]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
hwpoison: remove unused global variable in do_machine_check()
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44
45 #include <asm/processor.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
48
49 #include "mce-internal.h"
50
51 static DEFINE_MUTEX(mce_chrdev_read_mutex);
52
53 #define rcu_dereference_check_mce(p) \
54 rcu_dereference_index_check((p), \
55 rcu_read_lock_sched_held() || \
56 lockdep_is_held(&mce_chrdev_read_mutex))
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
60
61 #define SPINUNIT 100 /* 100ns */
62
63 DEFINE_PER_CPU(unsigned, mce_exception_count);
64
65 struct mce_bank *mce_banks __read_mostly;
66
67 struct mca_config mca_cfg __read_mostly = {
68 .bootlog = -1,
69 /*
70 * Tolerant levels:
71 * 0: always panic on uncorrected errors, log corrected errors
72 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
73 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
74 * 3: never panic or SIGBUS, log all errors (for testing only)
75 */
76 .tolerant = 1,
77 .monarch_timeout = -1
78 };
79
80 /* User mode helper program triggered by machine check event */
81 static unsigned long mce_need_notify;
82 static char mce_helper[128];
83 static char *mce_helper_argv[2] = { mce_helper, NULL };
84
85 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
86
87 static DEFINE_PER_CPU(struct mce, mces_seen);
88 static int cpu_missing;
89
90 /* CMCI storm detection filter */
91 static DEFINE_PER_CPU(unsigned long, mce_polled_error);
92
93 /*
94 * MCA banks polled by the period polling timer for corrected events.
95 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
96 */
97 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
98 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
99 };
100
101 /*
102 * MCA banks controlled through firmware first for corrected errors.
103 * This is a global list of banks for which we won't enable CMCI and we
104 * won't poll. Firmware controls these banks and is responsible for
105 * reporting corrected errors through GHES. Uncorrected/recoverable
106 * errors are still notified through a machine check.
107 */
108 mce_banks_t mce_banks_ce_disabled;
109
110 static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
113
114 /*
115 * CPU/chipset specific EDAC code can register a notifier call here to print
116 * MCE errors in a human-readable form.
117 */
118 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
120 /* Do initial initialization of a struct mce */
121 void mce_setup(struct mce *m)
122 {
123 memset(m, 0, sizeof(struct mce));
124 m->cpu = m->extcpu = smp_processor_id();
125 rdtscll(m->tsc);
126 /* We hope get_seconds stays lockless */
127 m->time = get_seconds();
128 m->cpuvendor = boot_cpu_data.x86_vendor;
129 m->cpuid = cpuid_eax(1);
130 m->socketid = cpu_data(m->extcpu).phys_proc_id;
131 m->apicid = cpu_data(m->extcpu).initial_apicid;
132 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
133 }
134
135 DEFINE_PER_CPU(struct mce, injectm);
136 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
137
138 /*
139 * Lockless MCE logging infrastructure.
140 * This avoids deadlocks on printk locks without having to break locks. Also
141 * separate MCEs from kernel messages to avoid bogus bug reports.
142 */
143
144 static struct mce_log mcelog = {
145 .signature = MCE_LOG_SIGNATURE,
146 .len = MCE_LOG_LEN,
147 .recordlen = sizeof(struct mce),
148 };
149
150 void mce_log(struct mce *mce)
151 {
152 unsigned next, entry;
153 int ret = 0;
154
155 /* Emit the trace record: */
156 trace_mce_record(mce);
157
158 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
159 if (ret == NOTIFY_STOP)
160 return;
161
162 mce->finished = 0;
163 wmb();
164 for (;;) {
165 entry = rcu_dereference_check_mce(mcelog.next);
166 for (;;) {
167
168 /*
169 * When the buffer fills up discard new entries.
170 * Assume that the earlier errors are the more
171 * interesting ones:
172 */
173 if (entry >= MCE_LOG_LEN) {
174 set_bit(MCE_OVERFLOW,
175 (unsigned long *)&mcelog.flags);
176 return;
177 }
178 /* Old left over entry. Skip: */
179 if (mcelog.entry[entry].finished) {
180 entry++;
181 continue;
182 }
183 break;
184 }
185 smp_rmb();
186 next = entry + 1;
187 if (cmpxchg(&mcelog.next, entry, next) == entry)
188 break;
189 }
190 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
191 wmb();
192 mcelog.entry[entry].finished = 1;
193 wmb();
194
195 mce->finished = 1;
196 set_bit(0, &mce_need_notify);
197 }
198
199 static void drain_mcelog_buffer(void)
200 {
201 unsigned int next, i, prev = 0;
202
203 next = ACCESS_ONCE(mcelog.next);
204
205 do {
206 struct mce *m;
207
208 /* drain what was logged during boot */
209 for (i = prev; i < next; i++) {
210 unsigned long start = jiffies;
211 unsigned retries = 1;
212
213 m = &mcelog.entry[i];
214
215 while (!m->finished) {
216 if (time_after_eq(jiffies, start + 2*retries))
217 retries++;
218
219 cpu_relax();
220
221 if (!m->finished && retries >= 4) {
222 pr_err("skipping error being logged currently!\n");
223 break;
224 }
225 }
226 smp_rmb();
227 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
228 }
229
230 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
231 prev = next;
232 next = cmpxchg(&mcelog.next, prev, 0);
233 } while (next != prev);
234 }
235
236
237 void mce_register_decode_chain(struct notifier_block *nb)
238 {
239 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
240 drain_mcelog_buffer();
241 }
242 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
243
244 void mce_unregister_decode_chain(struct notifier_block *nb)
245 {
246 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
247 }
248 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
249
250 static void print_mce(struct mce *m)
251 {
252 int ret = 0;
253
254 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
255 m->extcpu, m->mcgstatus, m->bank, m->status);
256
257 if (m->ip) {
258 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
259 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
260 m->cs, m->ip);
261
262 if (m->cs == __KERNEL_CS)
263 print_symbol("{%s}", m->ip);
264 pr_cont("\n");
265 }
266
267 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
268 if (m->addr)
269 pr_cont("ADDR %llx ", m->addr);
270 if (m->misc)
271 pr_cont("MISC %llx ", m->misc);
272
273 pr_cont("\n");
274 /*
275 * Note this output is parsed by external tools and old fields
276 * should not be changed.
277 */
278 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
279 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
280 cpu_data(m->extcpu).microcode);
281
282 /*
283 * Print out human-readable details about the MCE error,
284 * (if the CPU has an implementation for that)
285 */
286 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
287 if (ret == NOTIFY_STOP)
288 return;
289
290 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
291 }
292
293 #define PANIC_TIMEOUT 5 /* 5 seconds */
294
295 static atomic_t mce_paniced;
296
297 static int fake_panic;
298 static atomic_t mce_fake_paniced;
299
300 /* Panic in progress. Enable interrupts and wait for final IPI */
301 static void wait_for_panic(void)
302 {
303 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
304
305 preempt_disable();
306 local_irq_enable();
307 while (timeout-- > 0)
308 udelay(1);
309 if (panic_timeout == 0)
310 panic_timeout = mca_cfg.panic_timeout;
311 panic("Panicing machine check CPU died");
312 }
313
314 static void mce_panic(char *msg, struct mce *final, char *exp)
315 {
316 int i, apei_err = 0;
317
318 if (!fake_panic) {
319 /*
320 * Make sure only one CPU runs in machine check panic
321 */
322 if (atomic_inc_return(&mce_paniced) > 1)
323 wait_for_panic();
324 barrier();
325
326 bust_spinlocks(1);
327 console_verbose();
328 } else {
329 /* Don't log too much for fake panic */
330 if (atomic_inc_return(&mce_fake_paniced) > 1)
331 return;
332 }
333 /* First print corrected ones that are still unlogged */
334 for (i = 0; i < MCE_LOG_LEN; i++) {
335 struct mce *m = &mcelog.entry[i];
336 if (!(m->status & MCI_STATUS_VAL))
337 continue;
338 if (!(m->status & MCI_STATUS_UC)) {
339 print_mce(m);
340 if (!apei_err)
341 apei_err = apei_write_mce(m);
342 }
343 }
344 /* Now print uncorrected but with the final one last */
345 for (i = 0; i < MCE_LOG_LEN; i++) {
346 struct mce *m = &mcelog.entry[i];
347 if (!(m->status & MCI_STATUS_VAL))
348 continue;
349 if (!(m->status & MCI_STATUS_UC))
350 continue;
351 if (!final || memcmp(m, final, sizeof(struct mce))) {
352 print_mce(m);
353 if (!apei_err)
354 apei_err = apei_write_mce(m);
355 }
356 }
357 if (final) {
358 print_mce(final);
359 if (!apei_err)
360 apei_err = apei_write_mce(final);
361 }
362 if (cpu_missing)
363 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
364 if (exp)
365 pr_emerg(HW_ERR "Machine check: %s\n", exp);
366 if (!fake_panic) {
367 if (panic_timeout == 0)
368 panic_timeout = mca_cfg.panic_timeout;
369 panic(msg);
370 } else
371 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
372 }
373
374 /* Support code for software error injection */
375
376 static int msr_to_offset(u32 msr)
377 {
378 unsigned bank = __this_cpu_read(injectm.bank);
379
380 if (msr == mca_cfg.rip_msr)
381 return offsetof(struct mce, ip);
382 if (msr == MSR_IA32_MCx_STATUS(bank))
383 return offsetof(struct mce, status);
384 if (msr == MSR_IA32_MCx_ADDR(bank))
385 return offsetof(struct mce, addr);
386 if (msr == MSR_IA32_MCx_MISC(bank))
387 return offsetof(struct mce, misc);
388 if (msr == MSR_IA32_MCG_STATUS)
389 return offsetof(struct mce, mcgstatus);
390 return -1;
391 }
392
393 /* MSR access wrappers used for error injection */
394 static u64 mce_rdmsrl(u32 msr)
395 {
396 u64 v;
397
398 if (__this_cpu_read(injectm.finished)) {
399 int offset = msr_to_offset(msr);
400
401 if (offset < 0)
402 return 0;
403 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
404 }
405
406 if (rdmsrl_safe(msr, &v)) {
407 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
408 /*
409 * Return zero in case the access faulted. This should
410 * not happen normally but can happen if the CPU does
411 * something weird, or if the code is buggy.
412 */
413 v = 0;
414 }
415
416 return v;
417 }
418
419 static void mce_wrmsrl(u32 msr, u64 v)
420 {
421 if (__this_cpu_read(injectm.finished)) {
422 int offset = msr_to_offset(msr);
423
424 if (offset >= 0)
425 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
426 return;
427 }
428 wrmsrl(msr, v);
429 }
430
431 /*
432 * Collect all global (w.r.t. this processor) status about this machine
433 * check into our "mce" struct so that we can use it later to assess
434 * the severity of the problem as we read per-bank specific details.
435 */
436 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
437 {
438 mce_setup(m);
439
440 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
441 if (regs) {
442 /*
443 * Get the address of the instruction at the time of
444 * the machine check error.
445 */
446 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
447 m->ip = regs->ip;
448 m->cs = regs->cs;
449
450 /*
451 * When in VM86 mode make the cs look like ring 3
452 * always. This is a lie, but it's better than passing
453 * the additional vm86 bit around everywhere.
454 */
455 if (v8086_mode(regs))
456 m->cs |= 3;
457 }
458 /* Use accurate RIP reporting if available. */
459 if (mca_cfg.rip_msr)
460 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
461 }
462 }
463
464 /*
465 * Simple lockless ring to communicate PFNs from the exception handler with the
466 * process context work function. This is vastly simplified because there's
467 * only a single reader and a single writer.
468 */
469 #define MCE_RING_SIZE 16 /* we use one entry less */
470
471 struct mce_ring {
472 unsigned short start;
473 unsigned short end;
474 unsigned long ring[MCE_RING_SIZE];
475 };
476 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
477
478 /* Runs with CPU affinity in workqueue */
479 static int mce_ring_empty(void)
480 {
481 struct mce_ring *r = &__get_cpu_var(mce_ring);
482
483 return r->start == r->end;
484 }
485
486 static int mce_ring_get(unsigned long *pfn)
487 {
488 struct mce_ring *r;
489 int ret = 0;
490
491 *pfn = 0;
492 get_cpu();
493 r = &__get_cpu_var(mce_ring);
494 if (r->start == r->end)
495 goto out;
496 *pfn = r->ring[r->start];
497 r->start = (r->start + 1) % MCE_RING_SIZE;
498 ret = 1;
499 out:
500 put_cpu();
501 return ret;
502 }
503
504 /* Always runs in MCE context with preempt off */
505 static int mce_ring_add(unsigned long pfn)
506 {
507 struct mce_ring *r = &__get_cpu_var(mce_ring);
508 unsigned next;
509
510 next = (r->end + 1) % MCE_RING_SIZE;
511 if (next == r->start)
512 return -1;
513 r->ring[r->end] = pfn;
514 wmb();
515 r->end = next;
516 return 0;
517 }
518
519 int mce_available(struct cpuinfo_x86 *c)
520 {
521 if (mca_cfg.disabled)
522 return 0;
523 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
524 }
525
526 static void mce_schedule_work(void)
527 {
528 if (!mce_ring_empty())
529 schedule_work(&__get_cpu_var(mce_work));
530 }
531
532 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
533
534 static void mce_irq_work_cb(struct irq_work *entry)
535 {
536 mce_notify_irq();
537 mce_schedule_work();
538 }
539
540 static void mce_report_event(struct pt_regs *regs)
541 {
542 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
543 mce_notify_irq();
544 /*
545 * Triggering the work queue here is just an insurance
546 * policy in case the syscall exit notify handler
547 * doesn't run soon enough or ends up running on the
548 * wrong CPU (can happen when audit sleeps)
549 */
550 mce_schedule_work();
551 return;
552 }
553
554 irq_work_queue(&__get_cpu_var(mce_irq_work));
555 }
556
557 /*
558 * Read ADDR and MISC registers.
559 */
560 static void mce_read_aux(struct mce *m, int i)
561 {
562 if (m->status & MCI_STATUS_MISCV)
563 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
564 if (m->status & MCI_STATUS_ADDRV) {
565 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
566
567 /*
568 * Mask the reported address by the reported granularity.
569 */
570 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
571 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
572 m->addr >>= shift;
573 m->addr <<= shift;
574 }
575 }
576 }
577
578 DEFINE_PER_CPU(unsigned, mce_poll_count);
579
580 /*
581 * Poll for corrected events or events that happened before reset.
582 * Those are just logged through /dev/mcelog.
583 *
584 * This is executed in standard interrupt context.
585 *
586 * Note: spec recommends to panic for fatal unsignalled
587 * errors here. However this would be quite problematic --
588 * we would need to reimplement the Monarch handling and
589 * it would mess up the exclusion between exception handler
590 * and poll hander -- * so we skip this for now.
591 * These cases should not happen anyways, or only when the CPU
592 * is already totally * confused. In this case it's likely it will
593 * not fully execute the machine check handler either.
594 */
595 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
596 {
597 struct mce m;
598 int i;
599
600 this_cpu_inc(mce_poll_count);
601
602 mce_gather_info(&m, NULL);
603
604 for (i = 0; i < mca_cfg.banks; i++) {
605 if (!mce_banks[i].ctl || !test_bit(i, *b))
606 continue;
607
608 m.misc = 0;
609 m.addr = 0;
610 m.bank = i;
611 m.tsc = 0;
612
613 barrier();
614 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
615 if (!(m.status & MCI_STATUS_VAL))
616 continue;
617
618 this_cpu_write(mce_polled_error, 1);
619 /*
620 * Uncorrected or signalled events are handled by the exception
621 * handler when it is enabled, so don't process those here.
622 *
623 * TBD do the same check for MCI_STATUS_EN here?
624 */
625 if (!(flags & MCP_UC) &&
626 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
627 continue;
628
629 mce_read_aux(&m, i);
630
631 if (!(flags & MCP_TIMESTAMP))
632 m.tsc = 0;
633 /*
634 * Don't get the IP here because it's unlikely to
635 * have anything to do with the actual error location.
636 */
637 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
638 mce_log(&m);
639
640 /*
641 * Clear state for this bank.
642 */
643 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
644 }
645
646 /*
647 * Don't clear MCG_STATUS here because it's only defined for
648 * exceptions.
649 */
650
651 sync_core();
652 }
653 EXPORT_SYMBOL_GPL(machine_check_poll);
654
655 /*
656 * Do a quick check if any of the events requires a panic.
657 * This decides if we keep the events around or clear them.
658 */
659 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
660 struct pt_regs *regs)
661 {
662 int i, ret = 0;
663
664 for (i = 0; i < mca_cfg.banks; i++) {
665 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
666 if (m->status & MCI_STATUS_VAL) {
667 __set_bit(i, validp);
668 if (quirk_no_way_out)
669 quirk_no_way_out(i, m, regs);
670 }
671 if (mce_severity(m, mca_cfg.tolerant, msg) >= MCE_PANIC_SEVERITY)
672 ret = 1;
673 }
674 return ret;
675 }
676
677 /*
678 * Variable to establish order between CPUs while scanning.
679 * Each CPU spins initially until executing is equal its number.
680 */
681 static atomic_t mce_executing;
682
683 /*
684 * Defines order of CPUs on entry. First CPU becomes Monarch.
685 */
686 static atomic_t mce_callin;
687
688 /*
689 * Check if a timeout waiting for other CPUs happened.
690 */
691 static int mce_timed_out(u64 *t)
692 {
693 /*
694 * The others already did panic for some reason.
695 * Bail out like in a timeout.
696 * rmb() to tell the compiler that system_state
697 * might have been modified by someone else.
698 */
699 rmb();
700 if (atomic_read(&mce_paniced))
701 wait_for_panic();
702 if (!mca_cfg.monarch_timeout)
703 goto out;
704 if ((s64)*t < SPINUNIT) {
705 if (mca_cfg.tolerant <= 1)
706 mce_panic("Timeout synchronizing machine check over CPUs",
707 NULL, NULL);
708 cpu_missing = 1;
709 return 1;
710 }
711 *t -= SPINUNIT;
712 out:
713 touch_nmi_watchdog();
714 return 0;
715 }
716
717 /*
718 * The Monarch's reign. The Monarch is the CPU who entered
719 * the machine check handler first. It waits for the others to
720 * raise the exception too and then grades them. When any
721 * error is fatal panic. Only then let the others continue.
722 *
723 * The other CPUs entering the MCE handler will be controlled by the
724 * Monarch. They are called Subjects.
725 *
726 * This way we prevent any potential data corruption in a unrecoverable case
727 * and also makes sure always all CPU's errors are examined.
728 *
729 * Also this detects the case of a machine check event coming from outer
730 * space (not detected by any CPUs) In this case some external agent wants
731 * us to shut down, so panic too.
732 *
733 * The other CPUs might still decide to panic if the handler happens
734 * in a unrecoverable place, but in this case the system is in a semi-stable
735 * state and won't corrupt anything by itself. It's ok to let the others
736 * continue for a bit first.
737 *
738 * All the spin loops have timeouts; when a timeout happens a CPU
739 * typically elects itself to be Monarch.
740 */
741 static void mce_reign(void)
742 {
743 int cpu;
744 struct mce *m = NULL;
745 int global_worst = 0;
746 char *msg = NULL;
747 char *nmsg = NULL;
748
749 /*
750 * This CPU is the Monarch and the other CPUs have run
751 * through their handlers.
752 * Grade the severity of the errors of all the CPUs.
753 */
754 for_each_possible_cpu(cpu) {
755 int severity = mce_severity(&per_cpu(mces_seen, cpu),
756 mca_cfg.tolerant,
757 &nmsg);
758 if (severity > global_worst) {
759 msg = nmsg;
760 global_worst = severity;
761 m = &per_cpu(mces_seen, cpu);
762 }
763 }
764
765 /*
766 * Cannot recover? Panic here then.
767 * This dumps all the mces in the log buffer and stops the
768 * other CPUs.
769 */
770 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
771 mce_panic("Fatal Machine check", m, msg);
772
773 /*
774 * For UC somewhere we let the CPU who detects it handle it.
775 * Also must let continue the others, otherwise the handling
776 * CPU could deadlock on a lock.
777 */
778
779 /*
780 * No machine check event found. Must be some external
781 * source or one CPU is hung. Panic.
782 */
783 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
784 mce_panic("Machine check from unknown source", NULL, NULL);
785
786 /*
787 * Now clear all the mces_seen so that they don't reappear on
788 * the next mce.
789 */
790 for_each_possible_cpu(cpu)
791 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
792 }
793
794 static atomic_t global_nwo;
795
796 /*
797 * Start of Monarch synchronization. This waits until all CPUs have
798 * entered the exception handler and then determines if any of them
799 * saw a fatal event that requires panic. Then it executes them
800 * in the entry order.
801 * TBD double check parallel CPU hotunplug
802 */
803 static int mce_start(int *no_way_out)
804 {
805 int order;
806 int cpus = num_online_cpus();
807 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
808
809 if (!timeout)
810 return -1;
811
812 atomic_add(*no_way_out, &global_nwo);
813 /*
814 * global_nwo should be updated before mce_callin
815 */
816 smp_wmb();
817 order = atomic_inc_return(&mce_callin);
818
819 /*
820 * Wait for everyone.
821 */
822 while (atomic_read(&mce_callin) != cpus) {
823 if (mce_timed_out(&timeout)) {
824 atomic_set(&global_nwo, 0);
825 return -1;
826 }
827 ndelay(SPINUNIT);
828 }
829
830 /*
831 * mce_callin should be read before global_nwo
832 */
833 smp_rmb();
834
835 if (order == 1) {
836 /*
837 * Monarch: Starts executing now, the others wait.
838 */
839 atomic_set(&mce_executing, 1);
840 } else {
841 /*
842 * Subject: Now start the scanning loop one by one in
843 * the original callin order.
844 * This way when there are any shared banks it will be
845 * only seen by one CPU before cleared, avoiding duplicates.
846 */
847 while (atomic_read(&mce_executing) < order) {
848 if (mce_timed_out(&timeout)) {
849 atomic_set(&global_nwo, 0);
850 return -1;
851 }
852 ndelay(SPINUNIT);
853 }
854 }
855
856 /*
857 * Cache the global no_way_out state.
858 */
859 *no_way_out = atomic_read(&global_nwo);
860
861 return order;
862 }
863
864 /*
865 * Synchronize between CPUs after main scanning loop.
866 * This invokes the bulk of the Monarch processing.
867 */
868 static int mce_end(int order)
869 {
870 int ret = -1;
871 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
872
873 if (!timeout)
874 goto reset;
875 if (order < 0)
876 goto reset;
877
878 /*
879 * Allow others to run.
880 */
881 atomic_inc(&mce_executing);
882
883 if (order == 1) {
884 /* CHECKME: Can this race with a parallel hotplug? */
885 int cpus = num_online_cpus();
886
887 /*
888 * Monarch: Wait for everyone to go through their scanning
889 * loops.
890 */
891 while (atomic_read(&mce_executing) <= cpus) {
892 if (mce_timed_out(&timeout))
893 goto reset;
894 ndelay(SPINUNIT);
895 }
896
897 mce_reign();
898 barrier();
899 ret = 0;
900 } else {
901 /*
902 * Subject: Wait for Monarch to finish.
903 */
904 while (atomic_read(&mce_executing) != 0) {
905 if (mce_timed_out(&timeout))
906 goto reset;
907 ndelay(SPINUNIT);
908 }
909
910 /*
911 * Don't reset anything. That's done by the Monarch.
912 */
913 return 0;
914 }
915
916 /*
917 * Reset all global state.
918 */
919 reset:
920 atomic_set(&global_nwo, 0);
921 atomic_set(&mce_callin, 0);
922 barrier();
923
924 /*
925 * Let others run again.
926 */
927 atomic_set(&mce_executing, 0);
928 return ret;
929 }
930
931 /*
932 * Check if the address reported by the CPU is in a format we can parse.
933 * It would be possible to add code for most other cases, but all would
934 * be somewhat complicated (e.g. segment offset would require an instruction
935 * parser). So only support physical addresses up to page granuality for now.
936 */
937 static int mce_usable_address(struct mce *m)
938 {
939 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
940 return 0;
941 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
942 return 0;
943 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
944 return 0;
945 return 1;
946 }
947
948 static void mce_clear_state(unsigned long *toclear)
949 {
950 int i;
951
952 for (i = 0; i < mca_cfg.banks; i++) {
953 if (test_bit(i, toclear))
954 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
955 }
956 }
957
958 /*
959 * Need to save faulting physical address associated with a process
960 * in the machine check handler some place where we can grab it back
961 * later in mce_notify_process()
962 */
963 #define MCE_INFO_MAX 16
964
965 struct mce_info {
966 atomic_t inuse;
967 struct task_struct *t;
968 __u64 paddr;
969 int restartable;
970 } mce_info[MCE_INFO_MAX];
971
972 static void mce_save_info(__u64 addr, int c)
973 {
974 struct mce_info *mi;
975
976 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
977 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
978 mi->t = current;
979 mi->paddr = addr;
980 mi->restartable = c;
981 return;
982 }
983 }
984
985 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
986 }
987
988 static struct mce_info *mce_find_info(void)
989 {
990 struct mce_info *mi;
991
992 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
993 if (atomic_read(&mi->inuse) && mi->t == current)
994 return mi;
995 return NULL;
996 }
997
998 static void mce_clear_info(struct mce_info *mi)
999 {
1000 atomic_set(&mi->inuse, 0);
1001 }
1002
1003 /*
1004 * The actual machine check handler. This only handles real
1005 * exceptions when something got corrupted coming in through int 18.
1006 *
1007 * This is executed in NMI context not subject to normal locking rules. This
1008 * implies that most kernel services cannot be safely used. Don't even
1009 * think about putting a printk in there!
1010 *
1011 * On Intel systems this is entered on all CPUs in parallel through
1012 * MCE broadcast. However some CPUs might be broken beyond repair,
1013 * so be always careful when synchronizing with others.
1014 */
1015 void do_machine_check(struct pt_regs *regs, long error_code)
1016 {
1017 struct mca_config *cfg = &mca_cfg;
1018 struct mce m, *final;
1019 int i;
1020 int worst = 0;
1021 int severity;
1022 /*
1023 * Establish sequential order between the CPUs entering the machine
1024 * check handler.
1025 */
1026 int order;
1027 /*
1028 * If no_way_out gets set, there is no safe way to recover from this
1029 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1030 */
1031 int no_way_out = 0;
1032 /*
1033 * If kill_it gets set, there might be a way to recover from this
1034 * error.
1035 */
1036 int kill_it = 0;
1037 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1038 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1039 char *msg = "Unknown";
1040
1041 this_cpu_inc(mce_exception_count);
1042
1043 if (!cfg->banks)
1044 goto out;
1045
1046 mce_gather_info(&m, regs);
1047
1048 final = &__get_cpu_var(mces_seen);
1049 *final = m;
1050
1051 memset(valid_banks, 0, sizeof(valid_banks));
1052 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1053
1054 barrier();
1055
1056 /*
1057 * When no restart IP might need to kill or panic.
1058 * Assume the worst for now, but if we find the
1059 * severity is MCE_AR_SEVERITY we have other options.
1060 */
1061 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1062 kill_it = 1;
1063
1064 /*
1065 * Go through all the banks in exclusion of the other CPUs.
1066 * This way we don't report duplicated events on shared banks
1067 * because the first one to see it will clear it.
1068 */
1069 order = mce_start(&no_way_out);
1070 for (i = 0; i < cfg->banks; i++) {
1071 __clear_bit(i, toclear);
1072 if (!test_bit(i, valid_banks))
1073 continue;
1074 if (!mce_banks[i].ctl)
1075 continue;
1076
1077 m.misc = 0;
1078 m.addr = 0;
1079 m.bank = i;
1080
1081 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1082 if ((m.status & MCI_STATUS_VAL) == 0)
1083 continue;
1084
1085 /*
1086 * Non uncorrected or non signaled errors are handled by
1087 * machine_check_poll. Leave them alone, unless this panics.
1088 */
1089 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1090 !no_way_out)
1091 continue;
1092
1093 /*
1094 * Set taint even when machine check was not enabled.
1095 */
1096 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1097
1098 severity = mce_severity(&m, cfg->tolerant, NULL);
1099
1100 /*
1101 * When machine check was for corrected handler don't touch,
1102 * unless we're panicing.
1103 */
1104 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1105 continue;
1106 __set_bit(i, toclear);
1107 if (severity == MCE_NO_SEVERITY) {
1108 /*
1109 * Machine check event was not enabled. Clear, but
1110 * ignore.
1111 */
1112 continue;
1113 }
1114
1115 mce_read_aux(&m, i);
1116
1117 /*
1118 * Action optional error. Queue address for later processing.
1119 * When the ring overflows we just ignore the AO error.
1120 * RED-PEN add some logging mechanism when
1121 * usable_address or mce_add_ring fails.
1122 * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
1123 */
1124 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1125 mce_ring_add(m.addr >> PAGE_SHIFT);
1126
1127 mce_log(&m);
1128
1129 if (severity > worst) {
1130 *final = m;
1131 worst = severity;
1132 }
1133 }
1134
1135 /* mce_clear_state will clear *final, save locally for use later */
1136 m = *final;
1137
1138 if (!no_way_out)
1139 mce_clear_state(toclear);
1140
1141 /*
1142 * Do most of the synchronization with other CPUs.
1143 * When there's any problem use only local no_way_out state.
1144 */
1145 if (mce_end(order) < 0)
1146 no_way_out = worst >= MCE_PANIC_SEVERITY;
1147
1148 /*
1149 * At insane "tolerant" levels we take no action. Otherwise
1150 * we only die if we have no other choice. For less serious
1151 * issues we try to recover, or limit damage to the current
1152 * process.
1153 */
1154 if (cfg->tolerant < 3) {
1155 if (no_way_out)
1156 mce_panic("Fatal machine check on current CPU", &m, msg);
1157 if (worst == MCE_AR_SEVERITY) {
1158 /* schedule action before return to userland */
1159 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1160 set_thread_flag(TIF_MCE_NOTIFY);
1161 } else if (kill_it) {
1162 force_sig(SIGBUS, current);
1163 }
1164 }
1165
1166 if (worst > 0)
1167 mce_report_event(regs);
1168 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1169 out:
1170 sync_core();
1171 }
1172 EXPORT_SYMBOL_GPL(do_machine_check);
1173
1174 #ifndef CONFIG_MEMORY_FAILURE
1175 int memory_failure(unsigned long pfn, int vector, int flags)
1176 {
1177 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1178 BUG_ON(flags & MF_ACTION_REQUIRED);
1179 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1180 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1181 pfn);
1182
1183 return 0;
1184 }
1185 #endif
1186
1187 /*
1188 * Called in process context that interrupted by MCE and marked with
1189 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1190 * This code is allowed to sleep.
1191 * Attempt possible recovery such as calling the high level VM handler to
1192 * process any corrupted pages, and kill/signal current process if required.
1193 * Action required errors are handled here.
1194 */
1195 void mce_notify_process(void)
1196 {
1197 unsigned long pfn;
1198 struct mce_info *mi = mce_find_info();
1199 int flags = MF_ACTION_REQUIRED;
1200
1201 if (!mi)
1202 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1203 pfn = mi->paddr >> PAGE_SHIFT;
1204
1205 clear_thread_flag(TIF_MCE_NOTIFY);
1206
1207 pr_err("Uncorrected hardware memory error in user-access at %llx",
1208 mi->paddr);
1209 /*
1210 * We must call memory_failure() here even if the current process is
1211 * doomed. We still need to mark the page as poisoned and alert any
1212 * other users of the page.
1213 */
1214 if (!mi->restartable)
1215 flags |= MF_MUST_KILL;
1216 if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1217 pr_err("Memory error not recovered");
1218 force_sig(SIGBUS, current);
1219 }
1220 mce_clear_info(mi);
1221 }
1222
1223 /*
1224 * Action optional processing happens here (picking up
1225 * from the list of faulting pages that do_machine_check()
1226 * placed into the "ring").
1227 */
1228 static void mce_process_work(struct work_struct *dummy)
1229 {
1230 unsigned long pfn;
1231
1232 while (mce_ring_get(&pfn))
1233 memory_failure(pfn, MCE_VECTOR, 0);
1234 }
1235
1236 #ifdef CONFIG_X86_MCE_INTEL
1237 /***
1238 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1239 * @cpu: The CPU on which the event occurred.
1240 * @status: Event status information
1241 *
1242 * This function should be called by the thermal interrupt after the
1243 * event has been processed and the decision was made to log the event
1244 * further.
1245 *
1246 * The status parameter will be saved to the 'status' field of 'struct mce'
1247 * and historically has been the register value of the
1248 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1249 */
1250 void mce_log_therm_throt_event(__u64 status)
1251 {
1252 struct mce m;
1253
1254 mce_setup(&m);
1255 m.bank = MCE_THERMAL_BANK;
1256 m.status = status;
1257 mce_log(&m);
1258 }
1259 #endif /* CONFIG_X86_MCE_INTEL */
1260
1261 /*
1262 * Periodic polling timer for "silent" machine check errors. If the
1263 * poller finds an MCE, poll 2x faster. When the poller finds no more
1264 * errors, poll 2x slower (up to check_interval seconds).
1265 */
1266 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1267
1268 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1269 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1270
1271 static unsigned long mce_adjust_timer_default(unsigned long interval)
1272 {
1273 return interval;
1274 }
1275
1276 static unsigned long (*mce_adjust_timer)(unsigned long interval) =
1277 mce_adjust_timer_default;
1278
1279 static int cmc_error_seen(void)
1280 {
1281 unsigned long *v = &__get_cpu_var(mce_polled_error);
1282
1283 return test_and_clear_bit(0, v);
1284 }
1285
1286 static void mce_timer_fn(unsigned long data)
1287 {
1288 struct timer_list *t = &__get_cpu_var(mce_timer);
1289 unsigned long iv;
1290 int notify;
1291
1292 WARN_ON(smp_processor_id() != data);
1293
1294 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1295 machine_check_poll(MCP_TIMESTAMP,
1296 &__get_cpu_var(mce_poll_banks));
1297 mce_intel_cmci_poll();
1298 }
1299
1300 /*
1301 * Alert userspace if needed. If we logged an MCE, reduce the
1302 * polling interval, otherwise increase the polling interval.
1303 */
1304 iv = __this_cpu_read(mce_next_interval);
1305 notify = mce_notify_irq();
1306 notify |= cmc_error_seen();
1307 if (notify) {
1308 iv = max(iv / 2, (unsigned long) HZ/100);
1309 } else {
1310 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1311 iv = mce_adjust_timer(iv);
1312 }
1313 __this_cpu_write(mce_next_interval, iv);
1314 /* Might have become 0 after CMCI storm subsided */
1315 if (iv) {
1316 t->expires = jiffies + iv;
1317 add_timer_on(t, smp_processor_id());
1318 }
1319 }
1320
1321 /*
1322 * Ensure that the timer is firing in @interval from now.
1323 */
1324 void mce_timer_kick(unsigned long interval)
1325 {
1326 struct timer_list *t = &__get_cpu_var(mce_timer);
1327 unsigned long when = jiffies + interval;
1328 unsigned long iv = __this_cpu_read(mce_next_interval);
1329
1330 if (timer_pending(t)) {
1331 if (time_before(when, t->expires))
1332 mod_timer_pinned(t, when);
1333 } else {
1334 t->expires = round_jiffies(when);
1335 add_timer_on(t, smp_processor_id());
1336 }
1337 if (interval < iv)
1338 __this_cpu_write(mce_next_interval, interval);
1339 }
1340
1341 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1342 static void mce_timer_delete_all(void)
1343 {
1344 int cpu;
1345
1346 for_each_online_cpu(cpu)
1347 del_timer_sync(&per_cpu(mce_timer, cpu));
1348 }
1349
1350 static void mce_do_trigger(struct work_struct *work)
1351 {
1352 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1353 }
1354
1355 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1356
1357 /*
1358 * Notify the user(s) about new machine check events.
1359 * Can be called from interrupt context, but not from machine check/NMI
1360 * context.
1361 */
1362 int mce_notify_irq(void)
1363 {
1364 /* Not more than two messages every minute */
1365 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1366
1367 if (test_and_clear_bit(0, &mce_need_notify)) {
1368 /* wake processes polling /dev/mcelog */
1369 wake_up_interruptible(&mce_chrdev_wait);
1370
1371 if (mce_helper[0])
1372 schedule_work(&mce_trigger_work);
1373
1374 if (__ratelimit(&ratelimit))
1375 pr_info(HW_ERR "Machine check events logged\n");
1376
1377 return 1;
1378 }
1379 return 0;
1380 }
1381 EXPORT_SYMBOL_GPL(mce_notify_irq);
1382
1383 static int __mcheck_cpu_mce_banks_init(void)
1384 {
1385 int i;
1386 u8 num_banks = mca_cfg.banks;
1387
1388 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1389 if (!mce_banks)
1390 return -ENOMEM;
1391
1392 for (i = 0; i < num_banks; i++) {
1393 struct mce_bank *b = &mce_banks[i];
1394
1395 b->ctl = -1ULL;
1396 b->init = 1;
1397 }
1398 return 0;
1399 }
1400
1401 /*
1402 * Initialize Machine Checks for a CPU.
1403 */
1404 static int __mcheck_cpu_cap_init(void)
1405 {
1406 unsigned b;
1407 u64 cap;
1408
1409 rdmsrl(MSR_IA32_MCG_CAP, cap);
1410
1411 b = cap & MCG_BANKCNT_MASK;
1412 if (!mca_cfg.banks)
1413 pr_info("CPU supports %d MCE banks\n", b);
1414
1415 if (b > MAX_NR_BANKS) {
1416 pr_warn("Using only %u machine check banks out of %u\n",
1417 MAX_NR_BANKS, b);
1418 b = MAX_NR_BANKS;
1419 }
1420
1421 /* Don't support asymmetric configurations today */
1422 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1423 mca_cfg.banks = b;
1424
1425 if (!mce_banks) {
1426 int err = __mcheck_cpu_mce_banks_init();
1427
1428 if (err)
1429 return err;
1430 }
1431
1432 /* Use accurate RIP reporting if available. */
1433 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1434 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1435
1436 if (cap & MCG_SER_P)
1437 mca_cfg.ser = true;
1438
1439 return 0;
1440 }
1441
1442 static void __mcheck_cpu_init_generic(void)
1443 {
1444 enum mcp_flags m_fl = 0;
1445 mce_banks_t all_banks;
1446 u64 cap;
1447 int i;
1448
1449 if (!mca_cfg.bootlog)
1450 m_fl = MCP_DONTLOG;
1451
1452 /*
1453 * Log the machine checks left over from the previous reset.
1454 */
1455 bitmap_fill(all_banks, MAX_NR_BANKS);
1456 machine_check_poll(MCP_UC | m_fl, &all_banks);
1457
1458 set_in_cr4(X86_CR4_MCE);
1459
1460 rdmsrl(MSR_IA32_MCG_CAP, cap);
1461 if (cap & MCG_CTL_P)
1462 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1463
1464 for (i = 0; i < mca_cfg.banks; i++) {
1465 struct mce_bank *b = &mce_banks[i];
1466
1467 if (!b->init)
1468 continue;
1469 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1470 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1471 }
1472 }
1473
1474 /*
1475 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1476 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1477 * Vol 3B Table 15-20). But this confuses both the code that determines
1478 * whether the machine check occurred in kernel or user mode, and also
1479 * the severity assessment code. Pretend that EIPV was set, and take the
1480 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1481 */
1482 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1483 {
1484 if (bank != 0)
1485 return;
1486 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1487 return;
1488 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1489 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1490 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1491 MCACOD)) !=
1492 (MCI_STATUS_UC|MCI_STATUS_EN|
1493 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1494 MCI_STATUS_AR|MCACOD_INSTR))
1495 return;
1496
1497 m->mcgstatus |= MCG_STATUS_EIPV;
1498 m->ip = regs->ip;
1499 m->cs = regs->cs;
1500 }
1501
1502 /* Add per CPU specific workarounds here */
1503 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1504 {
1505 struct mca_config *cfg = &mca_cfg;
1506
1507 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1508 pr_info("unknown CPU type - not enabling MCE support\n");
1509 return -EOPNOTSUPP;
1510 }
1511
1512 /* This should be disabled by the BIOS, but isn't always */
1513 if (c->x86_vendor == X86_VENDOR_AMD) {
1514 if (c->x86 == 15 && cfg->banks > 4) {
1515 /*
1516 * disable GART TBL walk error reporting, which
1517 * trips off incorrectly with the IOMMU & 3ware
1518 * & Cerberus:
1519 */
1520 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1521 }
1522 if (c->x86 <= 17 && cfg->bootlog < 0) {
1523 /*
1524 * Lots of broken BIOS around that don't clear them
1525 * by default and leave crap in there. Don't log:
1526 */
1527 cfg->bootlog = 0;
1528 }
1529 /*
1530 * Various K7s with broken bank 0 around. Always disable
1531 * by default.
1532 */
1533 if (c->x86 == 6 && cfg->banks > 0)
1534 mce_banks[0].ctl = 0;
1535
1536 /*
1537 * Turn off MC4_MISC thresholding banks on those models since
1538 * they're not supported there.
1539 */
1540 if (c->x86 == 0x15 &&
1541 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1542 int i;
1543 u64 val, hwcr;
1544 bool need_toggle;
1545 u32 msrs[] = {
1546 0x00000413, /* MC4_MISC0 */
1547 0xc0000408, /* MC4_MISC1 */
1548 };
1549
1550 rdmsrl(MSR_K7_HWCR, hwcr);
1551
1552 /* McStatusWrEn has to be set */
1553 need_toggle = !(hwcr & BIT(18));
1554
1555 if (need_toggle)
1556 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1557
1558 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1559 rdmsrl(msrs[i], val);
1560
1561 /* CntP bit set? */
1562 if (val & BIT_64(62)) {
1563 val &= ~BIT_64(62);
1564 wrmsrl(msrs[i], val);
1565 }
1566 }
1567
1568 /* restore old settings */
1569 if (need_toggle)
1570 wrmsrl(MSR_K7_HWCR, hwcr);
1571 }
1572 }
1573
1574 if (c->x86_vendor == X86_VENDOR_INTEL) {
1575 /*
1576 * SDM documents that on family 6 bank 0 should not be written
1577 * because it aliases to another special BIOS controlled
1578 * register.
1579 * But it's not aliased anymore on model 0x1a+
1580 * Don't ignore bank 0 completely because there could be a
1581 * valid event later, merely don't write CTL0.
1582 */
1583
1584 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1585 mce_banks[0].init = 0;
1586
1587 /*
1588 * All newer Intel systems support MCE broadcasting. Enable
1589 * synchronization with a one second timeout.
1590 */
1591 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1592 cfg->monarch_timeout < 0)
1593 cfg->monarch_timeout = USEC_PER_SEC;
1594
1595 /*
1596 * There are also broken BIOSes on some Pentium M and
1597 * earlier systems:
1598 */
1599 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1600 cfg->bootlog = 0;
1601
1602 if (c->x86 == 6 && c->x86_model == 45)
1603 quirk_no_way_out = quirk_sandybridge_ifu;
1604 }
1605 if (cfg->monarch_timeout < 0)
1606 cfg->monarch_timeout = 0;
1607 if (cfg->bootlog != 0)
1608 cfg->panic_timeout = 30;
1609
1610 return 0;
1611 }
1612
1613 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1614 {
1615 if (c->x86 != 5)
1616 return 0;
1617
1618 switch (c->x86_vendor) {
1619 case X86_VENDOR_INTEL:
1620 intel_p5_mcheck_init(c);
1621 return 1;
1622 break;
1623 case X86_VENDOR_CENTAUR:
1624 winchip_mcheck_init(c);
1625 return 1;
1626 break;
1627 }
1628
1629 return 0;
1630 }
1631
1632 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1633 {
1634 switch (c->x86_vendor) {
1635 case X86_VENDOR_INTEL:
1636 mce_intel_feature_init(c);
1637 mce_adjust_timer = mce_intel_adjust_timer;
1638 break;
1639 case X86_VENDOR_AMD:
1640 mce_amd_feature_init(c);
1641 break;
1642 default:
1643 break;
1644 }
1645 }
1646
1647 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1648 {
1649 unsigned long iv = check_interval * HZ;
1650
1651 if (mca_cfg.ignore_ce || !iv)
1652 return;
1653
1654 per_cpu(mce_next_interval, cpu) = iv;
1655
1656 t->expires = round_jiffies(jiffies + iv);
1657 add_timer_on(t, cpu);
1658 }
1659
1660 static void __mcheck_cpu_init_timer(void)
1661 {
1662 struct timer_list *t = &__get_cpu_var(mce_timer);
1663 unsigned int cpu = smp_processor_id();
1664
1665 setup_timer(t, mce_timer_fn, cpu);
1666 mce_start_timer(cpu, t);
1667 }
1668
1669 /* Handle unconfigured int18 (should never happen) */
1670 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1671 {
1672 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1673 smp_processor_id());
1674 }
1675
1676 /* Call the installed machine check handler for this CPU setup. */
1677 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1678 unexpected_machine_check;
1679
1680 /*
1681 * Called for each booted CPU to set up machine checks.
1682 * Must be called with preempt off:
1683 */
1684 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1685 {
1686 if (mca_cfg.disabled)
1687 return;
1688
1689 if (__mcheck_cpu_ancient_init(c))
1690 return;
1691
1692 if (!mce_available(c))
1693 return;
1694
1695 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1696 mca_cfg.disabled = true;
1697 return;
1698 }
1699
1700 machine_check_vector = do_machine_check;
1701
1702 __mcheck_cpu_init_generic();
1703 __mcheck_cpu_init_vendor(c);
1704 __mcheck_cpu_init_timer();
1705 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1706 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1707 }
1708
1709 /*
1710 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1711 */
1712
1713 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1714 static int mce_chrdev_open_count; /* #times opened */
1715 static int mce_chrdev_open_exclu; /* already open exclusive? */
1716
1717 static int mce_chrdev_open(struct inode *inode, struct file *file)
1718 {
1719 spin_lock(&mce_chrdev_state_lock);
1720
1721 if (mce_chrdev_open_exclu ||
1722 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1723 spin_unlock(&mce_chrdev_state_lock);
1724
1725 return -EBUSY;
1726 }
1727
1728 if (file->f_flags & O_EXCL)
1729 mce_chrdev_open_exclu = 1;
1730 mce_chrdev_open_count++;
1731
1732 spin_unlock(&mce_chrdev_state_lock);
1733
1734 return nonseekable_open(inode, file);
1735 }
1736
1737 static int mce_chrdev_release(struct inode *inode, struct file *file)
1738 {
1739 spin_lock(&mce_chrdev_state_lock);
1740
1741 mce_chrdev_open_count--;
1742 mce_chrdev_open_exclu = 0;
1743
1744 spin_unlock(&mce_chrdev_state_lock);
1745
1746 return 0;
1747 }
1748
1749 static void collect_tscs(void *data)
1750 {
1751 unsigned long *cpu_tsc = (unsigned long *)data;
1752
1753 rdtscll(cpu_tsc[smp_processor_id()]);
1754 }
1755
1756 static int mce_apei_read_done;
1757
1758 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1759 static int __mce_read_apei(char __user **ubuf, size_t usize)
1760 {
1761 int rc;
1762 u64 record_id;
1763 struct mce m;
1764
1765 if (usize < sizeof(struct mce))
1766 return -EINVAL;
1767
1768 rc = apei_read_mce(&m, &record_id);
1769 /* Error or no more MCE record */
1770 if (rc <= 0) {
1771 mce_apei_read_done = 1;
1772 /*
1773 * When ERST is disabled, mce_chrdev_read() should return
1774 * "no record" instead of "no device."
1775 */
1776 if (rc == -ENODEV)
1777 return 0;
1778 return rc;
1779 }
1780 rc = -EFAULT;
1781 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1782 return rc;
1783 /*
1784 * In fact, we should have cleared the record after that has
1785 * been flushed to the disk or sent to network in
1786 * /sbin/mcelog, but we have no interface to support that now,
1787 * so just clear it to avoid duplication.
1788 */
1789 rc = apei_clear_mce(record_id);
1790 if (rc) {
1791 mce_apei_read_done = 1;
1792 return rc;
1793 }
1794 *ubuf += sizeof(struct mce);
1795
1796 return 0;
1797 }
1798
1799 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1800 size_t usize, loff_t *off)
1801 {
1802 char __user *buf = ubuf;
1803 unsigned long *cpu_tsc;
1804 unsigned prev, next;
1805 int i, err;
1806
1807 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1808 if (!cpu_tsc)
1809 return -ENOMEM;
1810
1811 mutex_lock(&mce_chrdev_read_mutex);
1812
1813 if (!mce_apei_read_done) {
1814 err = __mce_read_apei(&buf, usize);
1815 if (err || buf != ubuf)
1816 goto out;
1817 }
1818
1819 next = rcu_dereference_check_mce(mcelog.next);
1820
1821 /* Only supports full reads right now */
1822 err = -EINVAL;
1823 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1824 goto out;
1825
1826 err = 0;
1827 prev = 0;
1828 do {
1829 for (i = prev; i < next; i++) {
1830 unsigned long start = jiffies;
1831 struct mce *m = &mcelog.entry[i];
1832
1833 while (!m->finished) {
1834 if (time_after_eq(jiffies, start + 2)) {
1835 memset(m, 0, sizeof(*m));
1836 goto timeout;
1837 }
1838 cpu_relax();
1839 }
1840 smp_rmb();
1841 err |= copy_to_user(buf, m, sizeof(*m));
1842 buf += sizeof(*m);
1843 timeout:
1844 ;
1845 }
1846
1847 memset(mcelog.entry + prev, 0,
1848 (next - prev) * sizeof(struct mce));
1849 prev = next;
1850 next = cmpxchg(&mcelog.next, prev, 0);
1851 } while (next != prev);
1852
1853 synchronize_sched();
1854
1855 /*
1856 * Collect entries that were still getting written before the
1857 * synchronize.
1858 */
1859 on_each_cpu(collect_tscs, cpu_tsc, 1);
1860
1861 for (i = next; i < MCE_LOG_LEN; i++) {
1862 struct mce *m = &mcelog.entry[i];
1863
1864 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1865 err |= copy_to_user(buf, m, sizeof(*m));
1866 smp_rmb();
1867 buf += sizeof(*m);
1868 memset(m, 0, sizeof(*m));
1869 }
1870 }
1871
1872 if (err)
1873 err = -EFAULT;
1874
1875 out:
1876 mutex_unlock(&mce_chrdev_read_mutex);
1877 kfree(cpu_tsc);
1878
1879 return err ? err : buf - ubuf;
1880 }
1881
1882 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1883 {
1884 poll_wait(file, &mce_chrdev_wait, wait);
1885 if (rcu_access_index(mcelog.next))
1886 return POLLIN | POLLRDNORM;
1887 if (!mce_apei_read_done && apei_check_mce())
1888 return POLLIN | POLLRDNORM;
1889 return 0;
1890 }
1891
1892 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1893 unsigned long arg)
1894 {
1895 int __user *p = (int __user *)arg;
1896
1897 if (!capable(CAP_SYS_ADMIN))
1898 return -EPERM;
1899
1900 switch (cmd) {
1901 case MCE_GET_RECORD_LEN:
1902 return put_user(sizeof(struct mce), p);
1903 case MCE_GET_LOG_LEN:
1904 return put_user(MCE_LOG_LEN, p);
1905 case MCE_GETCLEAR_FLAGS: {
1906 unsigned flags;
1907
1908 do {
1909 flags = mcelog.flags;
1910 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1911
1912 return put_user(flags, p);
1913 }
1914 default:
1915 return -ENOTTY;
1916 }
1917 }
1918
1919 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1920 size_t usize, loff_t *off);
1921
1922 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1923 const char __user *ubuf,
1924 size_t usize, loff_t *off))
1925 {
1926 mce_write = fn;
1927 }
1928 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1929
1930 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1931 size_t usize, loff_t *off)
1932 {
1933 if (mce_write)
1934 return mce_write(filp, ubuf, usize, off);
1935 else
1936 return -EINVAL;
1937 }
1938
1939 static const struct file_operations mce_chrdev_ops = {
1940 .open = mce_chrdev_open,
1941 .release = mce_chrdev_release,
1942 .read = mce_chrdev_read,
1943 .write = mce_chrdev_write,
1944 .poll = mce_chrdev_poll,
1945 .unlocked_ioctl = mce_chrdev_ioctl,
1946 .llseek = no_llseek,
1947 };
1948
1949 static struct miscdevice mce_chrdev_device = {
1950 MISC_MCELOG_MINOR,
1951 "mcelog",
1952 &mce_chrdev_ops,
1953 };
1954
1955 static void __mce_disable_bank(void *arg)
1956 {
1957 int bank = *((int *)arg);
1958 __clear_bit(bank, __get_cpu_var(mce_poll_banks));
1959 cmci_disable_bank(bank);
1960 }
1961
1962 void mce_disable_bank(int bank)
1963 {
1964 if (bank >= mca_cfg.banks) {
1965 pr_warn(FW_BUG
1966 "Ignoring request to disable invalid MCA bank %d.\n",
1967 bank);
1968 return;
1969 }
1970 set_bit(bank, mce_banks_ce_disabled);
1971 on_each_cpu(__mce_disable_bank, &bank, 1);
1972 }
1973
1974 /*
1975 * mce=off Disables machine check
1976 * mce=no_cmci Disables CMCI
1977 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1978 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1979 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1980 * monarchtimeout is how long to wait for other CPUs on machine
1981 * check, or 0 to not wait
1982 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1983 * mce=nobootlog Don't log MCEs from before booting.
1984 * mce=bios_cmci_threshold Don't program the CMCI threshold
1985 */
1986 static int __init mcheck_enable(char *str)
1987 {
1988 struct mca_config *cfg = &mca_cfg;
1989
1990 if (*str == 0) {
1991 enable_p5_mce();
1992 return 1;
1993 }
1994 if (*str == '=')
1995 str++;
1996 if (!strcmp(str, "off"))
1997 cfg->disabled = true;
1998 else if (!strcmp(str, "no_cmci"))
1999 cfg->cmci_disabled = true;
2000 else if (!strcmp(str, "dont_log_ce"))
2001 cfg->dont_log_ce = true;
2002 else if (!strcmp(str, "ignore_ce"))
2003 cfg->ignore_ce = true;
2004 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2005 cfg->bootlog = (str[0] == 'b');
2006 else if (!strcmp(str, "bios_cmci_threshold"))
2007 cfg->bios_cmci_threshold = true;
2008 else if (isdigit(str[0])) {
2009 get_option(&str, &(cfg->tolerant));
2010 if (*str == ',') {
2011 ++str;
2012 get_option(&str, &(cfg->monarch_timeout));
2013 }
2014 } else {
2015 pr_info("mce argument %s ignored. Please use /sys\n", str);
2016 return 0;
2017 }
2018 return 1;
2019 }
2020 __setup("mce", mcheck_enable);
2021
2022 int __init mcheck_init(void)
2023 {
2024 mcheck_intel_therm_init();
2025
2026 return 0;
2027 }
2028
2029 /*
2030 * mce_syscore: PM support
2031 */
2032
2033 /*
2034 * Disable machine checks on suspend and shutdown. We can't really handle
2035 * them later.
2036 */
2037 static int mce_disable_error_reporting(void)
2038 {
2039 int i;
2040
2041 for (i = 0; i < mca_cfg.banks; i++) {
2042 struct mce_bank *b = &mce_banks[i];
2043
2044 if (b->init)
2045 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2046 }
2047 return 0;
2048 }
2049
2050 static int mce_syscore_suspend(void)
2051 {
2052 return mce_disable_error_reporting();
2053 }
2054
2055 static void mce_syscore_shutdown(void)
2056 {
2057 mce_disable_error_reporting();
2058 }
2059
2060 /*
2061 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2062 * Only one CPU is active at this time, the others get re-added later using
2063 * CPU hotplug:
2064 */
2065 static void mce_syscore_resume(void)
2066 {
2067 __mcheck_cpu_init_generic();
2068 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
2069 }
2070
2071 static struct syscore_ops mce_syscore_ops = {
2072 .suspend = mce_syscore_suspend,
2073 .shutdown = mce_syscore_shutdown,
2074 .resume = mce_syscore_resume,
2075 };
2076
2077 /*
2078 * mce_device: Sysfs support
2079 */
2080
2081 static void mce_cpu_restart(void *data)
2082 {
2083 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2084 return;
2085 __mcheck_cpu_init_generic();
2086 __mcheck_cpu_init_timer();
2087 }
2088
2089 /* Reinit MCEs after user configuration changes */
2090 static void mce_restart(void)
2091 {
2092 mce_timer_delete_all();
2093 on_each_cpu(mce_cpu_restart, NULL, 1);
2094 }
2095
2096 /* Toggle features for corrected errors */
2097 static void mce_disable_cmci(void *data)
2098 {
2099 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2100 return;
2101 cmci_clear();
2102 }
2103
2104 static void mce_enable_ce(void *all)
2105 {
2106 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2107 return;
2108 cmci_reenable();
2109 cmci_recheck();
2110 if (all)
2111 __mcheck_cpu_init_timer();
2112 }
2113
2114 static struct bus_type mce_subsys = {
2115 .name = "machinecheck",
2116 .dev_name = "machinecheck",
2117 };
2118
2119 DEFINE_PER_CPU(struct device *, mce_device);
2120
2121 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2122
2123 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2124 {
2125 return container_of(attr, struct mce_bank, attr);
2126 }
2127
2128 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2129 char *buf)
2130 {
2131 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2132 }
2133
2134 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2135 const char *buf, size_t size)
2136 {
2137 u64 new;
2138
2139 if (strict_strtoull(buf, 0, &new) < 0)
2140 return -EINVAL;
2141
2142 attr_to_bank(attr)->ctl = new;
2143 mce_restart();
2144
2145 return size;
2146 }
2147
2148 static ssize_t
2149 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2150 {
2151 strcpy(buf, mce_helper);
2152 strcat(buf, "\n");
2153 return strlen(mce_helper) + 1;
2154 }
2155
2156 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2157 const char *buf, size_t siz)
2158 {
2159 char *p;
2160
2161 strncpy(mce_helper, buf, sizeof(mce_helper));
2162 mce_helper[sizeof(mce_helper)-1] = 0;
2163 p = strchr(mce_helper, '\n');
2164
2165 if (p)
2166 *p = 0;
2167
2168 return strlen(mce_helper) + !!p;
2169 }
2170
2171 static ssize_t set_ignore_ce(struct device *s,
2172 struct device_attribute *attr,
2173 const char *buf, size_t size)
2174 {
2175 u64 new;
2176
2177 if (strict_strtoull(buf, 0, &new) < 0)
2178 return -EINVAL;
2179
2180 if (mca_cfg.ignore_ce ^ !!new) {
2181 if (new) {
2182 /* disable ce features */
2183 mce_timer_delete_all();
2184 on_each_cpu(mce_disable_cmci, NULL, 1);
2185 mca_cfg.ignore_ce = true;
2186 } else {
2187 /* enable ce features */
2188 mca_cfg.ignore_ce = false;
2189 on_each_cpu(mce_enable_ce, (void *)1, 1);
2190 }
2191 }
2192 return size;
2193 }
2194
2195 static ssize_t set_cmci_disabled(struct device *s,
2196 struct device_attribute *attr,
2197 const char *buf, size_t size)
2198 {
2199 u64 new;
2200
2201 if (strict_strtoull(buf, 0, &new) < 0)
2202 return -EINVAL;
2203
2204 if (mca_cfg.cmci_disabled ^ !!new) {
2205 if (new) {
2206 /* disable cmci */
2207 on_each_cpu(mce_disable_cmci, NULL, 1);
2208 mca_cfg.cmci_disabled = true;
2209 } else {
2210 /* enable cmci */
2211 mca_cfg.cmci_disabled = false;
2212 on_each_cpu(mce_enable_ce, NULL, 1);
2213 }
2214 }
2215 return size;
2216 }
2217
2218 static ssize_t store_int_with_restart(struct device *s,
2219 struct device_attribute *attr,
2220 const char *buf, size_t size)
2221 {
2222 ssize_t ret = device_store_int(s, attr, buf, size);
2223 mce_restart();
2224 return ret;
2225 }
2226
2227 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2228 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2229 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2230 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2231
2232 static struct dev_ext_attribute dev_attr_check_interval = {
2233 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2234 &check_interval
2235 };
2236
2237 static struct dev_ext_attribute dev_attr_ignore_ce = {
2238 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2239 &mca_cfg.ignore_ce
2240 };
2241
2242 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2243 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2244 &mca_cfg.cmci_disabled
2245 };
2246
2247 static struct device_attribute *mce_device_attrs[] = {
2248 &dev_attr_tolerant.attr,
2249 &dev_attr_check_interval.attr,
2250 &dev_attr_trigger,
2251 &dev_attr_monarch_timeout.attr,
2252 &dev_attr_dont_log_ce.attr,
2253 &dev_attr_ignore_ce.attr,
2254 &dev_attr_cmci_disabled.attr,
2255 NULL
2256 };
2257
2258 static cpumask_var_t mce_device_initialized;
2259
2260 static void mce_device_release(struct device *dev)
2261 {
2262 kfree(dev);
2263 }
2264
2265 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2266 static int mce_device_create(unsigned int cpu)
2267 {
2268 struct device *dev;
2269 int err;
2270 int i, j;
2271
2272 if (!mce_available(&boot_cpu_data))
2273 return -EIO;
2274
2275 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2276 if (!dev)
2277 return -ENOMEM;
2278 dev->id = cpu;
2279 dev->bus = &mce_subsys;
2280 dev->release = &mce_device_release;
2281
2282 err = device_register(dev);
2283 if (err) {
2284 put_device(dev);
2285 return err;
2286 }
2287
2288 for (i = 0; mce_device_attrs[i]; i++) {
2289 err = device_create_file(dev, mce_device_attrs[i]);
2290 if (err)
2291 goto error;
2292 }
2293 for (j = 0; j < mca_cfg.banks; j++) {
2294 err = device_create_file(dev, &mce_banks[j].attr);
2295 if (err)
2296 goto error2;
2297 }
2298 cpumask_set_cpu(cpu, mce_device_initialized);
2299 per_cpu(mce_device, cpu) = dev;
2300
2301 return 0;
2302 error2:
2303 while (--j >= 0)
2304 device_remove_file(dev, &mce_banks[j].attr);
2305 error:
2306 while (--i >= 0)
2307 device_remove_file(dev, mce_device_attrs[i]);
2308
2309 device_unregister(dev);
2310
2311 return err;
2312 }
2313
2314 static void mce_device_remove(unsigned int cpu)
2315 {
2316 struct device *dev = per_cpu(mce_device, cpu);
2317 int i;
2318
2319 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2320 return;
2321
2322 for (i = 0; mce_device_attrs[i]; i++)
2323 device_remove_file(dev, mce_device_attrs[i]);
2324
2325 for (i = 0; i < mca_cfg.banks; i++)
2326 device_remove_file(dev, &mce_banks[i].attr);
2327
2328 device_unregister(dev);
2329 cpumask_clear_cpu(cpu, mce_device_initialized);
2330 per_cpu(mce_device, cpu) = NULL;
2331 }
2332
2333 /* Make sure there are no machine checks on offlined CPUs. */
2334 static void mce_disable_cpu(void *h)
2335 {
2336 unsigned long action = *(unsigned long *)h;
2337 int i;
2338
2339 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2340 return;
2341
2342 if (!(action & CPU_TASKS_FROZEN))
2343 cmci_clear();
2344 for (i = 0; i < mca_cfg.banks; i++) {
2345 struct mce_bank *b = &mce_banks[i];
2346
2347 if (b->init)
2348 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2349 }
2350 }
2351
2352 static void mce_reenable_cpu(void *h)
2353 {
2354 unsigned long action = *(unsigned long *)h;
2355 int i;
2356
2357 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2358 return;
2359
2360 if (!(action & CPU_TASKS_FROZEN))
2361 cmci_reenable();
2362 for (i = 0; i < mca_cfg.banks; i++) {
2363 struct mce_bank *b = &mce_banks[i];
2364
2365 if (b->init)
2366 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2367 }
2368 }
2369
2370 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2371 static int
2372 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2373 {
2374 unsigned int cpu = (unsigned long)hcpu;
2375 struct timer_list *t = &per_cpu(mce_timer, cpu);
2376
2377 switch (action & ~CPU_TASKS_FROZEN) {
2378 case CPU_ONLINE:
2379 mce_device_create(cpu);
2380 if (threshold_cpu_callback)
2381 threshold_cpu_callback(action, cpu);
2382 break;
2383 case CPU_DEAD:
2384 if (threshold_cpu_callback)
2385 threshold_cpu_callback(action, cpu);
2386 mce_device_remove(cpu);
2387 mce_intel_hcpu_update(cpu);
2388 break;
2389 case CPU_DOWN_PREPARE:
2390 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2391 del_timer_sync(t);
2392 break;
2393 case CPU_DOWN_FAILED:
2394 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2395 mce_start_timer(cpu, t);
2396 break;
2397 }
2398
2399 if (action == CPU_POST_DEAD) {
2400 /* intentionally ignoring frozen here */
2401 cmci_rediscover();
2402 }
2403
2404 return NOTIFY_OK;
2405 }
2406
2407 static struct notifier_block mce_cpu_notifier = {
2408 .notifier_call = mce_cpu_callback,
2409 };
2410
2411 static __init void mce_init_banks(void)
2412 {
2413 int i;
2414
2415 for (i = 0; i < mca_cfg.banks; i++) {
2416 struct mce_bank *b = &mce_banks[i];
2417 struct device_attribute *a = &b->attr;
2418
2419 sysfs_attr_init(&a->attr);
2420 a->attr.name = b->attrname;
2421 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2422
2423 a->attr.mode = 0644;
2424 a->show = show_bank;
2425 a->store = set_bank;
2426 }
2427 }
2428
2429 static __init int mcheck_init_device(void)
2430 {
2431 int err;
2432 int i = 0;
2433
2434 if (!mce_available(&boot_cpu_data)) {
2435 err = -EIO;
2436 goto err_out;
2437 }
2438
2439 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2440 err = -ENOMEM;
2441 goto err_out;
2442 }
2443
2444 mce_init_banks();
2445
2446 err = subsys_system_register(&mce_subsys, NULL);
2447 if (err)
2448 goto err_out_mem;
2449
2450 cpu_notifier_register_begin();
2451 for_each_online_cpu(i) {
2452 err = mce_device_create(i);
2453 if (err) {
2454 cpu_notifier_register_done();
2455 goto err_device_create;
2456 }
2457 }
2458
2459 __register_hotcpu_notifier(&mce_cpu_notifier);
2460 cpu_notifier_register_done();
2461
2462 register_syscore_ops(&mce_syscore_ops);
2463
2464 /* register character device /dev/mcelog */
2465 err = misc_register(&mce_chrdev_device);
2466 if (err)
2467 goto err_register;
2468
2469 return 0;
2470
2471 err_register:
2472 unregister_syscore_ops(&mce_syscore_ops);
2473
2474 cpu_notifier_register_begin();
2475 __unregister_hotcpu_notifier(&mce_cpu_notifier);
2476 cpu_notifier_register_done();
2477
2478 err_device_create:
2479 /*
2480 * We didn't keep track of which devices were created above, but
2481 * even if we had, the set of online cpus might have changed.
2482 * Play safe and remove for every possible cpu, since
2483 * mce_device_remove() will do the right thing.
2484 */
2485 for_each_possible_cpu(i)
2486 mce_device_remove(i);
2487
2488 err_out_mem:
2489 free_cpumask_var(mce_device_initialized);
2490
2491 err_out:
2492 pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2493
2494 return err;
2495 }
2496 device_initcall_sync(mcheck_init_device);
2497
2498 /*
2499 * Old style boot options parsing. Only for compatibility.
2500 */
2501 static int __init mcheck_disable(char *str)
2502 {
2503 mca_cfg.disabled = true;
2504 return 1;
2505 }
2506 __setup("nomce", mcheck_disable);
2507
2508 #ifdef CONFIG_DEBUG_FS
2509 struct dentry *mce_get_debugfs_dir(void)
2510 {
2511 static struct dentry *dmce;
2512
2513 if (!dmce)
2514 dmce = debugfs_create_dir("mce", NULL);
2515
2516 return dmce;
2517 }
2518
2519 static void mce_reset(void)
2520 {
2521 cpu_missing = 0;
2522 atomic_set(&mce_fake_paniced, 0);
2523 atomic_set(&mce_executing, 0);
2524 atomic_set(&mce_callin, 0);
2525 atomic_set(&global_nwo, 0);
2526 }
2527
2528 static int fake_panic_get(void *data, u64 *val)
2529 {
2530 *val = fake_panic;
2531 return 0;
2532 }
2533
2534 static int fake_panic_set(void *data, u64 val)
2535 {
2536 mce_reset();
2537 fake_panic = val;
2538 return 0;
2539 }
2540
2541 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2542 fake_panic_set, "%llu\n");
2543
2544 static int __init mcheck_debugfs_init(void)
2545 {
2546 struct dentry *dmce, *ffake_panic;
2547
2548 dmce = mce_get_debugfs_dir();
2549 if (!dmce)
2550 return -ENOMEM;
2551 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2552 &fake_panic_fops);
2553 if (!ffake_panic)
2554 return -ENOMEM;
2555
2556 return 0;
2557 }
2558 late_initcall(mcheck_debugfs_init);
2559 #endif