]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44
45 #include <asm/processor.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
48
49 #include "mce-internal.h"
50
51 static DEFINE_MUTEX(mce_chrdev_read_mutex);
52
53 #define rcu_dereference_check_mce(p) \
54 rcu_dereference_index_check((p), \
55 rcu_read_lock_sched_held() || \
56 lockdep_is_held(&mce_chrdev_read_mutex))
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
60
61 #define SPINUNIT 100 /* 100ns */
62
63 atomic_t mce_entry;
64
65 DEFINE_PER_CPU(unsigned, mce_exception_count);
66
67 struct mce_bank *mce_banks __read_mostly;
68
69 struct mca_config mca_cfg __read_mostly = {
70 .bootlog = -1,
71 /*
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
77 */
78 .tolerant = 1,
79 .monarch_timeout = -1
80 };
81
82 /* User mode helper program triggered by machine check event */
83 static unsigned long mce_need_notify;
84 static char mce_helper[128];
85 static char *mce_helper_argv[2] = { mce_helper, NULL };
86
87 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
88
89 static DEFINE_PER_CPU(struct mce, mces_seen);
90 static int cpu_missing;
91
92 /* CMCI storm detection filter */
93 static DEFINE_PER_CPU(unsigned long, mce_polled_error);
94
95 /*
96 * MCA banks polled by the period polling timer for corrected events.
97 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
98 */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102
103 /*
104 * MCA banks controlled through firmware first for corrected errors.
105 * This is a global list of banks for which we won't enable CMCI and we
106 * won't poll. Firmware controls these banks and is responsible for
107 * reporting corrected errors through GHES. Uncorrected/recoverable
108 * errors are still notified through a machine check.
109 */
110 mce_banks_t mce_banks_ce_disabled;
111
112 static DEFINE_PER_CPU(struct work_struct, mce_work);
113
114 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
115
116 /*
117 * CPU/chipset specific EDAC code can register a notifier call here to print
118 * MCE errors in a human-readable form.
119 */
120 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
121
122 /* Do initial initialization of a struct mce */
123 void mce_setup(struct mce *m)
124 {
125 memset(m, 0, sizeof(struct mce));
126 m->cpu = m->extcpu = smp_processor_id();
127 rdtscll(m->tsc);
128 /* We hope get_seconds stays lockless */
129 m->time = get_seconds();
130 m->cpuvendor = boot_cpu_data.x86_vendor;
131 m->cpuid = cpuid_eax(1);
132 m->socketid = cpu_data(m->extcpu).phys_proc_id;
133 m->apicid = cpu_data(m->extcpu).initial_apicid;
134 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
135 }
136
137 DEFINE_PER_CPU(struct mce, injectm);
138 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
139
140 /*
141 * Lockless MCE logging infrastructure.
142 * This avoids deadlocks on printk locks without having to break locks. Also
143 * separate MCEs from kernel messages to avoid bogus bug reports.
144 */
145
146 static struct mce_log mcelog = {
147 .signature = MCE_LOG_SIGNATURE,
148 .len = MCE_LOG_LEN,
149 .recordlen = sizeof(struct mce),
150 };
151
152 void mce_log(struct mce *mce)
153 {
154 unsigned next, entry;
155 int ret = 0;
156
157 /* Emit the trace record: */
158 trace_mce_record(mce);
159
160 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
161 if (ret == NOTIFY_STOP)
162 return;
163
164 mce->finished = 0;
165 wmb();
166 for (;;) {
167 entry = rcu_dereference_check_mce(mcelog.next);
168 for (;;) {
169
170 /*
171 * When the buffer fills up discard new entries.
172 * Assume that the earlier errors are the more
173 * interesting ones:
174 */
175 if (entry >= MCE_LOG_LEN) {
176 set_bit(MCE_OVERFLOW,
177 (unsigned long *)&mcelog.flags);
178 return;
179 }
180 /* Old left over entry. Skip: */
181 if (mcelog.entry[entry].finished) {
182 entry++;
183 continue;
184 }
185 break;
186 }
187 smp_rmb();
188 next = entry + 1;
189 if (cmpxchg(&mcelog.next, entry, next) == entry)
190 break;
191 }
192 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
193 wmb();
194 mcelog.entry[entry].finished = 1;
195 wmb();
196
197 mce->finished = 1;
198 set_bit(0, &mce_need_notify);
199 }
200
201 static void drain_mcelog_buffer(void)
202 {
203 unsigned int next, i, prev = 0;
204
205 next = ACCESS_ONCE(mcelog.next);
206
207 do {
208 struct mce *m;
209
210 /* drain what was logged during boot */
211 for (i = prev; i < next; i++) {
212 unsigned long start = jiffies;
213 unsigned retries = 1;
214
215 m = &mcelog.entry[i];
216
217 while (!m->finished) {
218 if (time_after_eq(jiffies, start + 2*retries))
219 retries++;
220
221 cpu_relax();
222
223 if (!m->finished && retries >= 4) {
224 pr_err("skipping error being logged currently!\n");
225 break;
226 }
227 }
228 smp_rmb();
229 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
230 }
231
232 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
233 prev = next;
234 next = cmpxchg(&mcelog.next, prev, 0);
235 } while (next != prev);
236 }
237
238
239 void mce_register_decode_chain(struct notifier_block *nb)
240 {
241 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
242 drain_mcelog_buffer();
243 }
244 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
245
246 void mce_unregister_decode_chain(struct notifier_block *nb)
247 {
248 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
249 }
250 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
251
252 static void print_mce(struct mce *m)
253 {
254 int ret = 0;
255
256 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
257 m->extcpu, m->mcgstatus, m->bank, m->status);
258
259 if (m->ip) {
260 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
261 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
262 m->cs, m->ip);
263
264 if (m->cs == __KERNEL_CS)
265 print_symbol("{%s}", m->ip);
266 pr_cont("\n");
267 }
268
269 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
270 if (m->addr)
271 pr_cont("ADDR %llx ", m->addr);
272 if (m->misc)
273 pr_cont("MISC %llx ", m->misc);
274
275 pr_cont("\n");
276 /*
277 * Note this output is parsed by external tools and old fields
278 * should not be changed.
279 */
280 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
281 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
282 cpu_data(m->extcpu).microcode);
283
284 /*
285 * Print out human-readable details about the MCE error,
286 * (if the CPU has an implementation for that)
287 */
288 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
289 if (ret == NOTIFY_STOP)
290 return;
291
292 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
293 }
294
295 #define PANIC_TIMEOUT 5 /* 5 seconds */
296
297 static atomic_t mce_paniced;
298
299 static int fake_panic;
300 static atomic_t mce_fake_paniced;
301
302 /* Panic in progress. Enable interrupts and wait for final IPI */
303 static void wait_for_panic(void)
304 {
305 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
306
307 preempt_disable();
308 local_irq_enable();
309 while (timeout-- > 0)
310 udelay(1);
311 if (panic_timeout == 0)
312 panic_timeout = mca_cfg.panic_timeout;
313 panic("Panicing machine check CPU died");
314 }
315
316 static void mce_panic(char *msg, struct mce *final, char *exp)
317 {
318 int i, apei_err = 0;
319
320 if (!fake_panic) {
321 /*
322 * Make sure only one CPU runs in machine check panic
323 */
324 if (atomic_inc_return(&mce_paniced) > 1)
325 wait_for_panic();
326 barrier();
327
328 bust_spinlocks(1);
329 console_verbose();
330 } else {
331 /* Don't log too much for fake panic */
332 if (atomic_inc_return(&mce_fake_paniced) > 1)
333 return;
334 }
335 /* First print corrected ones that are still unlogged */
336 for (i = 0; i < MCE_LOG_LEN; i++) {
337 struct mce *m = &mcelog.entry[i];
338 if (!(m->status & MCI_STATUS_VAL))
339 continue;
340 if (!(m->status & MCI_STATUS_UC)) {
341 print_mce(m);
342 if (!apei_err)
343 apei_err = apei_write_mce(m);
344 }
345 }
346 /* Now print uncorrected but with the final one last */
347 for (i = 0; i < MCE_LOG_LEN; i++) {
348 struct mce *m = &mcelog.entry[i];
349 if (!(m->status & MCI_STATUS_VAL))
350 continue;
351 if (!(m->status & MCI_STATUS_UC))
352 continue;
353 if (!final || memcmp(m, final, sizeof(struct mce))) {
354 print_mce(m);
355 if (!apei_err)
356 apei_err = apei_write_mce(m);
357 }
358 }
359 if (final) {
360 print_mce(final);
361 if (!apei_err)
362 apei_err = apei_write_mce(final);
363 }
364 if (cpu_missing)
365 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
366 if (exp)
367 pr_emerg(HW_ERR "Machine check: %s\n", exp);
368 if (!fake_panic) {
369 if (panic_timeout == 0)
370 panic_timeout = mca_cfg.panic_timeout;
371 panic(msg);
372 } else
373 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
374 }
375
376 /* Support code for software error injection */
377
378 static int msr_to_offset(u32 msr)
379 {
380 unsigned bank = __this_cpu_read(injectm.bank);
381
382 if (msr == mca_cfg.rip_msr)
383 return offsetof(struct mce, ip);
384 if (msr == MSR_IA32_MCx_STATUS(bank))
385 return offsetof(struct mce, status);
386 if (msr == MSR_IA32_MCx_ADDR(bank))
387 return offsetof(struct mce, addr);
388 if (msr == MSR_IA32_MCx_MISC(bank))
389 return offsetof(struct mce, misc);
390 if (msr == MSR_IA32_MCG_STATUS)
391 return offsetof(struct mce, mcgstatus);
392 return -1;
393 }
394
395 /* MSR access wrappers used for error injection */
396 static u64 mce_rdmsrl(u32 msr)
397 {
398 u64 v;
399
400 if (__this_cpu_read(injectm.finished)) {
401 int offset = msr_to_offset(msr);
402
403 if (offset < 0)
404 return 0;
405 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
406 }
407
408 if (rdmsrl_safe(msr, &v)) {
409 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
410 /*
411 * Return zero in case the access faulted. This should
412 * not happen normally but can happen if the CPU does
413 * something weird, or if the code is buggy.
414 */
415 v = 0;
416 }
417
418 return v;
419 }
420
421 static void mce_wrmsrl(u32 msr, u64 v)
422 {
423 if (__this_cpu_read(injectm.finished)) {
424 int offset = msr_to_offset(msr);
425
426 if (offset >= 0)
427 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
428 return;
429 }
430 wrmsrl(msr, v);
431 }
432
433 /*
434 * Collect all global (w.r.t. this processor) status about this machine
435 * check into our "mce" struct so that we can use it later to assess
436 * the severity of the problem as we read per-bank specific details.
437 */
438 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
439 {
440 mce_setup(m);
441
442 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
443 if (regs) {
444 /*
445 * Get the address of the instruction at the time of
446 * the machine check error.
447 */
448 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
449 m->ip = regs->ip;
450 m->cs = regs->cs;
451
452 /*
453 * When in VM86 mode make the cs look like ring 3
454 * always. This is a lie, but it's better than passing
455 * the additional vm86 bit around everywhere.
456 */
457 if (v8086_mode(regs))
458 m->cs |= 3;
459 }
460 /* Use accurate RIP reporting if available. */
461 if (mca_cfg.rip_msr)
462 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
463 }
464 }
465
466 /*
467 * Simple lockless ring to communicate PFNs from the exception handler with the
468 * process context work function. This is vastly simplified because there's
469 * only a single reader and a single writer.
470 */
471 #define MCE_RING_SIZE 16 /* we use one entry less */
472
473 struct mce_ring {
474 unsigned short start;
475 unsigned short end;
476 unsigned long ring[MCE_RING_SIZE];
477 };
478 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
479
480 /* Runs with CPU affinity in workqueue */
481 static int mce_ring_empty(void)
482 {
483 struct mce_ring *r = &__get_cpu_var(mce_ring);
484
485 return r->start == r->end;
486 }
487
488 static int mce_ring_get(unsigned long *pfn)
489 {
490 struct mce_ring *r;
491 int ret = 0;
492
493 *pfn = 0;
494 get_cpu();
495 r = &__get_cpu_var(mce_ring);
496 if (r->start == r->end)
497 goto out;
498 *pfn = r->ring[r->start];
499 r->start = (r->start + 1) % MCE_RING_SIZE;
500 ret = 1;
501 out:
502 put_cpu();
503 return ret;
504 }
505
506 /* Always runs in MCE context with preempt off */
507 static int mce_ring_add(unsigned long pfn)
508 {
509 struct mce_ring *r = &__get_cpu_var(mce_ring);
510 unsigned next;
511
512 next = (r->end + 1) % MCE_RING_SIZE;
513 if (next == r->start)
514 return -1;
515 r->ring[r->end] = pfn;
516 wmb();
517 r->end = next;
518 return 0;
519 }
520
521 int mce_available(struct cpuinfo_x86 *c)
522 {
523 if (mca_cfg.disabled)
524 return 0;
525 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
526 }
527
528 static void mce_schedule_work(void)
529 {
530 if (!mce_ring_empty())
531 schedule_work(&__get_cpu_var(mce_work));
532 }
533
534 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
535
536 static void mce_irq_work_cb(struct irq_work *entry)
537 {
538 mce_notify_irq();
539 mce_schedule_work();
540 }
541
542 static void mce_report_event(struct pt_regs *regs)
543 {
544 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
545 mce_notify_irq();
546 /*
547 * Triggering the work queue here is just an insurance
548 * policy in case the syscall exit notify handler
549 * doesn't run soon enough or ends up running on the
550 * wrong CPU (can happen when audit sleeps)
551 */
552 mce_schedule_work();
553 return;
554 }
555
556 irq_work_queue(&__get_cpu_var(mce_irq_work));
557 }
558
559 /*
560 * Read ADDR and MISC registers.
561 */
562 static void mce_read_aux(struct mce *m, int i)
563 {
564 if (m->status & MCI_STATUS_MISCV)
565 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
566 if (m->status & MCI_STATUS_ADDRV) {
567 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
568
569 /*
570 * Mask the reported address by the reported granularity.
571 */
572 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
573 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
574 m->addr >>= shift;
575 m->addr <<= shift;
576 }
577 }
578 }
579
580 DEFINE_PER_CPU(unsigned, mce_poll_count);
581
582 /*
583 * Poll for corrected events or events that happened before reset.
584 * Those are just logged through /dev/mcelog.
585 *
586 * This is executed in standard interrupt context.
587 *
588 * Note: spec recommends to panic for fatal unsignalled
589 * errors here. However this would be quite problematic --
590 * we would need to reimplement the Monarch handling and
591 * it would mess up the exclusion between exception handler
592 * and poll hander -- * so we skip this for now.
593 * These cases should not happen anyways, or only when the CPU
594 * is already totally * confused. In this case it's likely it will
595 * not fully execute the machine check handler either.
596 */
597 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
598 {
599 struct mce m;
600 int i;
601 unsigned long *v;
602
603 this_cpu_inc(mce_poll_count);
604
605 mce_gather_info(&m, NULL);
606
607 for (i = 0; i < mca_cfg.banks; i++) {
608 if (!mce_banks[i].ctl || !test_bit(i, *b))
609 continue;
610
611 m.misc = 0;
612 m.addr = 0;
613 m.bank = i;
614 m.tsc = 0;
615
616 barrier();
617 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
618 if (!(m.status & MCI_STATUS_VAL))
619 continue;
620
621 v = &get_cpu_var(mce_polled_error);
622 set_bit(0, v);
623 /*
624 * Uncorrected or signalled events are handled by the exception
625 * handler when it is enabled, so don't process those here.
626 *
627 * TBD do the same check for MCI_STATUS_EN here?
628 */
629 if (!(flags & MCP_UC) &&
630 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
631 continue;
632
633 mce_read_aux(&m, i);
634
635 if (!(flags & MCP_TIMESTAMP))
636 m.tsc = 0;
637 /*
638 * Don't get the IP here because it's unlikely to
639 * have anything to do with the actual error location.
640 */
641 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
642 mce_log(&m);
643
644 /*
645 * Clear state for this bank.
646 */
647 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
648 }
649
650 /*
651 * Don't clear MCG_STATUS here because it's only defined for
652 * exceptions.
653 */
654
655 sync_core();
656 }
657 EXPORT_SYMBOL_GPL(machine_check_poll);
658
659 /*
660 * Do a quick check if any of the events requires a panic.
661 * This decides if we keep the events around or clear them.
662 */
663 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
664 struct pt_regs *regs)
665 {
666 int i, ret = 0;
667
668 for (i = 0; i < mca_cfg.banks; i++) {
669 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
670 if (m->status & MCI_STATUS_VAL) {
671 __set_bit(i, validp);
672 if (quirk_no_way_out)
673 quirk_no_way_out(i, m, regs);
674 }
675 if (mce_severity(m, mca_cfg.tolerant, msg) >= MCE_PANIC_SEVERITY)
676 ret = 1;
677 }
678 return ret;
679 }
680
681 /*
682 * Variable to establish order between CPUs while scanning.
683 * Each CPU spins initially until executing is equal its number.
684 */
685 static atomic_t mce_executing;
686
687 /*
688 * Defines order of CPUs on entry. First CPU becomes Monarch.
689 */
690 static atomic_t mce_callin;
691
692 /*
693 * Check if a timeout waiting for other CPUs happened.
694 */
695 static int mce_timed_out(u64 *t)
696 {
697 /*
698 * The others already did panic for some reason.
699 * Bail out like in a timeout.
700 * rmb() to tell the compiler that system_state
701 * might have been modified by someone else.
702 */
703 rmb();
704 if (atomic_read(&mce_paniced))
705 wait_for_panic();
706 if (!mca_cfg.monarch_timeout)
707 goto out;
708 if ((s64)*t < SPINUNIT) {
709 /* CHECKME: Make panic default for 1 too? */
710 if (mca_cfg.tolerant < 1)
711 mce_panic("Timeout synchronizing machine check over CPUs",
712 NULL, NULL);
713 cpu_missing = 1;
714 return 1;
715 }
716 *t -= SPINUNIT;
717 out:
718 touch_nmi_watchdog();
719 return 0;
720 }
721
722 /*
723 * The Monarch's reign. The Monarch is the CPU who entered
724 * the machine check handler first. It waits for the others to
725 * raise the exception too and then grades them. When any
726 * error is fatal panic. Only then let the others continue.
727 *
728 * The other CPUs entering the MCE handler will be controlled by the
729 * Monarch. They are called Subjects.
730 *
731 * This way we prevent any potential data corruption in a unrecoverable case
732 * and also makes sure always all CPU's errors are examined.
733 *
734 * Also this detects the case of a machine check event coming from outer
735 * space (not detected by any CPUs) In this case some external agent wants
736 * us to shut down, so panic too.
737 *
738 * The other CPUs might still decide to panic if the handler happens
739 * in a unrecoverable place, but in this case the system is in a semi-stable
740 * state and won't corrupt anything by itself. It's ok to let the others
741 * continue for a bit first.
742 *
743 * All the spin loops have timeouts; when a timeout happens a CPU
744 * typically elects itself to be Monarch.
745 */
746 static void mce_reign(void)
747 {
748 int cpu;
749 struct mce *m = NULL;
750 int global_worst = 0;
751 char *msg = NULL;
752 char *nmsg = NULL;
753
754 /*
755 * This CPU is the Monarch and the other CPUs have run
756 * through their handlers.
757 * Grade the severity of the errors of all the CPUs.
758 */
759 for_each_possible_cpu(cpu) {
760 int severity = mce_severity(&per_cpu(mces_seen, cpu),
761 mca_cfg.tolerant,
762 &nmsg);
763 if (severity > global_worst) {
764 msg = nmsg;
765 global_worst = severity;
766 m = &per_cpu(mces_seen, cpu);
767 }
768 }
769
770 /*
771 * Cannot recover? Panic here then.
772 * This dumps all the mces in the log buffer and stops the
773 * other CPUs.
774 */
775 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
776 mce_panic("Fatal Machine check", m, msg);
777
778 /*
779 * For UC somewhere we let the CPU who detects it handle it.
780 * Also must let continue the others, otherwise the handling
781 * CPU could deadlock on a lock.
782 */
783
784 /*
785 * No machine check event found. Must be some external
786 * source or one CPU is hung. Panic.
787 */
788 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
789 mce_panic("Machine check from unknown source", NULL, NULL);
790
791 /*
792 * Now clear all the mces_seen so that they don't reappear on
793 * the next mce.
794 */
795 for_each_possible_cpu(cpu)
796 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
797 }
798
799 static atomic_t global_nwo;
800
801 /*
802 * Start of Monarch synchronization. This waits until all CPUs have
803 * entered the exception handler and then determines if any of them
804 * saw a fatal event that requires panic. Then it executes them
805 * in the entry order.
806 * TBD double check parallel CPU hotunplug
807 */
808 static int mce_start(int *no_way_out)
809 {
810 int order;
811 int cpus = num_online_cpus();
812 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
813
814 if (!timeout)
815 return -1;
816
817 atomic_add(*no_way_out, &global_nwo);
818 /*
819 * global_nwo should be updated before mce_callin
820 */
821 smp_wmb();
822 order = atomic_inc_return(&mce_callin);
823
824 /*
825 * Wait for everyone.
826 */
827 while (atomic_read(&mce_callin) != cpus) {
828 if (mce_timed_out(&timeout)) {
829 atomic_set(&global_nwo, 0);
830 return -1;
831 }
832 ndelay(SPINUNIT);
833 }
834
835 /*
836 * mce_callin should be read before global_nwo
837 */
838 smp_rmb();
839
840 if (order == 1) {
841 /*
842 * Monarch: Starts executing now, the others wait.
843 */
844 atomic_set(&mce_executing, 1);
845 } else {
846 /*
847 * Subject: Now start the scanning loop one by one in
848 * the original callin order.
849 * This way when there are any shared banks it will be
850 * only seen by one CPU before cleared, avoiding duplicates.
851 */
852 while (atomic_read(&mce_executing) < order) {
853 if (mce_timed_out(&timeout)) {
854 atomic_set(&global_nwo, 0);
855 return -1;
856 }
857 ndelay(SPINUNIT);
858 }
859 }
860
861 /*
862 * Cache the global no_way_out state.
863 */
864 *no_way_out = atomic_read(&global_nwo);
865
866 return order;
867 }
868
869 /*
870 * Synchronize between CPUs after main scanning loop.
871 * This invokes the bulk of the Monarch processing.
872 */
873 static int mce_end(int order)
874 {
875 int ret = -1;
876 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
877
878 if (!timeout)
879 goto reset;
880 if (order < 0)
881 goto reset;
882
883 /*
884 * Allow others to run.
885 */
886 atomic_inc(&mce_executing);
887
888 if (order == 1) {
889 /* CHECKME: Can this race with a parallel hotplug? */
890 int cpus = num_online_cpus();
891
892 /*
893 * Monarch: Wait for everyone to go through their scanning
894 * loops.
895 */
896 while (atomic_read(&mce_executing) <= cpus) {
897 if (mce_timed_out(&timeout))
898 goto reset;
899 ndelay(SPINUNIT);
900 }
901
902 mce_reign();
903 barrier();
904 ret = 0;
905 } else {
906 /*
907 * Subject: Wait for Monarch to finish.
908 */
909 while (atomic_read(&mce_executing) != 0) {
910 if (mce_timed_out(&timeout))
911 goto reset;
912 ndelay(SPINUNIT);
913 }
914
915 /*
916 * Don't reset anything. That's done by the Monarch.
917 */
918 return 0;
919 }
920
921 /*
922 * Reset all global state.
923 */
924 reset:
925 atomic_set(&global_nwo, 0);
926 atomic_set(&mce_callin, 0);
927 barrier();
928
929 /*
930 * Let others run again.
931 */
932 atomic_set(&mce_executing, 0);
933 return ret;
934 }
935
936 /*
937 * Check if the address reported by the CPU is in a format we can parse.
938 * It would be possible to add code for most other cases, but all would
939 * be somewhat complicated (e.g. segment offset would require an instruction
940 * parser). So only support physical addresses up to page granuality for now.
941 */
942 static int mce_usable_address(struct mce *m)
943 {
944 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
945 return 0;
946 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
947 return 0;
948 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
949 return 0;
950 return 1;
951 }
952
953 static void mce_clear_state(unsigned long *toclear)
954 {
955 int i;
956
957 for (i = 0; i < mca_cfg.banks; i++) {
958 if (test_bit(i, toclear))
959 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
960 }
961 }
962
963 /*
964 * Need to save faulting physical address associated with a process
965 * in the machine check handler some place where we can grab it back
966 * later in mce_notify_process()
967 */
968 #define MCE_INFO_MAX 16
969
970 struct mce_info {
971 atomic_t inuse;
972 struct task_struct *t;
973 __u64 paddr;
974 int restartable;
975 } mce_info[MCE_INFO_MAX];
976
977 static void mce_save_info(__u64 addr, int c)
978 {
979 struct mce_info *mi;
980
981 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
982 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
983 mi->t = current;
984 mi->paddr = addr;
985 mi->restartable = c;
986 return;
987 }
988 }
989
990 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
991 }
992
993 static struct mce_info *mce_find_info(void)
994 {
995 struct mce_info *mi;
996
997 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
998 if (atomic_read(&mi->inuse) && mi->t == current)
999 return mi;
1000 return NULL;
1001 }
1002
1003 static void mce_clear_info(struct mce_info *mi)
1004 {
1005 atomic_set(&mi->inuse, 0);
1006 }
1007
1008 /*
1009 * The actual machine check handler. This only handles real
1010 * exceptions when something got corrupted coming in through int 18.
1011 *
1012 * This is executed in NMI context not subject to normal locking rules. This
1013 * implies that most kernel services cannot be safely used. Don't even
1014 * think about putting a printk in there!
1015 *
1016 * On Intel systems this is entered on all CPUs in parallel through
1017 * MCE broadcast. However some CPUs might be broken beyond repair,
1018 * so be always careful when synchronizing with others.
1019 */
1020 void do_machine_check(struct pt_regs *regs, long error_code)
1021 {
1022 struct mca_config *cfg = &mca_cfg;
1023 struct mce m, *final;
1024 int i;
1025 int worst = 0;
1026 int severity;
1027 /*
1028 * Establish sequential order between the CPUs entering the machine
1029 * check handler.
1030 */
1031 int order;
1032 /*
1033 * If no_way_out gets set, there is no safe way to recover from this
1034 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1035 */
1036 int no_way_out = 0;
1037 /*
1038 * If kill_it gets set, there might be a way to recover from this
1039 * error.
1040 */
1041 int kill_it = 0;
1042 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1043 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1044 char *msg = "Unknown";
1045
1046 atomic_inc(&mce_entry);
1047
1048 this_cpu_inc(mce_exception_count);
1049
1050 if (!cfg->banks)
1051 goto out;
1052
1053 mce_gather_info(&m, regs);
1054
1055 final = &__get_cpu_var(mces_seen);
1056 *final = m;
1057
1058 memset(valid_banks, 0, sizeof(valid_banks));
1059 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1060
1061 barrier();
1062
1063 /*
1064 * When no restart IP might need to kill or panic.
1065 * Assume the worst for now, but if we find the
1066 * severity is MCE_AR_SEVERITY we have other options.
1067 */
1068 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1069 kill_it = 1;
1070
1071 /*
1072 * Go through all the banks in exclusion of the other CPUs.
1073 * This way we don't report duplicated events on shared banks
1074 * because the first one to see it will clear it.
1075 */
1076 order = mce_start(&no_way_out);
1077 for (i = 0; i < cfg->banks; i++) {
1078 __clear_bit(i, toclear);
1079 if (!test_bit(i, valid_banks))
1080 continue;
1081 if (!mce_banks[i].ctl)
1082 continue;
1083
1084 m.misc = 0;
1085 m.addr = 0;
1086 m.bank = i;
1087
1088 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1089 if ((m.status & MCI_STATUS_VAL) == 0)
1090 continue;
1091
1092 /*
1093 * Non uncorrected or non signaled errors are handled by
1094 * machine_check_poll. Leave them alone, unless this panics.
1095 */
1096 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1097 !no_way_out)
1098 continue;
1099
1100 /*
1101 * Set taint even when machine check was not enabled.
1102 */
1103 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1104
1105 severity = mce_severity(&m, cfg->tolerant, NULL);
1106
1107 /*
1108 * When machine check was for corrected handler don't touch,
1109 * unless we're panicing.
1110 */
1111 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1112 continue;
1113 __set_bit(i, toclear);
1114 if (severity == MCE_NO_SEVERITY) {
1115 /*
1116 * Machine check event was not enabled. Clear, but
1117 * ignore.
1118 */
1119 continue;
1120 }
1121
1122 mce_read_aux(&m, i);
1123
1124 /*
1125 * Action optional error. Queue address for later processing.
1126 * When the ring overflows we just ignore the AO error.
1127 * RED-PEN add some logging mechanism when
1128 * usable_address or mce_add_ring fails.
1129 * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
1130 */
1131 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1132 mce_ring_add(m.addr >> PAGE_SHIFT);
1133
1134 mce_log(&m);
1135
1136 if (severity > worst) {
1137 *final = m;
1138 worst = severity;
1139 }
1140 }
1141
1142 /* mce_clear_state will clear *final, save locally for use later */
1143 m = *final;
1144
1145 if (!no_way_out)
1146 mce_clear_state(toclear);
1147
1148 /*
1149 * Do most of the synchronization with other CPUs.
1150 * When there's any problem use only local no_way_out state.
1151 */
1152 if (mce_end(order) < 0)
1153 no_way_out = worst >= MCE_PANIC_SEVERITY;
1154
1155 /*
1156 * At insane "tolerant" levels we take no action. Otherwise
1157 * we only die if we have no other choice. For less serious
1158 * issues we try to recover, or limit damage to the current
1159 * process.
1160 */
1161 if (cfg->tolerant < 3) {
1162 if (no_way_out)
1163 mce_panic("Fatal machine check on current CPU", &m, msg);
1164 if (worst == MCE_AR_SEVERITY) {
1165 /* schedule action before return to userland */
1166 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1167 set_thread_flag(TIF_MCE_NOTIFY);
1168 } else if (kill_it) {
1169 force_sig(SIGBUS, current);
1170 }
1171 }
1172
1173 if (worst > 0)
1174 mce_report_event(regs);
1175 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1176 out:
1177 atomic_dec(&mce_entry);
1178 sync_core();
1179 }
1180 EXPORT_SYMBOL_GPL(do_machine_check);
1181
1182 #ifndef CONFIG_MEMORY_FAILURE
1183 int memory_failure(unsigned long pfn, int vector, int flags)
1184 {
1185 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1186 BUG_ON(flags & MF_ACTION_REQUIRED);
1187 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1188 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1189 pfn);
1190
1191 return 0;
1192 }
1193 #endif
1194
1195 /*
1196 * Called in process context that interrupted by MCE and marked with
1197 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1198 * This code is allowed to sleep.
1199 * Attempt possible recovery such as calling the high level VM handler to
1200 * process any corrupted pages, and kill/signal current process if required.
1201 * Action required errors are handled here.
1202 */
1203 void mce_notify_process(void)
1204 {
1205 unsigned long pfn;
1206 struct mce_info *mi = mce_find_info();
1207 int flags = MF_ACTION_REQUIRED;
1208
1209 if (!mi)
1210 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1211 pfn = mi->paddr >> PAGE_SHIFT;
1212
1213 clear_thread_flag(TIF_MCE_NOTIFY);
1214
1215 pr_err("Uncorrected hardware memory error in user-access at %llx",
1216 mi->paddr);
1217 /*
1218 * We must call memory_failure() here even if the current process is
1219 * doomed. We still need to mark the page as poisoned and alert any
1220 * other users of the page.
1221 */
1222 if (!mi->restartable)
1223 flags |= MF_MUST_KILL;
1224 if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1225 pr_err("Memory error not recovered");
1226 force_sig(SIGBUS, current);
1227 }
1228 mce_clear_info(mi);
1229 }
1230
1231 /*
1232 * Action optional processing happens here (picking up
1233 * from the list of faulting pages that do_machine_check()
1234 * placed into the "ring").
1235 */
1236 static void mce_process_work(struct work_struct *dummy)
1237 {
1238 unsigned long pfn;
1239
1240 while (mce_ring_get(&pfn))
1241 memory_failure(pfn, MCE_VECTOR, 0);
1242 }
1243
1244 #ifdef CONFIG_X86_MCE_INTEL
1245 /***
1246 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1247 * @cpu: The CPU on which the event occurred.
1248 * @status: Event status information
1249 *
1250 * This function should be called by the thermal interrupt after the
1251 * event has been processed and the decision was made to log the event
1252 * further.
1253 *
1254 * The status parameter will be saved to the 'status' field of 'struct mce'
1255 * and historically has been the register value of the
1256 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1257 */
1258 void mce_log_therm_throt_event(__u64 status)
1259 {
1260 struct mce m;
1261
1262 mce_setup(&m);
1263 m.bank = MCE_THERMAL_BANK;
1264 m.status = status;
1265 mce_log(&m);
1266 }
1267 #endif /* CONFIG_X86_MCE_INTEL */
1268
1269 /*
1270 * Periodic polling timer for "silent" machine check errors. If the
1271 * poller finds an MCE, poll 2x faster. When the poller finds no more
1272 * errors, poll 2x slower (up to check_interval seconds).
1273 */
1274 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1275
1276 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1277 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1278
1279 static unsigned long mce_adjust_timer_default(unsigned long interval)
1280 {
1281 return interval;
1282 }
1283
1284 static unsigned long (*mce_adjust_timer)(unsigned long interval) =
1285 mce_adjust_timer_default;
1286
1287 static int cmc_error_seen(void)
1288 {
1289 unsigned long *v = &__get_cpu_var(mce_polled_error);
1290
1291 return test_and_clear_bit(0, v);
1292 }
1293
1294 static void mce_timer_fn(unsigned long data)
1295 {
1296 struct timer_list *t = &__get_cpu_var(mce_timer);
1297 unsigned long iv;
1298 int notify;
1299
1300 WARN_ON(smp_processor_id() != data);
1301
1302 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1303 machine_check_poll(MCP_TIMESTAMP,
1304 &__get_cpu_var(mce_poll_banks));
1305 mce_intel_cmci_poll();
1306 }
1307
1308 /*
1309 * Alert userspace if needed. If we logged an MCE, reduce the
1310 * polling interval, otherwise increase the polling interval.
1311 */
1312 iv = __this_cpu_read(mce_next_interval);
1313 notify = mce_notify_irq();
1314 notify |= cmc_error_seen();
1315 if (notify) {
1316 iv = max(iv / 2, (unsigned long) HZ/100);
1317 } else {
1318 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1319 iv = mce_adjust_timer(iv);
1320 }
1321 __this_cpu_write(mce_next_interval, iv);
1322 /* Might have become 0 after CMCI storm subsided */
1323 if (iv) {
1324 t->expires = jiffies + iv;
1325 add_timer_on(t, smp_processor_id());
1326 }
1327 }
1328
1329 /*
1330 * Ensure that the timer is firing in @interval from now.
1331 */
1332 void mce_timer_kick(unsigned long interval)
1333 {
1334 struct timer_list *t = &__get_cpu_var(mce_timer);
1335 unsigned long when = jiffies + interval;
1336 unsigned long iv = __this_cpu_read(mce_next_interval);
1337
1338 if (timer_pending(t)) {
1339 if (time_before(when, t->expires))
1340 mod_timer_pinned(t, when);
1341 } else {
1342 t->expires = round_jiffies(when);
1343 add_timer_on(t, smp_processor_id());
1344 }
1345 if (interval < iv)
1346 __this_cpu_write(mce_next_interval, interval);
1347 }
1348
1349 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1350 static void mce_timer_delete_all(void)
1351 {
1352 int cpu;
1353
1354 for_each_online_cpu(cpu)
1355 del_timer_sync(&per_cpu(mce_timer, cpu));
1356 }
1357
1358 static void mce_do_trigger(struct work_struct *work)
1359 {
1360 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1361 }
1362
1363 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1364
1365 /*
1366 * Notify the user(s) about new machine check events.
1367 * Can be called from interrupt context, but not from machine check/NMI
1368 * context.
1369 */
1370 int mce_notify_irq(void)
1371 {
1372 /* Not more than two messages every minute */
1373 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1374
1375 if (test_and_clear_bit(0, &mce_need_notify)) {
1376 /* wake processes polling /dev/mcelog */
1377 wake_up_interruptible(&mce_chrdev_wait);
1378
1379 if (mce_helper[0])
1380 schedule_work(&mce_trigger_work);
1381
1382 if (__ratelimit(&ratelimit))
1383 pr_info(HW_ERR "Machine check events logged\n");
1384
1385 return 1;
1386 }
1387 return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(mce_notify_irq);
1390
1391 static int __mcheck_cpu_mce_banks_init(void)
1392 {
1393 int i;
1394 u8 num_banks = mca_cfg.banks;
1395
1396 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1397 if (!mce_banks)
1398 return -ENOMEM;
1399
1400 for (i = 0; i < num_banks; i++) {
1401 struct mce_bank *b = &mce_banks[i];
1402
1403 b->ctl = -1ULL;
1404 b->init = 1;
1405 }
1406 return 0;
1407 }
1408
1409 /*
1410 * Initialize Machine Checks for a CPU.
1411 */
1412 static int __mcheck_cpu_cap_init(void)
1413 {
1414 unsigned b;
1415 u64 cap;
1416
1417 rdmsrl(MSR_IA32_MCG_CAP, cap);
1418
1419 b = cap & MCG_BANKCNT_MASK;
1420 if (!mca_cfg.banks)
1421 pr_info("CPU supports %d MCE banks\n", b);
1422
1423 if (b > MAX_NR_BANKS) {
1424 pr_warn("Using only %u machine check banks out of %u\n",
1425 MAX_NR_BANKS, b);
1426 b = MAX_NR_BANKS;
1427 }
1428
1429 /* Don't support asymmetric configurations today */
1430 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1431 mca_cfg.banks = b;
1432
1433 if (!mce_banks) {
1434 int err = __mcheck_cpu_mce_banks_init();
1435
1436 if (err)
1437 return err;
1438 }
1439
1440 /* Use accurate RIP reporting if available. */
1441 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1442 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1443
1444 if (cap & MCG_SER_P)
1445 mca_cfg.ser = true;
1446
1447 return 0;
1448 }
1449
1450 static void __mcheck_cpu_init_generic(void)
1451 {
1452 enum mcp_flags m_fl = 0;
1453 mce_banks_t all_banks;
1454 u64 cap;
1455 int i;
1456
1457 if (!mca_cfg.bootlog)
1458 m_fl = MCP_DONTLOG;
1459
1460 /*
1461 * Log the machine checks left over from the previous reset.
1462 */
1463 bitmap_fill(all_banks, MAX_NR_BANKS);
1464 machine_check_poll(MCP_UC | m_fl, &all_banks);
1465
1466 set_in_cr4(X86_CR4_MCE);
1467
1468 rdmsrl(MSR_IA32_MCG_CAP, cap);
1469 if (cap & MCG_CTL_P)
1470 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1471
1472 for (i = 0; i < mca_cfg.banks; i++) {
1473 struct mce_bank *b = &mce_banks[i];
1474
1475 if (!b->init)
1476 continue;
1477 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1478 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1479 }
1480 }
1481
1482 /*
1483 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1484 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1485 * Vol 3B Table 15-20). But this confuses both the code that determines
1486 * whether the machine check occurred in kernel or user mode, and also
1487 * the severity assessment code. Pretend that EIPV was set, and take the
1488 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1489 */
1490 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1491 {
1492 if (bank != 0)
1493 return;
1494 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1495 return;
1496 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1497 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1498 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1499 MCACOD)) !=
1500 (MCI_STATUS_UC|MCI_STATUS_EN|
1501 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1502 MCI_STATUS_AR|MCACOD_INSTR))
1503 return;
1504
1505 m->mcgstatus |= MCG_STATUS_EIPV;
1506 m->ip = regs->ip;
1507 m->cs = regs->cs;
1508 }
1509
1510 /* Add per CPU specific workarounds here */
1511 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1512 {
1513 struct mca_config *cfg = &mca_cfg;
1514
1515 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1516 pr_info("unknown CPU type - not enabling MCE support\n");
1517 return -EOPNOTSUPP;
1518 }
1519
1520 /* This should be disabled by the BIOS, but isn't always */
1521 if (c->x86_vendor == X86_VENDOR_AMD) {
1522 if (c->x86 == 15 && cfg->banks > 4) {
1523 /*
1524 * disable GART TBL walk error reporting, which
1525 * trips off incorrectly with the IOMMU & 3ware
1526 * & Cerberus:
1527 */
1528 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1529 }
1530 if (c->x86 <= 17 && cfg->bootlog < 0) {
1531 /*
1532 * Lots of broken BIOS around that don't clear them
1533 * by default and leave crap in there. Don't log:
1534 */
1535 cfg->bootlog = 0;
1536 }
1537 /*
1538 * Various K7s with broken bank 0 around. Always disable
1539 * by default.
1540 */
1541 if (c->x86 == 6 && cfg->banks > 0)
1542 mce_banks[0].ctl = 0;
1543
1544 /*
1545 * Turn off MC4_MISC thresholding banks on those models since
1546 * they're not supported there.
1547 */
1548 if (c->x86 == 0x15 &&
1549 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1550 int i;
1551 u64 val, hwcr;
1552 bool need_toggle;
1553 u32 msrs[] = {
1554 0x00000413, /* MC4_MISC0 */
1555 0xc0000408, /* MC4_MISC1 */
1556 };
1557
1558 rdmsrl(MSR_K7_HWCR, hwcr);
1559
1560 /* McStatusWrEn has to be set */
1561 need_toggle = !(hwcr & BIT(18));
1562
1563 if (need_toggle)
1564 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1565
1566 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1567 rdmsrl(msrs[i], val);
1568
1569 /* CntP bit set? */
1570 if (val & BIT_64(62)) {
1571 val &= ~BIT_64(62);
1572 wrmsrl(msrs[i], val);
1573 }
1574 }
1575
1576 /* restore old settings */
1577 if (need_toggle)
1578 wrmsrl(MSR_K7_HWCR, hwcr);
1579 }
1580 }
1581
1582 if (c->x86_vendor == X86_VENDOR_INTEL) {
1583 /*
1584 * SDM documents that on family 6 bank 0 should not be written
1585 * because it aliases to another special BIOS controlled
1586 * register.
1587 * But it's not aliased anymore on model 0x1a+
1588 * Don't ignore bank 0 completely because there could be a
1589 * valid event later, merely don't write CTL0.
1590 */
1591
1592 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1593 mce_banks[0].init = 0;
1594
1595 /*
1596 * All newer Intel systems support MCE broadcasting. Enable
1597 * synchronization with a one second timeout.
1598 */
1599 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1600 cfg->monarch_timeout < 0)
1601 cfg->monarch_timeout = USEC_PER_SEC;
1602
1603 /*
1604 * There are also broken BIOSes on some Pentium M and
1605 * earlier systems:
1606 */
1607 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1608 cfg->bootlog = 0;
1609
1610 if (c->x86 == 6 && c->x86_model == 45)
1611 quirk_no_way_out = quirk_sandybridge_ifu;
1612 }
1613 if (cfg->monarch_timeout < 0)
1614 cfg->monarch_timeout = 0;
1615 if (cfg->bootlog != 0)
1616 cfg->panic_timeout = 30;
1617
1618 return 0;
1619 }
1620
1621 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1622 {
1623 if (c->x86 != 5)
1624 return 0;
1625
1626 switch (c->x86_vendor) {
1627 case X86_VENDOR_INTEL:
1628 intel_p5_mcheck_init(c);
1629 return 1;
1630 break;
1631 case X86_VENDOR_CENTAUR:
1632 winchip_mcheck_init(c);
1633 return 1;
1634 break;
1635 }
1636
1637 return 0;
1638 }
1639
1640 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1641 {
1642 switch (c->x86_vendor) {
1643 case X86_VENDOR_INTEL:
1644 mce_intel_feature_init(c);
1645 mce_adjust_timer = mce_intel_adjust_timer;
1646 break;
1647 case X86_VENDOR_AMD:
1648 mce_amd_feature_init(c);
1649 break;
1650 default:
1651 break;
1652 }
1653 }
1654
1655 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1656 {
1657 unsigned long iv = check_interval * HZ;
1658
1659 if (mca_cfg.ignore_ce || !iv)
1660 return;
1661
1662 per_cpu(mce_next_interval, cpu) = iv;
1663
1664 t->expires = round_jiffies(jiffies + iv);
1665 add_timer_on(t, cpu);
1666 }
1667
1668 static void __mcheck_cpu_init_timer(void)
1669 {
1670 struct timer_list *t = &__get_cpu_var(mce_timer);
1671 unsigned int cpu = smp_processor_id();
1672
1673 setup_timer(t, mce_timer_fn, cpu);
1674 mce_start_timer(cpu, t);
1675 }
1676
1677 /* Handle unconfigured int18 (should never happen) */
1678 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1679 {
1680 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1681 smp_processor_id());
1682 }
1683
1684 /* Call the installed machine check handler for this CPU setup. */
1685 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1686 unexpected_machine_check;
1687
1688 /*
1689 * Called for each booted CPU to set up machine checks.
1690 * Must be called with preempt off:
1691 */
1692 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1693 {
1694 if (mca_cfg.disabled)
1695 return;
1696
1697 if (__mcheck_cpu_ancient_init(c))
1698 return;
1699
1700 if (!mce_available(c))
1701 return;
1702
1703 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1704 mca_cfg.disabled = true;
1705 return;
1706 }
1707
1708 machine_check_vector = do_machine_check;
1709
1710 __mcheck_cpu_init_generic();
1711 __mcheck_cpu_init_vendor(c);
1712 __mcheck_cpu_init_timer();
1713 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1714 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1715 }
1716
1717 /*
1718 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1719 */
1720
1721 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1722 static int mce_chrdev_open_count; /* #times opened */
1723 static int mce_chrdev_open_exclu; /* already open exclusive? */
1724
1725 static int mce_chrdev_open(struct inode *inode, struct file *file)
1726 {
1727 spin_lock(&mce_chrdev_state_lock);
1728
1729 if (mce_chrdev_open_exclu ||
1730 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1731 spin_unlock(&mce_chrdev_state_lock);
1732
1733 return -EBUSY;
1734 }
1735
1736 if (file->f_flags & O_EXCL)
1737 mce_chrdev_open_exclu = 1;
1738 mce_chrdev_open_count++;
1739
1740 spin_unlock(&mce_chrdev_state_lock);
1741
1742 return nonseekable_open(inode, file);
1743 }
1744
1745 static int mce_chrdev_release(struct inode *inode, struct file *file)
1746 {
1747 spin_lock(&mce_chrdev_state_lock);
1748
1749 mce_chrdev_open_count--;
1750 mce_chrdev_open_exclu = 0;
1751
1752 spin_unlock(&mce_chrdev_state_lock);
1753
1754 return 0;
1755 }
1756
1757 static void collect_tscs(void *data)
1758 {
1759 unsigned long *cpu_tsc = (unsigned long *)data;
1760
1761 rdtscll(cpu_tsc[smp_processor_id()]);
1762 }
1763
1764 static int mce_apei_read_done;
1765
1766 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1767 static int __mce_read_apei(char __user **ubuf, size_t usize)
1768 {
1769 int rc;
1770 u64 record_id;
1771 struct mce m;
1772
1773 if (usize < sizeof(struct mce))
1774 return -EINVAL;
1775
1776 rc = apei_read_mce(&m, &record_id);
1777 /* Error or no more MCE record */
1778 if (rc <= 0) {
1779 mce_apei_read_done = 1;
1780 /*
1781 * When ERST is disabled, mce_chrdev_read() should return
1782 * "no record" instead of "no device."
1783 */
1784 if (rc == -ENODEV)
1785 return 0;
1786 return rc;
1787 }
1788 rc = -EFAULT;
1789 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1790 return rc;
1791 /*
1792 * In fact, we should have cleared the record after that has
1793 * been flushed to the disk or sent to network in
1794 * /sbin/mcelog, but we have no interface to support that now,
1795 * so just clear it to avoid duplication.
1796 */
1797 rc = apei_clear_mce(record_id);
1798 if (rc) {
1799 mce_apei_read_done = 1;
1800 return rc;
1801 }
1802 *ubuf += sizeof(struct mce);
1803
1804 return 0;
1805 }
1806
1807 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1808 size_t usize, loff_t *off)
1809 {
1810 char __user *buf = ubuf;
1811 unsigned long *cpu_tsc;
1812 unsigned prev, next;
1813 int i, err;
1814
1815 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1816 if (!cpu_tsc)
1817 return -ENOMEM;
1818
1819 mutex_lock(&mce_chrdev_read_mutex);
1820
1821 if (!mce_apei_read_done) {
1822 err = __mce_read_apei(&buf, usize);
1823 if (err || buf != ubuf)
1824 goto out;
1825 }
1826
1827 next = rcu_dereference_check_mce(mcelog.next);
1828
1829 /* Only supports full reads right now */
1830 err = -EINVAL;
1831 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1832 goto out;
1833
1834 err = 0;
1835 prev = 0;
1836 do {
1837 for (i = prev; i < next; i++) {
1838 unsigned long start = jiffies;
1839 struct mce *m = &mcelog.entry[i];
1840
1841 while (!m->finished) {
1842 if (time_after_eq(jiffies, start + 2)) {
1843 memset(m, 0, sizeof(*m));
1844 goto timeout;
1845 }
1846 cpu_relax();
1847 }
1848 smp_rmb();
1849 err |= copy_to_user(buf, m, sizeof(*m));
1850 buf += sizeof(*m);
1851 timeout:
1852 ;
1853 }
1854
1855 memset(mcelog.entry + prev, 0,
1856 (next - prev) * sizeof(struct mce));
1857 prev = next;
1858 next = cmpxchg(&mcelog.next, prev, 0);
1859 } while (next != prev);
1860
1861 synchronize_sched();
1862
1863 /*
1864 * Collect entries that were still getting written before the
1865 * synchronize.
1866 */
1867 on_each_cpu(collect_tscs, cpu_tsc, 1);
1868
1869 for (i = next; i < MCE_LOG_LEN; i++) {
1870 struct mce *m = &mcelog.entry[i];
1871
1872 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1873 err |= copy_to_user(buf, m, sizeof(*m));
1874 smp_rmb();
1875 buf += sizeof(*m);
1876 memset(m, 0, sizeof(*m));
1877 }
1878 }
1879
1880 if (err)
1881 err = -EFAULT;
1882
1883 out:
1884 mutex_unlock(&mce_chrdev_read_mutex);
1885 kfree(cpu_tsc);
1886
1887 return err ? err : buf - ubuf;
1888 }
1889
1890 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1891 {
1892 poll_wait(file, &mce_chrdev_wait, wait);
1893 if (rcu_access_index(mcelog.next))
1894 return POLLIN | POLLRDNORM;
1895 if (!mce_apei_read_done && apei_check_mce())
1896 return POLLIN | POLLRDNORM;
1897 return 0;
1898 }
1899
1900 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1901 unsigned long arg)
1902 {
1903 int __user *p = (int __user *)arg;
1904
1905 if (!capable(CAP_SYS_ADMIN))
1906 return -EPERM;
1907
1908 switch (cmd) {
1909 case MCE_GET_RECORD_LEN:
1910 return put_user(sizeof(struct mce), p);
1911 case MCE_GET_LOG_LEN:
1912 return put_user(MCE_LOG_LEN, p);
1913 case MCE_GETCLEAR_FLAGS: {
1914 unsigned flags;
1915
1916 do {
1917 flags = mcelog.flags;
1918 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1919
1920 return put_user(flags, p);
1921 }
1922 default:
1923 return -ENOTTY;
1924 }
1925 }
1926
1927 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1928 size_t usize, loff_t *off);
1929
1930 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1931 const char __user *ubuf,
1932 size_t usize, loff_t *off))
1933 {
1934 mce_write = fn;
1935 }
1936 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1937
1938 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1939 size_t usize, loff_t *off)
1940 {
1941 if (mce_write)
1942 return mce_write(filp, ubuf, usize, off);
1943 else
1944 return -EINVAL;
1945 }
1946
1947 static const struct file_operations mce_chrdev_ops = {
1948 .open = mce_chrdev_open,
1949 .release = mce_chrdev_release,
1950 .read = mce_chrdev_read,
1951 .write = mce_chrdev_write,
1952 .poll = mce_chrdev_poll,
1953 .unlocked_ioctl = mce_chrdev_ioctl,
1954 .llseek = no_llseek,
1955 };
1956
1957 static struct miscdevice mce_chrdev_device = {
1958 MISC_MCELOG_MINOR,
1959 "mcelog",
1960 &mce_chrdev_ops,
1961 };
1962
1963 static void __mce_disable_bank(void *arg)
1964 {
1965 int bank = *((int *)arg);
1966 __clear_bit(bank, __get_cpu_var(mce_poll_banks));
1967 cmci_disable_bank(bank);
1968 }
1969
1970 void mce_disable_bank(int bank)
1971 {
1972 if (bank >= mca_cfg.banks) {
1973 pr_warn(FW_BUG
1974 "Ignoring request to disable invalid MCA bank %d.\n",
1975 bank);
1976 return;
1977 }
1978 set_bit(bank, mce_banks_ce_disabled);
1979 on_each_cpu(__mce_disable_bank, &bank, 1);
1980 }
1981
1982 /*
1983 * mce=off Disables machine check
1984 * mce=no_cmci Disables CMCI
1985 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1986 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1987 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1988 * monarchtimeout is how long to wait for other CPUs on machine
1989 * check, or 0 to not wait
1990 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1991 * mce=nobootlog Don't log MCEs from before booting.
1992 * mce=bios_cmci_threshold Don't program the CMCI threshold
1993 */
1994 static int __init mcheck_enable(char *str)
1995 {
1996 struct mca_config *cfg = &mca_cfg;
1997
1998 if (*str == 0) {
1999 enable_p5_mce();
2000 return 1;
2001 }
2002 if (*str == '=')
2003 str++;
2004 if (!strcmp(str, "off"))
2005 cfg->disabled = true;
2006 else if (!strcmp(str, "no_cmci"))
2007 cfg->cmci_disabled = true;
2008 else if (!strcmp(str, "dont_log_ce"))
2009 cfg->dont_log_ce = true;
2010 else if (!strcmp(str, "ignore_ce"))
2011 cfg->ignore_ce = true;
2012 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2013 cfg->bootlog = (str[0] == 'b');
2014 else if (!strcmp(str, "bios_cmci_threshold"))
2015 cfg->bios_cmci_threshold = true;
2016 else if (isdigit(str[0])) {
2017 get_option(&str, &(cfg->tolerant));
2018 if (*str == ',') {
2019 ++str;
2020 get_option(&str, &(cfg->monarch_timeout));
2021 }
2022 } else {
2023 pr_info("mce argument %s ignored. Please use /sys\n", str);
2024 return 0;
2025 }
2026 return 1;
2027 }
2028 __setup("mce", mcheck_enable);
2029
2030 int __init mcheck_init(void)
2031 {
2032 mcheck_intel_therm_init();
2033
2034 return 0;
2035 }
2036
2037 /*
2038 * mce_syscore: PM support
2039 */
2040
2041 /*
2042 * Disable machine checks on suspend and shutdown. We can't really handle
2043 * them later.
2044 */
2045 static int mce_disable_error_reporting(void)
2046 {
2047 int i;
2048
2049 for (i = 0; i < mca_cfg.banks; i++) {
2050 struct mce_bank *b = &mce_banks[i];
2051
2052 if (b->init)
2053 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2054 }
2055 return 0;
2056 }
2057
2058 static int mce_syscore_suspend(void)
2059 {
2060 return mce_disable_error_reporting();
2061 }
2062
2063 static void mce_syscore_shutdown(void)
2064 {
2065 mce_disable_error_reporting();
2066 }
2067
2068 /*
2069 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2070 * Only one CPU is active at this time, the others get re-added later using
2071 * CPU hotplug:
2072 */
2073 static void mce_syscore_resume(void)
2074 {
2075 __mcheck_cpu_init_generic();
2076 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
2077 }
2078
2079 static struct syscore_ops mce_syscore_ops = {
2080 .suspend = mce_syscore_suspend,
2081 .shutdown = mce_syscore_shutdown,
2082 .resume = mce_syscore_resume,
2083 };
2084
2085 /*
2086 * mce_device: Sysfs support
2087 */
2088
2089 static void mce_cpu_restart(void *data)
2090 {
2091 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2092 return;
2093 __mcheck_cpu_init_generic();
2094 __mcheck_cpu_init_timer();
2095 }
2096
2097 /* Reinit MCEs after user configuration changes */
2098 static void mce_restart(void)
2099 {
2100 mce_timer_delete_all();
2101 on_each_cpu(mce_cpu_restart, NULL, 1);
2102 }
2103
2104 /* Toggle features for corrected errors */
2105 static void mce_disable_cmci(void *data)
2106 {
2107 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2108 return;
2109 cmci_clear();
2110 }
2111
2112 static void mce_enable_ce(void *all)
2113 {
2114 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2115 return;
2116 cmci_reenable();
2117 cmci_recheck();
2118 if (all)
2119 __mcheck_cpu_init_timer();
2120 }
2121
2122 static struct bus_type mce_subsys = {
2123 .name = "machinecheck",
2124 .dev_name = "machinecheck",
2125 };
2126
2127 DEFINE_PER_CPU(struct device *, mce_device);
2128
2129 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2130
2131 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2132 {
2133 return container_of(attr, struct mce_bank, attr);
2134 }
2135
2136 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2137 char *buf)
2138 {
2139 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2140 }
2141
2142 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2143 const char *buf, size_t size)
2144 {
2145 u64 new;
2146
2147 if (strict_strtoull(buf, 0, &new) < 0)
2148 return -EINVAL;
2149
2150 attr_to_bank(attr)->ctl = new;
2151 mce_restart();
2152
2153 return size;
2154 }
2155
2156 static ssize_t
2157 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2158 {
2159 strcpy(buf, mce_helper);
2160 strcat(buf, "\n");
2161 return strlen(mce_helper) + 1;
2162 }
2163
2164 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2165 const char *buf, size_t siz)
2166 {
2167 char *p;
2168
2169 strncpy(mce_helper, buf, sizeof(mce_helper));
2170 mce_helper[sizeof(mce_helper)-1] = 0;
2171 p = strchr(mce_helper, '\n');
2172
2173 if (p)
2174 *p = 0;
2175
2176 return strlen(mce_helper) + !!p;
2177 }
2178
2179 static ssize_t set_ignore_ce(struct device *s,
2180 struct device_attribute *attr,
2181 const char *buf, size_t size)
2182 {
2183 u64 new;
2184
2185 if (strict_strtoull(buf, 0, &new) < 0)
2186 return -EINVAL;
2187
2188 if (mca_cfg.ignore_ce ^ !!new) {
2189 if (new) {
2190 /* disable ce features */
2191 mce_timer_delete_all();
2192 on_each_cpu(mce_disable_cmci, NULL, 1);
2193 mca_cfg.ignore_ce = true;
2194 } else {
2195 /* enable ce features */
2196 mca_cfg.ignore_ce = false;
2197 on_each_cpu(mce_enable_ce, (void *)1, 1);
2198 }
2199 }
2200 return size;
2201 }
2202
2203 static ssize_t set_cmci_disabled(struct device *s,
2204 struct device_attribute *attr,
2205 const char *buf, size_t size)
2206 {
2207 u64 new;
2208
2209 if (strict_strtoull(buf, 0, &new) < 0)
2210 return -EINVAL;
2211
2212 if (mca_cfg.cmci_disabled ^ !!new) {
2213 if (new) {
2214 /* disable cmci */
2215 on_each_cpu(mce_disable_cmci, NULL, 1);
2216 mca_cfg.cmci_disabled = true;
2217 } else {
2218 /* enable cmci */
2219 mca_cfg.cmci_disabled = false;
2220 on_each_cpu(mce_enable_ce, NULL, 1);
2221 }
2222 }
2223 return size;
2224 }
2225
2226 static ssize_t store_int_with_restart(struct device *s,
2227 struct device_attribute *attr,
2228 const char *buf, size_t size)
2229 {
2230 ssize_t ret = device_store_int(s, attr, buf, size);
2231 mce_restart();
2232 return ret;
2233 }
2234
2235 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2236 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2237 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2238 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2239
2240 static struct dev_ext_attribute dev_attr_check_interval = {
2241 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2242 &check_interval
2243 };
2244
2245 static struct dev_ext_attribute dev_attr_ignore_ce = {
2246 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2247 &mca_cfg.ignore_ce
2248 };
2249
2250 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2251 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2252 &mca_cfg.cmci_disabled
2253 };
2254
2255 static struct device_attribute *mce_device_attrs[] = {
2256 &dev_attr_tolerant.attr,
2257 &dev_attr_check_interval.attr,
2258 &dev_attr_trigger,
2259 &dev_attr_monarch_timeout.attr,
2260 &dev_attr_dont_log_ce.attr,
2261 &dev_attr_ignore_ce.attr,
2262 &dev_attr_cmci_disabled.attr,
2263 NULL
2264 };
2265
2266 static cpumask_var_t mce_device_initialized;
2267
2268 static void mce_device_release(struct device *dev)
2269 {
2270 kfree(dev);
2271 }
2272
2273 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2274 static int mce_device_create(unsigned int cpu)
2275 {
2276 struct device *dev;
2277 int err;
2278 int i, j;
2279
2280 if (!mce_available(&boot_cpu_data))
2281 return -EIO;
2282
2283 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2284 if (!dev)
2285 return -ENOMEM;
2286 dev->id = cpu;
2287 dev->bus = &mce_subsys;
2288 dev->release = &mce_device_release;
2289
2290 err = device_register(dev);
2291 if (err) {
2292 put_device(dev);
2293 return err;
2294 }
2295
2296 for (i = 0; mce_device_attrs[i]; i++) {
2297 err = device_create_file(dev, mce_device_attrs[i]);
2298 if (err)
2299 goto error;
2300 }
2301 for (j = 0; j < mca_cfg.banks; j++) {
2302 err = device_create_file(dev, &mce_banks[j].attr);
2303 if (err)
2304 goto error2;
2305 }
2306 cpumask_set_cpu(cpu, mce_device_initialized);
2307 per_cpu(mce_device, cpu) = dev;
2308
2309 return 0;
2310 error2:
2311 while (--j >= 0)
2312 device_remove_file(dev, &mce_banks[j].attr);
2313 error:
2314 while (--i >= 0)
2315 device_remove_file(dev, mce_device_attrs[i]);
2316
2317 device_unregister(dev);
2318
2319 return err;
2320 }
2321
2322 static void mce_device_remove(unsigned int cpu)
2323 {
2324 struct device *dev = per_cpu(mce_device, cpu);
2325 int i;
2326
2327 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2328 return;
2329
2330 for (i = 0; mce_device_attrs[i]; i++)
2331 device_remove_file(dev, mce_device_attrs[i]);
2332
2333 for (i = 0; i < mca_cfg.banks; i++)
2334 device_remove_file(dev, &mce_banks[i].attr);
2335
2336 device_unregister(dev);
2337 cpumask_clear_cpu(cpu, mce_device_initialized);
2338 per_cpu(mce_device, cpu) = NULL;
2339 }
2340
2341 /* Make sure there are no machine checks on offlined CPUs. */
2342 static void mce_disable_cpu(void *h)
2343 {
2344 unsigned long action = *(unsigned long *)h;
2345 int i;
2346
2347 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2348 return;
2349
2350 if (!(action & CPU_TASKS_FROZEN))
2351 cmci_clear();
2352 for (i = 0; i < mca_cfg.banks; i++) {
2353 struct mce_bank *b = &mce_banks[i];
2354
2355 if (b->init)
2356 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2357 }
2358 }
2359
2360 static void mce_reenable_cpu(void *h)
2361 {
2362 unsigned long action = *(unsigned long *)h;
2363 int i;
2364
2365 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2366 return;
2367
2368 if (!(action & CPU_TASKS_FROZEN))
2369 cmci_reenable();
2370 for (i = 0; i < mca_cfg.banks; i++) {
2371 struct mce_bank *b = &mce_banks[i];
2372
2373 if (b->init)
2374 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2375 }
2376 }
2377
2378 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2379 static int
2380 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2381 {
2382 unsigned int cpu = (unsigned long)hcpu;
2383 struct timer_list *t = &per_cpu(mce_timer, cpu);
2384
2385 switch (action & ~CPU_TASKS_FROZEN) {
2386 case CPU_ONLINE:
2387 mce_device_create(cpu);
2388 if (threshold_cpu_callback)
2389 threshold_cpu_callback(action, cpu);
2390 break;
2391 case CPU_DEAD:
2392 if (threshold_cpu_callback)
2393 threshold_cpu_callback(action, cpu);
2394 mce_device_remove(cpu);
2395 mce_intel_hcpu_update(cpu);
2396 break;
2397 case CPU_DOWN_PREPARE:
2398 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2399 del_timer_sync(t);
2400 break;
2401 case CPU_DOWN_FAILED:
2402 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2403 mce_start_timer(cpu, t);
2404 break;
2405 }
2406
2407 if (action == CPU_POST_DEAD) {
2408 /* intentionally ignoring frozen here */
2409 cmci_rediscover();
2410 }
2411
2412 return NOTIFY_OK;
2413 }
2414
2415 static struct notifier_block mce_cpu_notifier = {
2416 .notifier_call = mce_cpu_callback,
2417 };
2418
2419 static __init void mce_init_banks(void)
2420 {
2421 int i;
2422
2423 for (i = 0; i < mca_cfg.banks; i++) {
2424 struct mce_bank *b = &mce_banks[i];
2425 struct device_attribute *a = &b->attr;
2426
2427 sysfs_attr_init(&a->attr);
2428 a->attr.name = b->attrname;
2429 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2430
2431 a->attr.mode = 0644;
2432 a->show = show_bank;
2433 a->store = set_bank;
2434 }
2435 }
2436
2437 static __init int mcheck_init_device(void)
2438 {
2439 int err;
2440 int i = 0;
2441
2442 if (!mce_available(&boot_cpu_data))
2443 return -EIO;
2444
2445 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2446
2447 mce_init_banks();
2448
2449 err = subsys_system_register(&mce_subsys, NULL);
2450 if (err)
2451 return err;
2452
2453 cpu_notifier_register_begin();
2454 for_each_online_cpu(i) {
2455 err = mce_device_create(i);
2456 if (err) {
2457 cpu_notifier_register_done();
2458 return err;
2459 }
2460 }
2461
2462 register_syscore_ops(&mce_syscore_ops);
2463 __register_hotcpu_notifier(&mce_cpu_notifier);
2464 cpu_notifier_register_done();
2465
2466 /* register character device /dev/mcelog */
2467 misc_register(&mce_chrdev_device);
2468
2469 return err;
2470 }
2471 device_initcall_sync(mcheck_init_device);
2472
2473 /*
2474 * Old style boot options parsing. Only for compatibility.
2475 */
2476 static int __init mcheck_disable(char *str)
2477 {
2478 mca_cfg.disabled = true;
2479 return 1;
2480 }
2481 __setup("nomce", mcheck_disable);
2482
2483 #ifdef CONFIG_DEBUG_FS
2484 struct dentry *mce_get_debugfs_dir(void)
2485 {
2486 static struct dentry *dmce;
2487
2488 if (!dmce)
2489 dmce = debugfs_create_dir("mce", NULL);
2490
2491 return dmce;
2492 }
2493
2494 static void mce_reset(void)
2495 {
2496 cpu_missing = 0;
2497 atomic_set(&mce_fake_paniced, 0);
2498 atomic_set(&mce_executing, 0);
2499 atomic_set(&mce_callin, 0);
2500 atomic_set(&global_nwo, 0);
2501 }
2502
2503 static int fake_panic_get(void *data, u64 *val)
2504 {
2505 *val = fake_panic;
2506 return 0;
2507 }
2508
2509 static int fake_panic_set(void *data, u64 val)
2510 {
2511 mce_reset();
2512 fake_panic = val;
2513 return 0;
2514 }
2515
2516 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2517 fake_panic_set, "%llu\n");
2518
2519 static int __init mcheck_debugfs_init(void)
2520 {
2521 struct dentry *dmce, *ffake_panic;
2522
2523 dmce = mce_get_debugfs_dir();
2524 if (!dmce)
2525 return -ENOMEM;
2526 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2527 &fake_panic_fops);
2528 if (!ffake_panic)
2529 return -ENOMEM;
2530
2531 return 0;
2532 }
2533 late_initcall(mcheck_debugfs_init);
2534 #endif