]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
treewide: kzalloc() -> kcalloc()
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/rcupdate.h>
18 #include <linux/kobject.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/percpu.h>
23 #include <linux/string.h>
24 #include <linux/device.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/delay.h>
27 #include <linux/ctype.h>
28 #include <linux/sched.h>
29 #include <linux/sysfs.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/kmod.h>
34 #include <linux/poll.h>
35 #include <linux/nmi.h>
36 #include <linux/cpu.h>
37 #include <linux/ras.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
45
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52 #include <asm/reboot.h>
53 #include <asm/set_memory.h>
54
55 #include "mce-internal.h"
56
57 static DEFINE_MUTEX(mce_log_mutex);
58
59 /* sysfs synchronization */
60 static DEFINE_MUTEX(mce_sysfs_mutex);
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/mce.h>
64
65 #define SPINUNIT 100 /* 100ns */
66
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68
69 struct mce_bank *mce_banks __read_mostly;
70 struct mce_vendor_flags mce_flags __read_mostly;
71
72 struct mca_config mca_cfg __read_mostly = {
73 .bootlog = -1,
74 /*
75 * Tolerant levels:
76 * 0: always panic on uncorrected errors, log corrected errors
77 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
78 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
79 * 3: never panic or SIGBUS, log all errors (for testing only)
80 */
81 .tolerant = 1,
82 .monarch_timeout = -1
83 };
84
85 static DEFINE_PER_CPU(struct mce, mces_seen);
86 static unsigned long mce_need_notify;
87 static int cpu_missing;
88
89 /*
90 * MCA banks polled by the period polling timer for corrected events.
91 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
92 */
93 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
94 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
95 };
96
97 /*
98 * MCA banks controlled through firmware first for corrected errors.
99 * This is a global list of banks for which we won't enable CMCI and we
100 * won't poll. Firmware controls these banks and is responsible for
101 * reporting corrected errors through GHES. Uncorrected/recoverable
102 * errors are still notified through a machine check.
103 */
104 mce_banks_t mce_banks_ce_disabled;
105
106 static struct work_struct mce_work;
107 static struct irq_work mce_irq_work;
108
109 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
110
111 #ifndef mce_unmap_kpfn
112 static void mce_unmap_kpfn(unsigned long pfn);
113 #endif
114
115 /*
116 * CPU/chipset specific EDAC code can register a notifier call here to print
117 * MCE errors in a human-readable form.
118 */
119 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
120
121 /* Do initial initialization of a struct mce */
122 void mce_setup(struct mce *m)
123 {
124 memset(m, 0, sizeof(struct mce));
125 m->cpu = m->extcpu = smp_processor_id();
126 /* We hope get_seconds stays lockless */
127 m->time = get_seconds();
128 m->cpuvendor = boot_cpu_data.x86_vendor;
129 m->cpuid = cpuid_eax(1);
130 m->socketid = cpu_data(m->extcpu).phys_proc_id;
131 m->apicid = cpu_data(m->extcpu).initial_apicid;
132 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
133
134 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
135 rdmsrl(MSR_PPIN, m->ppin);
136
137 m->microcode = boot_cpu_data.microcode;
138 }
139
140 DEFINE_PER_CPU(struct mce, injectm);
141 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
142
143 void mce_log(struct mce *m)
144 {
145 if (!mce_gen_pool_add(m))
146 irq_work_queue(&mce_irq_work);
147 }
148
149 void mce_inject_log(struct mce *m)
150 {
151 mutex_lock(&mce_log_mutex);
152 mce_log(m);
153 mutex_unlock(&mce_log_mutex);
154 }
155 EXPORT_SYMBOL_GPL(mce_inject_log);
156
157 static struct notifier_block mce_srao_nb;
158
159 /*
160 * We run the default notifier if we have only the SRAO, the first and the
161 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
162 * notifiers registered on the chain.
163 */
164 #define NUM_DEFAULT_NOTIFIERS 3
165 static atomic_t num_notifiers;
166
167 void mce_register_decode_chain(struct notifier_block *nb)
168 {
169 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
170 return;
171
172 atomic_inc(&num_notifiers);
173
174 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
175 }
176 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
177
178 void mce_unregister_decode_chain(struct notifier_block *nb)
179 {
180 atomic_dec(&num_notifiers);
181
182 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
183 }
184 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
185
186 static inline u32 ctl_reg(int bank)
187 {
188 return MSR_IA32_MCx_CTL(bank);
189 }
190
191 static inline u32 status_reg(int bank)
192 {
193 return MSR_IA32_MCx_STATUS(bank);
194 }
195
196 static inline u32 addr_reg(int bank)
197 {
198 return MSR_IA32_MCx_ADDR(bank);
199 }
200
201 static inline u32 misc_reg(int bank)
202 {
203 return MSR_IA32_MCx_MISC(bank);
204 }
205
206 static inline u32 smca_ctl_reg(int bank)
207 {
208 return MSR_AMD64_SMCA_MCx_CTL(bank);
209 }
210
211 static inline u32 smca_status_reg(int bank)
212 {
213 return MSR_AMD64_SMCA_MCx_STATUS(bank);
214 }
215
216 static inline u32 smca_addr_reg(int bank)
217 {
218 return MSR_AMD64_SMCA_MCx_ADDR(bank);
219 }
220
221 static inline u32 smca_misc_reg(int bank)
222 {
223 return MSR_AMD64_SMCA_MCx_MISC(bank);
224 }
225
226 struct mca_msr_regs msr_ops = {
227 .ctl = ctl_reg,
228 .status = status_reg,
229 .addr = addr_reg,
230 .misc = misc_reg
231 };
232
233 static void __print_mce(struct mce *m)
234 {
235 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
236 m->extcpu,
237 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
238 m->mcgstatus, m->bank, m->status);
239
240 if (m->ip) {
241 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
242 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
243 m->cs, m->ip);
244
245 if (m->cs == __KERNEL_CS)
246 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
247 pr_cont("\n");
248 }
249
250 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
251 if (m->addr)
252 pr_cont("ADDR %llx ", m->addr);
253 if (m->misc)
254 pr_cont("MISC %llx ", m->misc);
255
256 if (mce_flags.smca) {
257 if (m->synd)
258 pr_cont("SYND %llx ", m->synd);
259 if (m->ipid)
260 pr_cont("IPID %llx ", m->ipid);
261 }
262
263 pr_cont("\n");
264 /*
265 * Note this output is parsed by external tools and old fields
266 * should not be changed.
267 */
268 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
269 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
270 m->microcode);
271 }
272
273 static void print_mce(struct mce *m)
274 {
275 __print_mce(m);
276
277 if (m->cpuvendor != X86_VENDOR_AMD)
278 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
279 }
280
281 #define PANIC_TIMEOUT 5 /* 5 seconds */
282
283 static atomic_t mce_panicked;
284
285 static int fake_panic;
286 static atomic_t mce_fake_panicked;
287
288 /* Panic in progress. Enable interrupts and wait for final IPI */
289 static void wait_for_panic(void)
290 {
291 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
292
293 preempt_disable();
294 local_irq_enable();
295 while (timeout-- > 0)
296 udelay(1);
297 if (panic_timeout == 0)
298 panic_timeout = mca_cfg.panic_timeout;
299 panic("Panicing machine check CPU died");
300 }
301
302 static void mce_panic(const char *msg, struct mce *final, char *exp)
303 {
304 int apei_err = 0;
305 struct llist_node *pending;
306 struct mce_evt_llist *l;
307
308 if (!fake_panic) {
309 /*
310 * Make sure only one CPU runs in machine check panic
311 */
312 if (atomic_inc_return(&mce_panicked) > 1)
313 wait_for_panic();
314 barrier();
315
316 bust_spinlocks(1);
317 console_verbose();
318 } else {
319 /* Don't log too much for fake panic */
320 if (atomic_inc_return(&mce_fake_panicked) > 1)
321 return;
322 }
323 pending = mce_gen_pool_prepare_records();
324 /* First print corrected ones that are still unlogged */
325 llist_for_each_entry(l, pending, llnode) {
326 struct mce *m = &l->mce;
327 if (!(m->status & MCI_STATUS_UC)) {
328 print_mce(m);
329 if (!apei_err)
330 apei_err = apei_write_mce(m);
331 }
332 }
333 /* Now print uncorrected but with the final one last */
334 llist_for_each_entry(l, pending, llnode) {
335 struct mce *m = &l->mce;
336 if (!(m->status & MCI_STATUS_UC))
337 continue;
338 if (!final || mce_cmp(m, final)) {
339 print_mce(m);
340 if (!apei_err)
341 apei_err = apei_write_mce(m);
342 }
343 }
344 if (final) {
345 print_mce(final);
346 if (!apei_err)
347 apei_err = apei_write_mce(final);
348 }
349 if (cpu_missing)
350 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
351 if (exp)
352 pr_emerg(HW_ERR "Machine check: %s\n", exp);
353 if (!fake_panic) {
354 if (panic_timeout == 0)
355 panic_timeout = mca_cfg.panic_timeout;
356 panic(msg);
357 } else
358 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
359 }
360
361 /* Support code for software error injection */
362
363 static int msr_to_offset(u32 msr)
364 {
365 unsigned bank = __this_cpu_read(injectm.bank);
366
367 if (msr == mca_cfg.rip_msr)
368 return offsetof(struct mce, ip);
369 if (msr == msr_ops.status(bank))
370 return offsetof(struct mce, status);
371 if (msr == msr_ops.addr(bank))
372 return offsetof(struct mce, addr);
373 if (msr == msr_ops.misc(bank))
374 return offsetof(struct mce, misc);
375 if (msr == MSR_IA32_MCG_STATUS)
376 return offsetof(struct mce, mcgstatus);
377 return -1;
378 }
379
380 /* MSR access wrappers used for error injection */
381 static u64 mce_rdmsrl(u32 msr)
382 {
383 u64 v;
384
385 if (__this_cpu_read(injectm.finished)) {
386 int offset = msr_to_offset(msr);
387
388 if (offset < 0)
389 return 0;
390 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
391 }
392
393 if (rdmsrl_safe(msr, &v)) {
394 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
395 /*
396 * Return zero in case the access faulted. This should
397 * not happen normally but can happen if the CPU does
398 * something weird, or if the code is buggy.
399 */
400 v = 0;
401 }
402
403 return v;
404 }
405
406 static void mce_wrmsrl(u32 msr, u64 v)
407 {
408 if (__this_cpu_read(injectm.finished)) {
409 int offset = msr_to_offset(msr);
410
411 if (offset >= 0)
412 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
413 return;
414 }
415 wrmsrl(msr, v);
416 }
417
418 /*
419 * Collect all global (w.r.t. this processor) status about this machine
420 * check into our "mce" struct so that we can use it later to assess
421 * the severity of the problem as we read per-bank specific details.
422 */
423 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
424 {
425 mce_setup(m);
426
427 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
428 if (regs) {
429 /*
430 * Get the address of the instruction at the time of
431 * the machine check error.
432 */
433 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
434 m->ip = regs->ip;
435 m->cs = regs->cs;
436
437 /*
438 * When in VM86 mode make the cs look like ring 3
439 * always. This is a lie, but it's better than passing
440 * the additional vm86 bit around everywhere.
441 */
442 if (v8086_mode(regs))
443 m->cs |= 3;
444 }
445 /* Use accurate RIP reporting if available. */
446 if (mca_cfg.rip_msr)
447 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
448 }
449 }
450
451 int mce_available(struct cpuinfo_x86 *c)
452 {
453 if (mca_cfg.disabled)
454 return 0;
455 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
456 }
457
458 static void mce_schedule_work(void)
459 {
460 if (!mce_gen_pool_empty())
461 schedule_work(&mce_work);
462 }
463
464 static void mce_irq_work_cb(struct irq_work *entry)
465 {
466 mce_schedule_work();
467 }
468
469 static void mce_report_event(struct pt_regs *regs)
470 {
471 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
472 mce_notify_irq();
473 /*
474 * Triggering the work queue here is just an insurance
475 * policy in case the syscall exit notify handler
476 * doesn't run soon enough or ends up running on the
477 * wrong CPU (can happen when audit sleeps)
478 */
479 mce_schedule_work();
480 return;
481 }
482
483 irq_work_queue(&mce_irq_work);
484 }
485
486 /*
487 * Check if the address reported by the CPU is in a format we can parse.
488 * It would be possible to add code for most other cases, but all would
489 * be somewhat complicated (e.g. segment offset would require an instruction
490 * parser). So only support physical addresses up to page granuality for now.
491 */
492 static int mce_usable_address(struct mce *m)
493 {
494 if (!(m->status & MCI_STATUS_ADDRV))
495 return 0;
496
497 /* Checks after this one are Intel-specific: */
498 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
499 return 1;
500
501 if (!(m->status & MCI_STATUS_MISCV))
502 return 0;
503
504 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
505 return 0;
506
507 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
508 return 0;
509
510 return 1;
511 }
512
513 bool mce_is_memory_error(struct mce *m)
514 {
515 if (m->cpuvendor == X86_VENDOR_AMD) {
516 return amd_mce_is_memory_error(m);
517
518 } else if (m->cpuvendor == X86_VENDOR_INTEL) {
519 /*
520 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
521 *
522 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
523 * indicating a memory error. Bit 8 is used for indicating a
524 * cache hierarchy error. The combination of bit 2 and bit 3
525 * is used for indicating a `generic' cache hierarchy error
526 * But we can't just blindly check the above bits, because if
527 * bit 11 is set, then it is a bus/interconnect error - and
528 * either way the above bits just gives more detail on what
529 * bus/interconnect error happened. Note that bit 12 can be
530 * ignored, as it's the "filter" bit.
531 */
532 return (m->status & 0xef80) == BIT(7) ||
533 (m->status & 0xef00) == BIT(8) ||
534 (m->status & 0xeffc) == 0xc;
535 }
536
537 return false;
538 }
539 EXPORT_SYMBOL_GPL(mce_is_memory_error);
540
541 static bool mce_is_correctable(struct mce *m)
542 {
543 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
544 return false;
545
546 if (m->status & MCI_STATUS_UC)
547 return false;
548
549 return true;
550 }
551
552 static bool cec_add_mce(struct mce *m)
553 {
554 if (!m)
555 return false;
556
557 /* We eat only correctable DRAM errors with usable addresses. */
558 if (mce_is_memory_error(m) &&
559 mce_is_correctable(m) &&
560 mce_usable_address(m))
561 if (!cec_add_elem(m->addr >> PAGE_SHIFT))
562 return true;
563
564 return false;
565 }
566
567 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
568 void *data)
569 {
570 struct mce *m = (struct mce *)data;
571
572 if (!m)
573 return NOTIFY_DONE;
574
575 if (cec_add_mce(m))
576 return NOTIFY_STOP;
577
578 /* Emit the trace record: */
579 trace_mce_record(m);
580
581 set_bit(0, &mce_need_notify);
582
583 mce_notify_irq();
584
585 return NOTIFY_DONE;
586 }
587
588 static struct notifier_block first_nb = {
589 .notifier_call = mce_first_notifier,
590 .priority = MCE_PRIO_FIRST,
591 };
592
593 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
594 void *data)
595 {
596 struct mce *mce = (struct mce *)data;
597 unsigned long pfn;
598
599 if (!mce)
600 return NOTIFY_DONE;
601
602 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
603 pfn = mce->addr >> PAGE_SHIFT;
604 if (!memory_failure(pfn, 0))
605 mce_unmap_kpfn(pfn);
606 }
607
608 return NOTIFY_OK;
609 }
610 static struct notifier_block mce_srao_nb = {
611 .notifier_call = srao_decode_notifier,
612 .priority = MCE_PRIO_SRAO,
613 };
614
615 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
616 void *data)
617 {
618 struct mce *m = (struct mce *)data;
619
620 if (!m)
621 return NOTIFY_DONE;
622
623 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
624 return NOTIFY_DONE;
625
626 __print_mce(m);
627
628 return NOTIFY_DONE;
629 }
630
631 static struct notifier_block mce_default_nb = {
632 .notifier_call = mce_default_notifier,
633 /* lowest prio, we want it to run last. */
634 .priority = MCE_PRIO_LOWEST,
635 };
636
637 /*
638 * Read ADDR and MISC registers.
639 */
640 static void mce_read_aux(struct mce *m, int i)
641 {
642 if (m->status & MCI_STATUS_MISCV)
643 m->misc = mce_rdmsrl(msr_ops.misc(i));
644
645 if (m->status & MCI_STATUS_ADDRV) {
646 m->addr = mce_rdmsrl(msr_ops.addr(i));
647
648 /*
649 * Mask the reported address by the reported granularity.
650 */
651 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
652 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
653 m->addr >>= shift;
654 m->addr <<= shift;
655 }
656
657 /*
658 * Extract [55:<lsb>] where lsb is the least significant
659 * *valid* bit of the address bits.
660 */
661 if (mce_flags.smca) {
662 u8 lsb = (m->addr >> 56) & 0x3f;
663
664 m->addr &= GENMASK_ULL(55, lsb);
665 }
666 }
667
668 if (mce_flags.smca) {
669 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
670
671 if (m->status & MCI_STATUS_SYNDV)
672 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
673 }
674 }
675
676 DEFINE_PER_CPU(unsigned, mce_poll_count);
677
678 /*
679 * Poll for corrected events or events that happened before reset.
680 * Those are just logged through /dev/mcelog.
681 *
682 * This is executed in standard interrupt context.
683 *
684 * Note: spec recommends to panic for fatal unsignalled
685 * errors here. However this would be quite problematic --
686 * we would need to reimplement the Monarch handling and
687 * it would mess up the exclusion between exception handler
688 * and poll hander -- * so we skip this for now.
689 * These cases should not happen anyways, or only when the CPU
690 * is already totally * confused. In this case it's likely it will
691 * not fully execute the machine check handler either.
692 */
693 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
694 {
695 bool error_seen = false;
696 struct mce m;
697 int i;
698
699 this_cpu_inc(mce_poll_count);
700
701 mce_gather_info(&m, NULL);
702
703 if (flags & MCP_TIMESTAMP)
704 m.tsc = rdtsc();
705
706 for (i = 0; i < mca_cfg.banks; i++) {
707 if (!mce_banks[i].ctl || !test_bit(i, *b))
708 continue;
709
710 m.misc = 0;
711 m.addr = 0;
712 m.bank = i;
713
714 barrier();
715 m.status = mce_rdmsrl(msr_ops.status(i));
716 if (!(m.status & MCI_STATUS_VAL))
717 continue;
718
719 /*
720 * Uncorrected or signalled events are handled by the exception
721 * handler when it is enabled, so don't process those here.
722 *
723 * TBD do the same check for MCI_STATUS_EN here?
724 */
725 if (!(flags & MCP_UC) &&
726 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
727 continue;
728
729 error_seen = true;
730
731 mce_read_aux(&m, i);
732
733 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
734
735 /*
736 * Don't get the IP here because it's unlikely to
737 * have anything to do with the actual error location.
738 */
739 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
740 mce_log(&m);
741 else if (mce_usable_address(&m)) {
742 /*
743 * Although we skipped logging this, we still want
744 * to take action. Add to the pool so the registered
745 * notifiers will see it.
746 */
747 if (!mce_gen_pool_add(&m))
748 mce_schedule_work();
749 }
750
751 /*
752 * Clear state for this bank.
753 */
754 mce_wrmsrl(msr_ops.status(i), 0);
755 }
756
757 /*
758 * Don't clear MCG_STATUS here because it's only defined for
759 * exceptions.
760 */
761
762 sync_core();
763
764 return error_seen;
765 }
766 EXPORT_SYMBOL_GPL(machine_check_poll);
767
768 /*
769 * Do a quick check if any of the events requires a panic.
770 * This decides if we keep the events around or clear them.
771 */
772 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
773 struct pt_regs *regs)
774 {
775 int i, ret = 0;
776 char *tmp;
777
778 for (i = 0; i < mca_cfg.banks; i++) {
779 m->status = mce_rdmsrl(msr_ops.status(i));
780 if (m->status & MCI_STATUS_VAL) {
781 __set_bit(i, validp);
782 if (quirk_no_way_out)
783 quirk_no_way_out(i, m, regs);
784 }
785
786 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
787 *msg = tmp;
788 ret = 1;
789 }
790 }
791 return ret;
792 }
793
794 /*
795 * Variable to establish order between CPUs while scanning.
796 * Each CPU spins initially until executing is equal its number.
797 */
798 static atomic_t mce_executing;
799
800 /*
801 * Defines order of CPUs on entry. First CPU becomes Monarch.
802 */
803 static atomic_t mce_callin;
804
805 /*
806 * Check if a timeout waiting for other CPUs happened.
807 */
808 static int mce_timed_out(u64 *t, const char *msg)
809 {
810 /*
811 * The others already did panic for some reason.
812 * Bail out like in a timeout.
813 * rmb() to tell the compiler that system_state
814 * might have been modified by someone else.
815 */
816 rmb();
817 if (atomic_read(&mce_panicked))
818 wait_for_panic();
819 if (!mca_cfg.monarch_timeout)
820 goto out;
821 if ((s64)*t < SPINUNIT) {
822 if (mca_cfg.tolerant <= 1)
823 mce_panic(msg, NULL, NULL);
824 cpu_missing = 1;
825 return 1;
826 }
827 *t -= SPINUNIT;
828 out:
829 touch_nmi_watchdog();
830 return 0;
831 }
832
833 /*
834 * The Monarch's reign. The Monarch is the CPU who entered
835 * the machine check handler first. It waits for the others to
836 * raise the exception too and then grades them. When any
837 * error is fatal panic. Only then let the others continue.
838 *
839 * The other CPUs entering the MCE handler will be controlled by the
840 * Monarch. They are called Subjects.
841 *
842 * This way we prevent any potential data corruption in a unrecoverable case
843 * and also makes sure always all CPU's errors are examined.
844 *
845 * Also this detects the case of a machine check event coming from outer
846 * space (not detected by any CPUs) In this case some external agent wants
847 * us to shut down, so panic too.
848 *
849 * The other CPUs might still decide to panic if the handler happens
850 * in a unrecoverable place, but in this case the system is in a semi-stable
851 * state and won't corrupt anything by itself. It's ok to let the others
852 * continue for a bit first.
853 *
854 * All the spin loops have timeouts; when a timeout happens a CPU
855 * typically elects itself to be Monarch.
856 */
857 static void mce_reign(void)
858 {
859 int cpu;
860 struct mce *m = NULL;
861 int global_worst = 0;
862 char *msg = NULL;
863 char *nmsg = NULL;
864
865 /*
866 * This CPU is the Monarch and the other CPUs have run
867 * through their handlers.
868 * Grade the severity of the errors of all the CPUs.
869 */
870 for_each_possible_cpu(cpu) {
871 int severity = mce_severity(&per_cpu(mces_seen, cpu),
872 mca_cfg.tolerant,
873 &nmsg, true);
874 if (severity > global_worst) {
875 msg = nmsg;
876 global_worst = severity;
877 m = &per_cpu(mces_seen, cpu);
878 }
879 }
880
881 /*
882 * Cannot recover? Panic here then.
883 * This dumps all the mces in the log buffer and stops the
884 * other CPUs.
885 */
886 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
887 mce_panic("Fatal machine check", m, msg);
888
889 /*
890 * For UC somewhere we let the CPU who detects it handle it.
891 * Also must let continue the others, otherwise the handling
892 * CPU could deadlock on a lock.
893 */
894
895 /*
896 * No machine check event found. Must be some external
897 * source or one CPU is hung. Panic.
898 */
899 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
900 mce_panic("Fatal machine check from unknown source", NULL, NULL);
901
902 /*
903 * Now clear all the mces_seen so that they don't reappear on
904 * the next mce.
905 */
906 for_each_possible_cpu(cpu)
907 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
908 }
909
910 static atomic_t global_nwo;
911
912 /*
913 * Start of Monarch synchronization. This waits until all CPUs have
914 * entered the exception handler and then determines if any of them
915 * saw a fatal event that requires panic. Then it executes them
916 * in the entry order.
917 * TBD double check parallel CPU hotunplug
918 */
919 static int mce_start(int *no_way_out)
920 {
921 int order;
922 int cpus = num_online_cpus();
923 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
924
925 if (!timeout)
926 return -1;
927
928 atomic_add(*no_way_out, &global_nwo);
929 /*
930 * Rely on the implied barrier below, such that global_nwo
931 * is updated before mce_callin.
932 */
933 order = atomic_inc_return(&mce_callin);
934
935 /*
936 * Wait for everyone.
937 */
938 while (atomic_read(&mce_callin) != cpus) {
939 if (mce_timed_out(&timeout,
940 "Timeout: Not all CPUs entered broadcast exception handler")) {
941 atomic_set(&global_nwo, 0);
942 return -1;
943 }
944 ndelay(SPINUNIT);
945 }
946
947 /*
948 * mce_callin should be read before global_nwo
949 */
950 smp_rmb();
951
952 if (order == 1) {
953 /*
954 * Monarch: Starts executing now, the others wait.
955 */
956 atomic_set(&mce_executing, 1);
957 } else {
958 /*
959 * Subject: Now start the scanning loop one by one in
960 * the original callin order.
961 * This way when there are any shared banks it will be
962 * only seen by one CPU before cleared, avoiding duplicates.
963 */
964 while (atomic_read(&mce_executing) < order) {
965 if (mce_timed_out(&timeout,
966 "Timeout: Subject CPUs unable to finish machine check processing")) {
967 atomic_set(&global_nwo, 0);
968 return -1;
969 }
970 ndelay(SPINUNIT);
971 }
972 }
973
974 /*
975 * Cache the global no_way_out state.
976 */
977 *no_way_out = atomic_read(&global_nwo);
978
979 return order;
980 }
981
982 /*
983 * Synchronize between CPUs after main scanning loop.
984 * This invokes the bulk of the Monarch processing.
985 */
986 static int mce_end(int order)
987 {
988 int ret = -1;
989 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
990
991 if (!timeout)
992 goto reset;
993 if (order < 0)
994 goto reset;
995
996 /*
997 * Allow others to run.
998 */
999 atomic_inc(&mce_executing);
1000
1001 if (order == 1) {
1002 /* CHECKME: Can this race with a parallel hotplug? */
1003 int cpus = num_online_cpus();
1004
1005 /*
1006 * Monarch: Wait for everyone to go through their scanning
1007 * loops.
1008 */
1009 while (atomic_read(&mce_executing) <= cpus) {
1010 if (mce_timed_out(&timeout,
1011 "Timeout: Monarch CPU unable to finish machine check processing"))
1012 goto reset;
1013 ndelay(SPINUNIT);
1014 }
1015
1016 mce_reign();
1017 barrier();
1018 ret = 0;
1019 } else {
1020 /*
1021 * Subject: Wait for Monarch to finish.
1022 */
1023 while (atomic_read(&mce_executing) != 0) {
1024 if (mce_timed_out(&timeout,
1025 "Timeout: Monarch CPU did not finish machine check processing"))
1026 goto reset;
1027 ndelay(SPINUNIT);
1028 }
1029
1030 /*
1031 * Don't reset anything. That's done by the Monarch.
1032 */
1033 return 0;
1034 }
1035
1036 /*
1037 * Reset all global state.
1038 */
1039 reset:
1040 atomic_set(&global_nwo, 0);
1041 atomic_set(&mce_callin, 0);
1042 barrier();
1043
1044 /*
1045 * Let others run again.
1046 */
1047 atomic_set(&mce_executing, 0);
1048 return ret;
1049 }
1050
1051 static void mce_clear_state(unsigned long *toclear)
1052 {
1053 int i;
1054
1055 for (i = 0; i < mca_cfg.banks; i++) {
1056 if (test_bit(i, toclear))
1057 mce_wrmsrl(msr_ops.status(i), 0);
1058 }
1059 }
1060
1061 static int do_memory_failure(struct mce *m)
1062 {
1063 int flags = MF_ACTION_REQUIRED;
1064 int ret;
1065
1066 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1067 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1068 flags |= MF_MUST_KILL;
1069 ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1070 if (ret)
1071 pr_err("Memory error not recovered");
1072 else
1073 mce_unmap_kpfn(m->addr >> PAGE_SHIFT);
1074 return ret;
1075 }
1076
1077 #ifndef mce_unmap_kpfn
1078 static void mce_unmap_kpfn(unsigned long pfn)
1079 {
1080 unsigned long decoy_addr;
1081
1082 /*
1083 * Unmap this page from the kernel 1:1 mappings to make sure
1084 * we don't log more errors because of speculative access to
1085 * the page.
1086 * We would like to just call:
1087 * set_memory_np((unsigned long)pfn_to_kaddr(pfn), 1);
1088 * but doing that would radically increase the odds of a
1089 * speculative access to the poison page because we'd have
1090 * the virtual address of the kernel 1:1 mapping sitting
1091 * around in registers.
1092 * Instead we get tricky. We create a non-canonical address
1093 * that looks just like the one we want, but has bit 63 flipped.
1094 * This relies on set_memory_np() not checking whether we passed
1095 * a legal address.
1096 */
1097
1098 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
1099
1100 if (set_memory_np(decoy_addr, 1))
1101 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
1102 }
1103 #endif
1104
1105 /*
1106 * The actual machine check handler. This only handles real
1107 * exceptions when something got corrupted coming in through int 18.
1108 *
1109 * This is executed in NMI context not subject to normal locking rules. This
1110 * implies that most kernel services cannot be safely used. Don't even
1111 * think about putting a printk in there!
1112 *
1113 * On Intel systems this is entered on all CPUs in parallel through
1114 * MCE broadcast. However some CPUs might be broken beyond repair,
1115 * so be always careful when synchronizing with others.
1116 */
1117 void do_machine_check(struct pt_regs *regs, long error_code)
1118 {
1119 struct mca_config *cfg = &mca_cfg;
1120 struct mce m, *final;
1121 int i;
1122 int worst = 0;
1123 int severity;
1124
1125 /*
1126 * Establish sequential order between the CPUs entering the machine
1127 * check handler.
1128 */
1129 int order = -1;
1130 /*
1131 * If no_way_out gets set, there is no safe way to recover from this
1132 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1133 */
1134 int no_way_out = 0;
1135 /*
1136 * If kill_it gets set, there might be a way to recover from this
1137 * error.
1138 */
1139 int kill_it = 0;
1140 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1141 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1142 char *msg = "Unknown";
1143
1144 /*
1145 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1146 * on Intel.
1147 */
1148 int lmce = 1;
1149 int cpu = smp_processor_id();
1150
1151 /*
1152 * Cases where we avoid rendezvous handler timeout:
1153 * 1) If this CPU is offline.
1154 *
1155 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1156 * skip those CPUs which remain looping in the 1st kernel - see
1157 * crash_nmi_callback().
1158 *
1159 * Note: there still is a small window between kexec-ing and the new,
1160 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1161 * might not get handled properly.
1162 */
1163 if (cpu_is_offline(cpu) ||
1164 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1165 u64 mcgstatus;
1166
1167 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1168 if (mcgstatus & MCG_STATUS_RIPV) {
1169 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1170 return;
1171 }
1172 }
1173
1174 ist_enter(regs);
1175
1176 this_cpu_inc(mce_exception_count);
1177
1178 if (!cfg->banks)
1179 goto out;
1180
1181 mce_gather_info(&m, regs);
1182 m.tsc = rdtsc();
1183
1184 final = this_cpu_ptr(&mces_seen);
1185 *final = m;
1186
1187 memset(valid_banks, 0, sizeof(valid_banks));
1188 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1189
1190 barrier();
1191
1192 /*
1193 * When no restart IP might need to kill or panic.
1194 * Assume the worst for now, but if we find the
1195 * severity is MCE_AR_SEVERITY we have other options.
1196 */
1197 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1198 kill_it = 1;
1199
1200 /*
1201 * Check if this MCE is signaled to only this logical processor,
1202 * on Intel only.
1203 */
1204 if (m.cpuvendor == X86_VENDOR_INTEL)
1205 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1206
1207 /*
1208 * Go through all banks in exclusion of the other CPUs. This way we
1209 * don't report duplicated events on shared banks because the first one
1210 * to see it will clear it. If this is a Local MCE, then no need to
1211 * perform rendezvous.
1212 */
1213 if (!lmce)
1214 order = mce_start(&no_way_out);
1215
1216 for (i = 0; i < cfg->banks; i++) {
1217 __clear_bit(i, toclear);
1218 if (!test_bit(i, valid_banks))
1219 continue;
1220 if (!mce_banks[i].ctl)
1221 continue;
1222
1223 m.misc = 0;
1224 m.addr = 0;
1225 m.bank = i;
1226
1227 m.status = mce_rdmsrl(msr_ops.status(i));
1228 if ((m.status & MCI_STATUS_VAL) == 0)
1229 continue;
1230
1231 /*
1232 * Non uncorrected or non signaled errors are handled by
1233 * machine_check_poll. Leave them alone, unless this panics.
1234 */
1235 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1236 !no_way_out)
1237 continue;
1238
1239 /*
1240 * Set taint even when machine check was not enabled.
1241 */
1242 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1243
1244 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1245
1246 /*
1247 * When machine check was for corrected/deferred handler don't
1248 * touch, unless we're panicing.
1249 */
1250 if ((severity == MCE_KEEP_SEVERITY ||
1251 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1252 continue;
1253 __set_bit(i, toclear);
1254 if (severity == MCE_NO_SEVERITY) {
1255 /*
1256 * Machine check event was not enabled. Clear, but
1257 * ignore.
1258 */
1259 continue;
1260 }
1261
1262 mce_read_aux(&m, i);
1263
1264 /* assuming valid severity level != 0 */
1265 m.severity = severity;
1266
1267 mce_log(&m);
1268
1269 if (severity > worst) {
1270 *final = m;
1271 worst = severity;
1272 }
1273 }
1274
1275 /* mce_clear_state will clear *final, save locally for use later */
1276 m = *final;
1277
1278 if (!no_way_out)
1279 mce_clear_state(toclear);
1280
1281 /*
1282 * Do most of the synchronization with other CPUs.
1283 * When there's any problem use only local no_way_out state.
1284 */
1285 if (!lmce) {
1286 if (mce_end(order) < 0)
1287 no_way_out = worst >= MCE_PANIC_SEVERITY;
1288 } else {
1289 /*
1290 * Local MCE skipped calling mce_reign()
1291 * If we found a fatal error, we need to panic here.
1292 */
1293 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1294 mce_panic("Machine check from unknown source",
1295 NULL, NULL);
1296 }
1297
1298 /*
1299 * If tolerant is at an insane level we drop requests to kill
1300 * processes and continue even when there is no way out.
1301 */
1302 if (cfg->tolerant == 3)
1303 kill_it = 0;
1304 else if (no_way_out)
1305 mce_panic("Fatal machine check on current CPU", &m, msg);
1306
1307 if (worst > 0)
1308 mce_report_event(regs);
1309 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1310 out:
1311 sync_core();
1312
1313 if (worst != MCE_AR_SEVERITY && !kill_it)
1314 goto out_ist;
1315
1316 /* Fault was in user mode and we need to take some action */
1317 if ((m.cs & 3) == 3) {
1318 ist_begin_non_atomic(regs);
1319 local_irq_enable();
1320
1321 if (kill_it || do_memory_failure(&m))
1322 force_sig(SIGBUS, current);
1323 local_irq_disable();
1324 ist_end_non_atomic();
1325 } else {
1326 if (!fixup_exception(regs, X86_TRAP_MC))
1327 mce_panic("Failed kernel mode recovery", &m, NULL);
1328 }
1329
1330 out_ist:
1331 ist_exit(regs);
1332 }
1333 EXPORT_SYMBOL_GPL(do_machine_check);
1334
1335 #ifndef CONFIG_MEMORY_FAILURE
1336 int memory_failure(unsigned long pfn, int flags)
1337 {
1338 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1339 BUG_ON(flags & MF_ACTION_REQUIRED);
1340 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1341 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1342 pfn);
1343
1344 return 0;
1345 }
1346 #endif
1347
1348 /*
1349 * Periodic polling timer for "silent" machine check errors. If the
1350 * poller finds an MCE, poll 2x faster. When the poller finds no more
1351 * errors, poll 2x slower (up to check_interval seconds).
1352 */
1353 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1354
1355 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1356 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1357
1358 static unsigned long mce_adjust_timer_default(unsigned long interval)
1359 {
1360 return interval;
1361 }
1362
1363 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1364
1365 static void __start_timer(struct timer_list *t, unsigned long interval)
1366 {
1367 unsigned long when = jiffies + interval;
1368 unsigned long flags;
1369
1370 local_irq_save(flags);
1371
1372 if (!timer_pending(t) || time_before(when, t->expires))
1373 mod_timer(t, round_jiffies(when));
1374
1375 local_irq_restore(flags);
1376 }
1377
1378 static void mce_timer_fn(struct timer_list *t)
1379 {
1380 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1381 unsigned long iv;
1382
1383 WARN_ON(cpu_t != t);
1384
1385 iv = __this_cpu_read(mce_next_interval);
1386
1387 if (mce_available(this_cpu_ptr(&cpu_info))) {
1388 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1389
1390 if (mce_intel_cmci_poll()) {
1391 iv = mce_adjust_timer(iv);
1392 goto done;
1393 }
1394 }
1395
1396 /*
1397 * Alert userspace if needed. If we logged an MCE, reduce the polling
1398 * interval, otherwise increase the polling interval.
1399 */
1400 if (mce_notify_irq())
1401 iv = max(iv / 2, (unsigned long) HZ/100);
1402 else
1403 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1404
1405 done:
1406 __this_cpu_write(mce_next_interval, iv);
1407 __start_timer(t, iv);
1408 }
1409
1410 /*
1411 * Ensure that the timer is firing in @interval from now.
1412 */
1413 void mce_timer_kick(unsigned long interval)
1414 {
1415 struct timer_list *t = this_cpu_ptr(&mce_timer);
1416 unsigned long iv = __this_cpu_read(mce_next_interval);
1417
1418 __start_timer(t, interval);
1419
1420 if (interval < iv)
1421 __this_cpu_write(mce_next_interval, interval);
1422 }
1423
1424 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1425 static void mce_timer_delete_all(void)
1426 {
1427 int cpu;
1428
1429 for_each_online_cpu(cpu)
1430 del_timer_sync(&per_cpu(mce_timer, cpu));
1431 }
1432
1433 /*
1434 * Notify the user(s) about new machine check events.
1435 * Can be called from interrupt context, but not from machine check/NMI
1436 * context.
1437 */
1438 int mce_notify_irq(void)
1439 {
1440 /* Not more than two messages every minute */
1441 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1442
1443 if (test_and_clear_bit(0, &mce_need_notify)) {
1444 mce_work_trigger();
1445
1446 if (__ratelimit(&ratelimit))
1447 pr_info(HW_ERR "Machine check events logged\n");
1448
1449 return 1;
1450 }
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(mce_notify_irq);
1454
1455 static int __mcheck_cpu_mce_banks_init(void)
1456 {
1457 int i;
1458 u8 num_banks = mca_cfg.banks;
1459
1460 mce_banks = kcalloc(num_banks, sizeof(struct mce_bank), GFP_KERNEL);
1461 if (!mce_banks)
1462 return -ENOMEM;
1463
1464 for (i = 0; i < num_banks; i++) {
1465 struct mce_bank *b = &mce_banks[i];
1466
1467 b->ctl = -1ULL;
1468 b->init = 1;
1469 }
1470 return 0;
1471 }
1472
1473 /*
1474 * Initialize Machine Checks for a CPU.
1475 */
1476 static int __mcheck_cpu_cap_init(void)
1477 {
1478 unsigned b;
1479 u64 cap;
1480
1481 rdmsrl(MSR_IA32_MCG_CAP, cap);
1482
1483 b = cap & MCG_BANKCNT_MASK;
1484 if (!mca_cfg.banks)
1485 pr_info("CPU supports %d MCE banks\n", b);
1486
1487 if (b > MAX_NR_BANKS) {
1488 pr_warn("Using only %u machine check banks out of %u\n",
1489 MAX_NR_BANKS, b);
1490 b = MAX_NR_BANKS;
1491 }
1492
1493 /* Don't support asymmetric configurations today */
1494 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1495 mca_cfg.banks = b;
1496
1497 if (!mce_banks) {
1498 int err = __mcheck_cpu_mce_banks_init();
1499
1500 if (err)
1501 return err;
1502 }
1503
1504 /* Use accurate RIP reporting if available. */
1505 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1506 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1507
1508 if (cap & MCG_SER_P)
1509 mca_cfg.ser = 1;
1510
1511 return 0;
1512 }
1513
1514 static void __mcheck_cpu_init_generic(void)
1515 {
1516 enum mcp_flags m_fl = 0;
1517 mce_banks_t all_banks;
1518 u64 cap;
1519
1520 if (!mca_cfg.bootlog)
1521 m_fl = MCP_DONTLOG;
1522
1523 /*
1524 * Log the machine checks left over from the previous reset.
1525 */
1526 bitmap_fill(all_banks, MAX_NR_BANKS);
1527 machine_check_poll(MCP_UC | m_fl, &all_banks);
1528
1529 cr4_set_bits(X86_CR4_MCE);
1530
1531 rdmsrl(MSR_IA32_MCG_CAP, cap);
1532 if (cap & MCG_CTL_P)
1533 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1534 }
1535
1536 static void __mcheck_cpu_init_clear_banks(void)
1537 {
1538 int i;
1539
1540 for (i = 0; i < mca_cfg.banks; i++) {
1541 struct mce_bank *b = &mce_banks[i];
1542
1543 if (!b->init)
1544 continue;
1545 wrmsrl(msr_ops.ctl(i), b->ctl);
1546 wrmsrl(msr_ops.status(i), 0);
1547 }
1548 }
1549
1550 /*
1551 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1552 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1553 * Vol 3B Table 15-20). But this confuses both the code that determines
1554 * whether the machine check occurred in kernel or user mode, and also
1555 * the severity assessment code. Pretend that EIPV was set, and take the
1556 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1557 */
1558 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1559 {
1560 if (bank != 0)
1561 return;
1562 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1563 return;
1564 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1565 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1566 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1567 MCACOD)) !=
1568 (MCI_STATUS_UC|MCI_STATUS_EN|
1569 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1570 MCI_STATUS_AR|MCACOD_INSTR))
1571 return;
1572
1573 m->mcgstatus |= MCG_STATUS_EIPV;
1574 m->ip = regs->ip;
1575 m->cs = regs->cs;
1576 }
1577
1578 /* Add per CPU specific workarounds here */
1579 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1580 {
1581 struct mca_config *cfg = &mca_cfg;
1582
1583 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1584 pr_info("unknown CPU type - not enabling MCE support\n");
1585 return -EOPNOTSUPP;
1586 }
1587
1588 /* This should be disabled by the BIOS, but isn't always */
1589 if (c->x86_vendor == X86_VENDOR_AMD) {
1590 if (c->x86 == 15 && cfg->banks > 4) {
1591 /*
1592 * disable GART TBL walk error reporting, which
1593 * trips off incorrectly with the IOMMU & 3ware
1594 * & Cerberus:
1595 */
1596 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1597 }
1598 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1599 /*
1600 * Lots of broken BIOS around that don't clear them
1601 * by default and leave crap in there. Don't log:
1602 */
1603 cfg->bootlog = 0;
1604 }
1605 /*
1606 * Various K7s with broken bank 0 around. Always disable
1607 * by default.
1608 */
1609 if (c->x86 == 6 && cfg->banks > 0)
1610 mce_banks[0].ctl = 0;
1611
1612 /*
1613 * overflow_recov is supported for F15h Models 00h-0fh
1614 * even though we don't have a CPUID bit for it.
1615 */
1616 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1617 mce_flags.overflow_recov = 1;
1618
1619 /*
1620 * Turn off MC4_MISC thresholding banks on those models since
1621 * they're not supported there.
1622 */
1623 if (c->x86 == 0x15 &&
1624 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1625 int i;
1626 u64 hwcr;
1627 bool need_toggle;
1628 u32 msrs[] = {
1629 0x00000413, /* MC4_MISC0 */
1630 0xc0000408, /* MC4_MISC1 */
1631 };
1632
1633 rdmsrl(MSR_K7_HWCR, hwcr);
1634
1635 /* McStatusWrEn has to be set */
1636 need_toggle = !(hwcr & BIT(18));
1637
1638 if (need_toggle)
1639 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1640
1641 /* Clear CntP bit safely */
1642 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1643 msr_clear_bit(msrs[i], 62);
1644
1645 /* restore old settings */
1646 if (need_toggle)
1647 wrmsrl(MSR_K7_HWCR, hwcr);
1648 }
1649 }
1650
1651 if (c->x86_vendor == X86_VENDOR_INTEL) {
1652 /*
1653 * SDM documents that on family 6 bank 0 should not be written
1654 * because it aliases to another special BIOS controlled
1655 * register.
1656 * But it's not aliased anymore on model 0x1a+
1657 * Don't ignore bank 0 completely because there could be a
1658 * valid event later, merely don't write CTL0.
1659 */
1660
1661 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1662 mce_banks[0].init = 0;
1663
1664 /*
1665 * All newer Intel systems support MCE broadcasting. Enable
1666 * synchronization with a one second timeout.
1667 */
1668 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1669 cfg->monarch_timeout < 0)
1670 cfg->monarch_timeout = USEC_PER_SEC;
1671
1672 /*
1673 * There are also broken BIOSes on some Pentium M and
1674 * earlier systems:
1675 */
1676 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1677 cfg->bootlog = 0;
1678
1679 if (c->x86 == 6 && c->x86_model == 45)
1680 quirk_no_way_out = quirk_sandybridge_ifu;
1681 }
1682 if (cfg->monarch_timeout < 0)
1683 cfg->monarch_timeout = 0;
1684 if (cfg->bootlog != 0)
1685 cfg->panic_timeout = 30;
1686
1687 return 0;
1688 }
1689
1690 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1691 {
1692 if (c->x86 != 5)
1693 return 0;
1694
1695 switch (c->x86_vendor) {
1696 case X86_VENDOR_INTEL:
1697 intel_p5_mcheck_init(c);
1698 return 1;
1699 break;
1700 case X86_VENDOR_CENTAUR:
1701 winchip_mcheck_init(c);
1702 return 1;
1703 break;
1704 default:
1705 return 0;
1706 }
1707
1708 return 0;
1709 }
1710
1711 /*
1712 * Init basic CPU features needed for early decoding of MCEs.
1713 */
1714 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1715 {
1716 if (c->x86_vendor == X86_VENDOR_AMD) {
1717 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1718 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1719 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1720
1721 if (mce_flags.smca) {
1722 msr_ops.ctl = smca_ctl_reg;
1723 msr_ops.status = smca_status_reg;
1724 msr_ops.addr = smca_addr_reg;
1725 msr_ops.misc = smca_misc_reg;
1726 }
1727 }
1728 }
1729
1730 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1731 {
1732 struct mca_config *cfg = &mca_cfg;
1733
1734 /*
1735 * All newer Centaur CPUs support MCE broadcasting. Enable
1736 * synchronization with a one second timeout.
1737 */
1738 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1739 c->x86 > 6) {
1740 if (cfg->monarch_timeout < 0)
1741 cfg->monarch_timeout = USEC_PER_SEC;
1742 }
1743 }
1744
1745 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1746 {
1747 switch (c->x86_vendor) {
1748 case X86_VENDOR_INTEL:
1749 mce_intel_feature_init(c);
1750 mce_adjust_timer = cmci_intel_adjust_timer;
1751 break;
1752
1753 case X86_VENDOR_AMD: {
1754 mce_amd_feature_init(c);
1755 break;
1756 }
1757 case X86_VENDOR_CENTAUR:
1758 mce_centaur_feature_init(c);
1759 break;
1760
1761 default:
1762 break;
1763 }
1764 }
1765
1766 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1767 {
1768 switch (c->x86_vendor) {
1769 case X86_VENDOR_INTEL:
1770 mce_intel_feature_clear(c);
1771 break;
1772 default:
1773 break;
1774 }
1775 }
1776
1777 static void mce_start_timer(struct timer_list *t)
1778 {
1779 unsigned long iv = check_interval * HZ;
1780
1781 if (mca_cfg.ignore_ce || !iv)
1782 return;
1783
1784 this_cpu_write(mce_next_interval, iv);
1785 __start_timer(t, iv);
1786 }
1787
1788 static void __mcheck_cpu_setup_timer(void)
1789 {
1790 struct timer_list *t = this_cpu_ptr(&mce_timer);
1791
1792 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1793 }
1794
1795 static void __mcheck_cpu_init_timer(void)
1796 {
1797 struct timer_list *t = this_cpu_ptr(&mce_timer);
1798
1799 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1800 mce_start_timer(t);
1801 }
1802
1803 /* Handle unconfigured int18 (should never happen) */
1804 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1805 {
1806 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1807 smp_processor_id());
1808 }
1809
1810 /* Call the installed machine check handler for this CPU setup. */
1811 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1812 unexpected_machine_check;
1813
1814 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1815 {
1816 machine_check_vector(regs, error_code);
1817 }
1818
1819 /*
1820 * Called for each booted CPU to set up machine checks.
1821 * Must be called with preempt off:
1822 */
1823 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1824 {
1825 if (mca_cfg.disabled)
1826 return;
1827
1828 if (__mcheck_cpu_ancient_init(c))
1829 return;
1830
1831 if (!mce_available(c))
1832 return;
1833
1834 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1835 mca_cfg.disabled = 1;
1836 return;
1837 }
1838
1839 if (mce_gen_pool_init()) {
1840 mca_cfg.disabled = 1;
1841 pr_emerg("Couldn't allocate MCE records pool!\n");
1842 return;
1843 }
1844
1845 machine_check_vector = do_machine_check;
1846
1847 __mcheck_cpu_init_early(c);
1848 __mcheck_cpu_init_generic();
1849 __mcheck_cpu_init_vendor(c);
1850 __mcheck_cpu_init_clear_banks();
1851 __mcheck_cpu_setup_timer();
1852 }
1853
1854 /*
1855 * Called for each booted CPU to clear some machine checks opt-ins
1856 */
1857 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1858 {
1859 if (mca_cfg.disabled)
1860 return;
1861
1862 if (!mce_available(c))
1863 return;
1864
1865 /*
1866 * Possibly to clear general settings generic to x86
1867 * __mcheck_cpu_clear_generic(c);
1868 */
1869 __mcheck_cpu_clear_vendor(c);
1870
1871 }
1872
1873 static void __mce_disable_bank(void *arg)
1874 {
1875 int bank = *((int *)arg);
1876 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1877 cmci_disable_bank(bank);
1878 }
1879
1880 void mce_disable_bank(int bank)
1881 {
1882 if (bank >= mca_cfg.banks) {
1883 pr_warn(FW_BUG
1884 "Ignoring request to disable invalid MCA bank %d.\n",
1885 bank);
1886 return;
1887 }
1888 set_bit(bank, mce_banks_ce_disabled);
1889 on_each_cpu(__mce_disable_bank, &bank, 1);
1890 }
1891
1892 /*
1893 * mce=off Disables machine check
1894 * mce=no_cmci Disables CMCI
1895 * mce=no_lmce Disables LMCE
1896 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1897 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1898 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1899 * monarchtimeout is how long to wait for other CPUs on machine
1900 * check, or 0 to not wait
1901 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1902 and older.
1903 * mce=nobootlog Don't log MCEs from before booting.
1904 * mce=bios_cmci_threshold Don't program the CMCI threshold
1905 * mce=recovery force enable memcpy_mcsafe()
1906 */
1907 static int __init mcheck_enable(char *str)
1908 {
1909 struct mca_config *cfg = &mca_cfg;
1910
1911 if (*str == 0) {
1912 enable_p5_mce();
1913 return 1;
1914 }
1915 if (*str == '=')
1916 str++;
1917 if (!strcmp(str, "off"))
1918 cfg->disabled = 1;
1919 else if (!strcmp(str, "no_cmci"))
1920 cfg->cmci_disabled = true;
1921 else if (!strcmp(str, "no_lmce"))
1922 cfg->lmce_disabled = 1;
1923 else if (!strcmp(str, "dont_log_ce"))
1924 cfg->dont_log_ce = true;
1925 else if (!strcmp(str, "ignore_ce"))
1926 cfg->ignore_ce = true;
1927 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1928 cfg->bootlog = (str[0] == 'b');
1929 else if (!strcmp(str, "bios_cmci_threshold"))
1930 cfg->bios_cmci_threshold = 1;
1931 else if (!strcmp(str, "recovery"))
1932 cfg->recovery = 1;
1933 else if (isdigit(str[0])) {
1934 if (get_option(&str, &cfg->tolerant) == 2)
1935 get_option(&str, &(cfg->monarch_timeout));
1936 } else {
1937 pr_info("mce argument %s ignored. Please use /sys\n", str);
1938 return 0;
1939 }
1940 return 1;
1941 }
1942 __setup("mce", mcheck_enable);
1943
1944 int __init mcheck_init(void)
1945 {
1946 mcheck_intel_therm_init();
1947 mce_register_decode_chain(&first_nb);
1948 mce_register_decode_chain(&mce_srao_nb);
1949 mce_register_decode_chain(&mce_default_nb);
1950 mcheck_vendor_init_severity();
1951
1952 INIT_WORK(&mce_work, mce_gen_pool_process);
1953 init_irq_work(&mce_irq_work, mce_irq_work_cb);
1954
1955 return 0;
1956 }
1957
1958 /*
1959 * mce_syscore: PM support
1960 */
1961
1962 /*
1963 * Disable machine checks on suspend and shutdown. We can't really handle
1964 * them later.
1965 */
1966 static void mce_disable_error_reporting(void)
1967 {
1968 int i;
1969
1970 for (i = 0; i < mca_cfg.banks; i++) {
1971 struct mce_bank *b = &mce_banks[i];
1972
1973 if (b->init)
1974 wrmsrl(msr_ops.ctl(i), 0);
1975 }
1976 return;
1977 }
1978
1979 static void vendor_disable_error_reporting(void)
1980 {
1981 /*
1982 * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide.
1983 * Disabling them for just a single offlined CPU is bad, since it will
1984 * inhibit reporting for all shared resources on the socket like the
1985 * last level cache (LLC), the integrated memory controller (iMC), etc.
1986 */
1987 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1988 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1989 return;
1990
1991 mce_disable_error_reporting();
1992 }
1993
1994 static int mce_syscore_suspend(void)
1995 {
1996 vendor_disable_error_reporting();
1997 return 0;
1998 }
1999
2000 static void mce_syscore_shutdown(void)
2001 {
2002 vendor_disable_error_reporting();
2003 }
2004
2005 /*
2006 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2007 * Only one CPU is active at this time, the others get re-added later using
2008 * CPU hotplug:
2009 */
2010 static void mce_syscore_resume(void)
2011 {
2012 __mcheck_cpu_init_generic();
2013 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2014 __mcheck_cpu_init_clear_banks();
2015 }
2016
2017 static struct syscore_ops mce_syscore_ops = {
2018 .suspend = mce_syscore_suspend,
2019 .shutdown = mce_syscore_shutdown,
2020 .resume = mce_syscore_resume,
2021 };
2022
2023 /*
2024 * mce_device: Sysfs support
2025 */
2026
2027 static void mce_cpu_restart(void *data)
2028 {
2029 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2030 return;
2031 __mcheck_cpu_init_generic();
2032 __mcheck_cpu_init_clear_banks();
2033 __mcheck_cpu_init_timer();
2034 }
2035
2036 /* Reinit MCEs after user configuration changes */
2037 static void mce_restart(void)
2038 {
2039 mce_timer_delete_all();
2040 on_each_cpu(mce_cpu_restart, NULL, 1);
2041 }
2042
2043 /* Toggle features for corrected errors */
2044 static void mce_disable_cmci(void *data)
2045 {
2046 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2047 return;
2048 cmci_clear();
2049 }
2050
2051 static void mce_enable_ce(void *all)
2052 {
2053 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2054 return;
2055 cmci_reenable();
2056 cmci_recheck();
2057 if (all)
2058 __mcheck_cpu_init_timer();
2059 }
2060
2061 static struct bus_type mce_subsys = {
2062 .name = "machinecheck",
2063 .dev_name = "machinecheck",
2064 };
2065
2066 DEFINE_PER_CPU(struct device *, mce_device);
2067
2068 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2069 {
2070 return container_of(attr, struct mce_bank, attr);
2071 }
2072
2073 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2074 char *buf)
2075 {
2076 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2077 }
2078
2079 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2080 const char *buf, size_t size)
2081 {
2082 u64 new;
2083
2084 if (kstrtou64(buf, 0, &new) < 0)
2085 return -EINVAL;
2086
2087 attr_to_bank(attr)->ctl = new;
2088 mce_restart();
2089
2090 return size;
2091 }
2092
2093 static ssize_t set_ignore_ce(struct device *s,
2094 struct device_attribute *attr,
2095 const char *buf, size_t size)
2096 {
2097 u64 new;
2098
2099 if (kstrtou64(buf, 0, &new) < 0)
2100 return -EINVAL;
2101
2102 mutex_lock(&mce_sysfs_mutex);
2103 if (mca_cfg.ignore_ce ^ !!new) {
2104 if (new) {
2105 /* disable ce features */
2106 mce_timer_delete_all();
2107 on_each_cpu(mce_disable_cmci, NULL, 1);
2108 mca_cfg.ignore_ce = true;
2109 } else {
2110 /* enable ce features */
2111 mca_cfg.ignore_ce = false;
2112 on_each_cpu(mce_enable_ce, (void *)1, 1);
2113 }
2114 }
2115 mutex_unlock(&mce_sysfs_mutex);
2116
2117 return size;
2118 }
2119
2120 static ssize_t set_cmci_disabled(struct device *s,
2121 struct device_attribute *attr,
2122 const char *buf, size_t size)
2123 {
2124 u64 new;
2125
2126 if (kstrtou64(buf, 0, &new) < 0)
2127 return -EINVAL;
2128
2129 mutex_lock(&mce_sysfs_mutex);
2130 if (mca_cfg.cmci_disabled ^ !!new) {
2131 if (new) {
2132 /* disable cmci */
2133 on_each_cpu(mce_disable_cmci, NULL, 1);
2134 mca_cfg.cmci_disabled = true;
2135 } else {
2136 /* enable cmci */
2137 mca_cfg.cmci_disabled = false;
2138 on_each_cpu(mce_enable_ce, NULL, 1);
2139 }
2140 }
2141 mutex_unlock(&mce_sysfs_mutex);
2142
2143 return size;
2144 }
2145
2146 static ssize_t store_int_with_restart(struct device *s,
2147 struct device_attribute *attr,
2148 const char *buf, size_t size)
2149 {
2150 unsigned long old_check_interval = check_interval;
2151 ssize_t ret = device_store_ulong(s, attr, buf, size);
2152
2153 if (check_interval == old_check_interval)
2154 return ret;
2155
2156 if (check_interval < 1)
2157 check_interval = 1;
2158
2159 mutex_lock(&mce_sysfs_mutex);
2160 mce_restart();
2161 mutex_unlock(&mce_sysfs_mutex);
2162
2163 return ret;
2164 }
2165
2166 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2167 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2168 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2169
2170 static struct dev_ext_attribute dev_attr_check_interval = {
2171 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2172 &check_interval
2173 };
2174
2175 static struct dev_ext_attribute dev_attr_ignore_ce = {
2176 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2177 &mca_cfg.ignore_ce
2178 };
2179
2180 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2181 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2182 &mca_cfg.cmci_disabled
2183 };
2184
2185 static struct device_attribute *mce_device_attrs[] = {
2186 &dev_attr_tolerant.attr,
2187 &dev_attr_check_interval.attr,
2188 #ifdef CONFIG_X86_MCELOG_LEGACY
2189 &dev_attr_trigger,
2190 #endif
2191 &dev_attr_monarch_timeout.attr,
2192 &dev_attr_dont_log_ce.attr,
2193 &dev_attr_ignore_ce.attr,
2194 &dev_attr_cmci_disabled.attr,
2195 NULL
2196 };
2197
2198 static cpumask_var_t mce_device_initialized;
2199
2200 static void mce_device_release(struct device *dev)
2201 {
2202 kfree(dev);
2203 }
2204
2205 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2206 static int mce_device_create(unsigned int cpu)
2207 {
2208 struct device *dev;
2209 int err;
2210 int i, j;
2211
2212 if (!mce_available(&boot_cpu_data))
2213 return -EIO;
2214
2215 dev = per_cpu(mce_device, cpu);
2216 if (dev)
2217 return 0;
2218
2219 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2220 if (!dev)
2221 return -ENOMEM;
2222 dev->id = cpu;
2223 dev->bus = &mce_subsys;
2224 dev->release = &mce_device_release;
2225
2226 err = device_register(dev);
2227 if (err) {
2228 put_device(dev);
2229 return err;
2230 }
2231
2232 for (i = 0; mce_device_attrs[i]; i++) {
2233 err = device_create_file(dev, mce_device_attrs[i]);
2234 if (err)
2235 goto error;
2236 }
2237 for (j = 0; j < mca_cfg.banks; j++) {
2238 err = device_create_file(dev, &mce_banks[j].attr);
2239 if (err)
2240 goto error2;
2241 }
2242 cpumask_set_cpu(cpu, mce_device_initialized);
2243 per_cpu(mce_device, cpu) = dev;
2244
2245 return 0;
2246 error2:
2247 while (--j >= 0)
2248 device_remove_file(dev, &mce_banks[j].attr);
2249 error:
2250 while (--i >= 0)
2251 device_remove_file(dev, mce_device_attrs[i]);
2252
2253 device_unregister(dev);
2254
2255 return err;
2256 }
2257
2258 static void mce_device_remove(unsigned int cpu)
2259 {
2260 struct device *dev = per_cpu(mce_device, cpu);
2261 int i;
2262
2263 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2264 return;
2265
2266 for (i = 0; mce_device_attrs[i]; i++)
2267 device_remove_file(dev, mce_device_attrs[i]);
2268
2269 for (i = 0; i < mca_cfg.banks; i++)
2270 device_remove_file(dev, &mce_banks[i].attr);
2271
2272 device_unregister(dev);
2273 cpumask_clear_cpu(cpu, mce_device_initialized);
2274 per_cpu(mce_device, cpu) = NULL;
2275 }
2276
2277 /* Make sure there are no machine checks on offlined CPUs. */
2278 static void mce_disable_cpu(void)
2279 {
2280 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2281 return;
2282
2283 if (!cpuhp_tasks_frozen)
2284 cmci_clear();
2285
2286 vendor_disable_error_reporting();
2287 }
2288
2289 static void mce_reenable_cpu(void)
2290 {
2291 int i;
2292
2293 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2294 return;
2295
2296 if (!cpuhp_tasks_frozen)
2297 cmci_reenable();
2298 for (i = 0; i < mca_cfg.banks; i++) {
2299 struct mce_bank *b = &mce_banks[i];
2300
2301 if (b->init)
2302 wrmsrl(msr_ops.ctl(i), b->ctl);
2303 }
2304 }
2305
2306 static int mce_cpu_dead(unsigned int cpu)
2307 {
2308 mce_intel_hcpu_update(cpu);
2309
2310 /* intentionally ignoring frozen here */
2311 if (!cpuhp_tasks_frozen)
2312 cmci_rediscover();
2313 return 0;
2314 }
2315
2316 static int mce_cpu_online(unsigned int cpu)
2317 {
2318 struct timer_list *t = this_cpu_ptr(&mce_timer);
2319 int ret;
2320
2321 mce_device_create(cpu);
2322
2323 ret = mce_threshold_create_device(cpu);
2324 if (ret) {
2325 mce_device_remove(cpu);
2326 return ret;
2327 }
2328 mce_reenable_cpu();
2329 mce_start_timer(t);
2330 return 0;
2331 }
2332
2333 static int mce_cpu_pre_down(unsigned int cpu)
2334 {
2335 struct timer_list *t = this_cpu_ptr(&mce_timer);
2336
2337 mce_disable_cpu();
2338 del_timer_sync(t);
2339 mce_threshold_remove_device(cpu);
2340 mce_device_remove(cpu);
2341 return 0;
2342 }
2343
2344 static __init void mce_init_banks(void)
2345 {
2346 int i;
2347
2348 for (i = 0; i < mca_cfg.banks; i++) {
2349 struct mce_bank *b = &mce_banks[i];
2350 struct device_attribute *a = &b->attr;
2351
2352 sysfs_attr_init(&a->attr);
2353 a->attr.name = b->attrname;
2354 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2355
2356 a->attr.mode = 0644;
2357 a->show = show_bank;
2358 a->store = set_bank;
2359 }
2360 }
2361
2362 static __init int mcheck_init_device(void)
2363 {
2364 int err;
2365
2366 /*
2367 * Check if we have a spare virtual bit. This will only become
2368 * a problem if/when we move beyond 5-level page tables.
2369 */
2370 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2371
2372 if (!mce_available(&boot_cpu_data)) {
2373 err = -EIO;
2374 goto err_out;
2375 }
2376
2377 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2378 err = -ENOMEM;
2379 goto err_out;
2380 }
2381
2382 mce_init_banks();
2383
2384 err = subsys_system_register(&mce_subsys, NULL);
2385 if (err)
2386 goto err_out_mem;
2387
2388 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2389 mce_cpu_dead);
2390 if (err)
2391 goto err_out_mem;
2392
2393 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2394 mce_cpu_online, mce_cpu_pre_down);
2395 if (err < 0)
2396 goto err_out_online;
2397
2398 register_syscore_ops(&mce_syscore_ops);
2399
2400 return 0;
2401
2402 err_out_online:
2403 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2404
2405 err_out_mem:
2406 free_cpumask_var(mce_device_initialized);
2407
2408 err_out:
2409 pr_err("Unable to init MCE device (rc: %d)\n", err);
2410
2411 return err;
2412 }
2413 device_initcall_sync(mcheck_init_device);
2414
2415 /*
2416 * Old style boot options parsing. Only for compatibility.
2417 */
2418 static int __init mcheck_disable(char *str)
2419 {
2420 mca_cfg.disabled = 1;
2421 return 1;
2422 }
2423 __setup("nomce", mcheck_disable);
2424
2425 #ifdef CONFIG_DEBUG_FS
2426 struct dentry *mce_get_debugfs_dir(void)
2427 {
2428 static struct dentry *dmce;
2429
2430 if (!dmce)
2431 dmce = debugfs_create_dir("mce", NULL);
2432
2433 return dmce;
2434 }
2435
2436 static void mce_reset(void)
2437 {
2438 cpu_missing = 0;
2439 atomic_set(&mce_fake_panicked, 0);
2440 atomic_set(&mce_executing, 0);
2441 atomic_set(&mce_callin, 0);
2442 atomic_set(&global_nwo, 0);
2443 }
2444
2445 static int fake_panic_get(void *data, u64 *val)
2446 {
2447 *val = fake_panic;
2448 return 0;
2449 }
2450
2451 static int fake_panic_set(void *data, u64 val)
2452 {
2453 mce_reset();
2454 fake_panic = val;
2455 return 0;
2456 }
2457
2458 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2459 fake_panic_set, "%llu\n");
2460
2461 static int __init mcheck_debugfs_init(void)
2462 {
2463 struct dentry *dmce, *ffake_panic;
2464
2465 dmce = mce_get_debugfs_dir();
2466 if (!dmce)
2467 return -ENOMEM;
2468 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2469 &fake_panic_fops);
2470 if (!ffake_panic)
2471 return -ENOMEM;
2472
2473 return 0;
2474 }
2475 #else
2476 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2477 #endif
2478
2479 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2480 EXPORT_SYMBOL_GPL(mcsafe_key);
2481
2482 static int __init mcheck_late_init(void)
2483 {
2484 if (mca_cfg.recovery)
2485 static_branch_inc(&mcsafe_key);
2486
2487 mcheck_debugfs_init();
2488 cec_init();
2489
2490 /*
2491 * Flush out everything that has been logged during early boot, now that
2492 * everything has been initialized (workqueues, decoders, ...).
2493 */
2494 mce_schedule_work();
2495
2496 return 0;
2497 }
2498 late_initcall(mcheck_late_init);