mce_device_attrs[i]);
2463
2464 for (i = 0; i < mca_cfg.banks; i++)
2465 device_remove_file(dev, &mce_banks[i].attr);
2466
2467 device_unregister(dev);
2468 cpumask_clear_cpu(cpu, mce_device_initialized);
2469 per_cpu(mce_device, cpu) = NULL;
2470 }
2471
2472 /* Make sure there are no machine checks on offlined CPUs. */
2473 static void mce_disable_cpu(void)
2474 {
2475 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2476 return;
2477
2478 if (!cpuhp_tasks_frozen)
2479 cmci_clear();
2480
2481 vendor_disable_error_reporting();
2482 }
2483
2484 static void mce_reenable_cpu(void)
2485 {
2486 int i;
2487
2488 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2489 return;
2490
2491 if (!cpuhp_tasks_frozen)
2492 cmci_reenable();
2493 for (i = 0; i < mca_cfg.banks; i++) {
2494 struct mce_bank *b = &mce_banks[i];
2495
2496 if (b->init)
2497 wrmsrl(msr_ops.ctl(i), b->ctl);
2498 }
2499 }
2500
2501 static int mce_cpu_dead(unsigned int cpu)
2502 {
2503 mce_intel_hcpu_update(cpu);
2504
2505 /* intentionally ignoring frozen here */
2506 if (!cpuhp_tasks_frozen)
2507 cmci_rediscover();
2508 return 0;
2509 }
2510
2511 static int mce_cpu_online(unsigned int cpu)
2512 {
2513 struct timer_list *t = this_cpu_ptr(&mce_timer);
2514 int ret;
2515
2516 mce_device_create(cpu);
2517
2518 ret = mce_threshold_create_device(cpu);
2519 if (ret) {
2520 mce_device_remove(cpu);
2521 return ret;
2522 }
2523 mce_reenable_cpu();
2524 mce_start_timer(t);
2525 return 0;
2526 }
2527
2528 static int mce_cpu_pre_down(unsigned int cpu)
2529 {
2530 struct timer_list *t = this_cpu_ptr(&mce_timer);
2531
2532 mce_disable_cpu();
2533 del_timer_sync(t);
2534 mce_threshold_remove_device(cpu);
2535 mce_device_remove(cpu);
2536 return 0;
2537 }
2538
2539 static __init void mce_init_banks(void)
2540 {
2541 int i;
2542
2543 for (i = 0; i < mca_cfg.banks; i++) {
2544 struct mce_bank *b = &mce_banks[i];
2545 struct device_attribute *a = &b->attr;
2546
2547 sysfs_attr_init(&a->attr);
2548 a->attr.name = b->attrname;
2549 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2550
2551 a->attr.mode = 0644;
2552 a->show = show_bank;
2553 a->store = set_bank;
2554 }
2555 }
2556
2557 static __init int mcheck_init_device(void)
2558 {
2559 enum cpuhp_state hp_online;
2560 int err;
2561
2562 if (!mce_available(&boot_cpu_data)) {
2563 err = -EIO;
2564 goto err_out;
2565 }
2566
2567 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2568 err = -ENOMEM;
2569 goto err_out;
2570 }
2571
2572 mce_init_banks();
2573
2574 err = subsys_system_register(&mce_subsys, NULL);
2575 if (err)
2576 goto err_out_mem;
2577
2578 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2579 mce_cpu_dead);
2580 if (err)
2581 goto err_out_mem;
2582
2583 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2584 mce_cpu_online, mce_cpu_pre_down);
2585 if (err < 0)
2586 goto err_out_online;
2587 hp_online = err;
2588
2589 register_syscore_ops(&mce_syscore_ops);
2590
2591 /* register character device /dev/mcelog */
2592 err = misc_register(&mce_chrdev_device);
2593 if (err)
2594 goto err_register;
2595
2596 return 0;
2597
2598 err_register:
2599 unregister_syscore_ops(&mce_syscore_ops);
2600 cpuhp_remove_state(hp_online);
2601
2602 err_out_online:
2603 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2604
2605 err_out_mem:
2606 free_cpumask_var(mce_device_initialized);
2607
2608 err_out:
2609 pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2610
2611 return err;
2612 }
2613 device_initcall_sync(mcheck_init_device);
2614
2615 /*
2616 * Old style boot options parsing. Only for compatibility.
2617 */
2618 static int __init mcheck_disable(char *str)
2619 {
2620 mca_cfg.disabled = true;
2621 return 1;
2622 }
2623 __setup("nomce", mcheck_disable);
2624
2625 #ifdef CONFIG_DEBUG_FS
2626 struct dentry *mce_get_debugfs_dir(void)
2627 {
2628 static struct dentry *dmce;
2629
2630 if (!dmce)
2631 dmce = debugfs_create_dir("mce", NULL);
2632
2633 return dmce;
2634 }
2635
2636 static void mce_reset(void)
2637 {
2638 cpu_missing = 0;
2639 atomic_set(&mce_fake_panicked, 0);
2640 atomic_set(&mce_executing, 0);
2641 atomic_set(&mce_callin, 0);
2642 atomic_set(&global_nwo, 0);
2643 }
2644
2645 static int fake_panic_get(void *data, u64 *val)
2646 {
2647 *val = fake_panic;
2648 return 0;
2649 }
2650
2651 static int fake_panic_set(void *data, u64 val)
2652 {
2653 mce_reset();
2654 fake_panic = val;
2655 return 0;
2656 }
2657
2658 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2659 fake_panic_set, "%llu\n");
2660
2661 static int __init mcheck_debugfs_init(void)
2662 {
2663 struct dentry *dmce, *ffake_panic;
2664
2665 dmce = mce_get_debugfs_dir();
2666 if (!dmce)
2667 return -ENOMEM;
2668 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2669 &fake_panic_fops);
2670 if (!ffake_panic)
2671 return -ENOMEM;
2672
2673 return 0;
2674 }
2675 #else
2676 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2677 #endif
2678
2679 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2680 EXPORT_SYMBOL_GPL(mcsafe_key);
2681
2682 static int __init mcheck_late_init(void)
2683 {
2684 if (mca_cfg.recovery)
2685 static_branch_inc(&mcsafe_key);
2686
2687 mcheck_debugfs_init();
2688
2689 /*
2690 * Flush out everything that has been logged during early boot, now that
2691 * everything has been initialized (workqueues, decoders, ...).
2692 */
2693 mce_schedule_work();
2694
2695 return 0;
2696 }
2697 late_initcall(mcheck_late_init);