]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/init.h>
30 #include <linux/kmod.h>
31 #include <linux/poll.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/fs.h>
36 #include <linux/mm.h>
37 #include <linux/debugfs.h>
38
39 #include <asm/processor.h>
40 #include <asm/hw_irq.h>
41 #include <asm/apic.h>
42 #include <asm/idle.h>
43 #include <asm/ipi.h>
44 #include <asm/mce.h>
45 #include <asm/msr.h>
46
47 #include "mce-internal.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/mce.h>
51
52 int mce_disabled __read_mostly;
53
54 #define MISC_MCELOG_MINOR 227
55
56 #define SPINUNIT 100 /* 100ns */
57
58 atomic_t mce_entry;
59
60 DEFINE_PER_CPU(unsigned, mce_exception_count);
61
62 /*
63 * Tolerant levels:
64 * 0: always panic on uncorrected errors, log corrected errors
65 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
66 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
67 * 3: never panic or SIGBUS, log all errors (for testing only)
68 */
69 static int tolerant __read_mostly = 1;
70 static int banks __read_mostly;
71 static int rip_msr __read_mostly;
72 static int mce_bootlog __read_mostly = -1;
73 static int monarch_timeout __read_mostly = -1;
74 static int mce_panic_timeout __read_mostly;
75 static int mce_dont_log_ce __read_mostly;
76 int mce_cmci_disabled __read_mostly;
77 int mce_ignore_ce __read_mostly;
78 int mce_ser __read_mostly;
79
80 struct mce_bank *mce_banks __read_mostly;
81
82 /* User mode helper program triggered by machine check event */
83 static unsigned long mce_need_notify;
84 static char mce_helper[128];
85 static char *mce_helper_argv[2] = { mce_helper, NULL };
86
87 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
88 static DEFINE_PER_CPU(struct mce, mces_seen);
89 static int cpu_missing;
90
91 /*
92 * CPU/chipset specific EDAC code can register a notifier call here to print
93 * MCE errors in a human-readable form.
94 */
95 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
96 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
97
98 static int default_decode_mce(struct notifier_block *nb, unsigned long val,
99 void *data)
100 {
101 pr_emerg("No human readable MCE decoding support on this CPU type.\n");
102 pr_emerg("Run the message through 'mcelog --ascii' to decode.\n");
103
104 return NOTIFY_STOP;
105 }
106
107 static struct notifier_block mce_dec_nb = {
108 .notifier_call = default_decode_mce,
109 .priority = -1,
110 };
111
112 /* MCA banks polled by the period polling timer for corrected events */
113 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
114 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
115 };
116
117 static DEFINE_PER_CPU(struct work_struct, mce_work);
118
119 /* Do initial initialization of a struct mce */
120 void mce_setup(struct mce *m)
121 {
122 memset(m, 0, sizeof(struct mce));
123 m->cpu = m->extcpu = smp_processor_id();
124 rdtscll(m->tsc);
125 /* We hope get_seconds stays lockless */
126 m->time = get_seconds();
127 m->cpuvendor = boot_cpu_data.x86_vendor;
128 m->cpuid = cpuid_eax(1);
129 #ifdef CONFIG_SMP
130 m->socketid = cpu_data(m->extcpu).phys_proc_id;
131 #endif
132 m->apicid = cpu_data(m->extcpu).initial_apicid;
133 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
134 }
135
136 DEFINE_PER_CPU(struct mce, injectm);
137 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
138
139 /*
140 * Lockless MCE logging infrastructure.
141 * This avoids deadlocks on printk locks without having to break locks. Also
142 * separate MCEs from kernel messages to avoid bogus bug reports.
143 */
144
145 static struct mce_log mcelog = {
146 .signature = MCE_LOG_SIGNATURE,
147 .len = MCE_LOG_LEN,
148 .recordlen = sizeof(struct mce),
149 };
150
151 void mce_log(struct mce *mce)
152 {
153 unsigned next, entry;
154
155 /* Emit the trace record: */
156 trace_mce_record(mce);
157
158 mce->finished = 0;
159 wmb();
160 for (;;) {
161 entry = rcu_dereference(mcelog.next);
162 for (;;) {
163 /*
164 * When the buffer fills up discard new entries.
165 * Assume that the earlier errors are the more
166 * interesting ones:
167 */
168 if (entry >= MCE_LOG_LEN) {
169 set_bit(MCE_OVERFLOW,
170 (unsigned long *)&mcelog.flags);
171 return;
172 }
173 /* Old left over entry. Skip: */
174 if (mcelog.entry[entry].finished) {
175 entry++;
176 continue;
177 }
178 break;
179 }
180 smp_rmb();
181 next = entry + 1;
182 if (cmpxchg(&mcelog.next, entry, next) == entry)
183 break;
184 }
185 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
186 wmb();
187 mcelog.entry[entry].finished = 1;
188 wmb();
189
190 mce->finished = 1;
191 set_bit(0, &mce_need_notify);
192 }
193
194 static void print_mce(struct mce *m)
195 {
196 pr_emerg("CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
197 m->extcpu, m->mcgstatus, m->bank, m->status);
198
199 if (m->ip) {
200 pr_emerg("RIP%s %02x:<%016Lx> ",
201 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
202 m->cs, m->ip);
203
204 if (m->cs == __KERNEL_CS)
205 print_symbol("{%s}", m->ip);
206 pr_cont("\n");
207 }
208
209 pr_emerg("TSC %llx ", m->tsc);
210 if (m->addr)
211 pr_cont("ADDR %llx ", m->addr);
212 if (m->misc)
213 pr_cont("MISC %llx ", m->misc);
214
215 pr_cont("\n");
216 pr_emerg("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
217 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
218
219 /*
220 * Print out human-readable details about the MCE error,
221 * (if the CPU has an implementation for that)
222 */
223 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
224 }
225
226 static void print_mce_head(void)
227 {
228 pr_emerg("\nHARDWARE ERROR\n");
229 }
230
231 static void print_mce_tail(void)
232 {
233 pr_emerg("This is not a software problem!\n");
234 }
235
236 #define PANIC_TIMEOUT 5 /* 5 seconds */
237
238 static atomic_t mce_paniced;
239
240 static int fake_panic;
241 static atomic_t mce_fake_paniced;
242
243 /* Panic in progress. Enable interrupts and wait for final IPI */
244 static void wait_for_panic(void)
245 {
246 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
247
248 preempt_disable();
249 local_irq_enable();
250 while (timeout-- > 0)
251 udelay(1);
252 if (panic_timeout == 0)
253 panic_timeout = mce_panic_timeout;
254 panic("Panicing machine check CPU died");
255 }
256
257 static void mce_panic(char *msg, struct mce *final, char *exp)
258 {
259 int i;
260
261 if (!fake_panic) {
262 /*
263 * Make sure only one CPU runs in machine check panic
264 */
265 if (atomic_inc_return(&mce_paniced) > 1)
266 wait_for_panic();
267 barrier();
268
269 bust_spinlocks(1);
270 console_verbose();
271 } else {
272 /* Don't log too much for fake panic */
273 if (atomic_inc_return(&mce_fake_paniced) > 1)
274 return;
275 }
276 print_mce_head();
277 /* First print corrected ones that are still unlogged */
278 for (i = 0; i < MCE_LOG_LEN; i++) {
279 struct mce *m = &mcelog.entry[i];
280 if (!(m->status & MCI_STATUS_VAL))
281 continue;
282 if (!(m->status & MCI_STATUS_UC))
283 print_mce(m);
284 }
285 /* Now print uncorrected but with the final one last */
286 for (i = 0; i < MCE_LOG_LEN; i++) {
287 struct mce *m = &mcelog.entry[i];
288 if (!(m->status & MCI_STATUS_VAL))
289 continue;
290 if (!(m->status & MCI_STATUS_UC))
291 continue;
292 if (!final || memcmp(m, final, sizeof(struct mce)))
293 print_mce(m);
294 }
295 if (final)
296 print_mce(final);
297 if (cpu_missing)
298 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
299 print_mce_tail();
300 if (exp)
301 printk(KERN_EMERG "Machine check: %s\n", exp);
302 if (!fake_panic) {
303 if (panic_timeout == 0)
304 panic_timeout = mce_panic_timeout;
305 panic(msg);
306 } else
307 printk(KERN_EMERG "Fake kernel panic: %s\n", msg);
308 }
309
310 /* Support code for software error injection */
311
312 static int msr_to_offset(u32 msr)
313 {
314 unsigned bank = __get_cpu_var(injectm.bank);
315
316 if (msr == rip_msr)
317 return offsetof(struct mce, ip);
318 if (msr == MSR_IA32_MCx_STATUS(bank))
319 return offsetof(struct mce, status);
320 if (msr == MSR_IA32_MCx_ADDR(bank))
321 return offsetof(struct mce, addr);
322 if (msr == MSR_IA32_MCx_MISC(bank))
323 return offsetof(struct mce, misc);
324 if (msr == MSR_IA32_MCG_STATUS)
325 return offsetof(struct mce, mcgstatus);
326 return -1;
327 }
328
329 /* MSR access wrappers used for error injection */
330 static u64 mce_rdmsrl(u32 msr)
331 {
332 u64 v;
333
334 if (__get_cpu_var(injectm).finished) {
335 int offset = msr_to_offset(msr);
336
337 if (offset < 0)
338 return 0;
339 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
340 }
341
342 if (rdmsrl_safe(msr, &v)) {
343 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
344 /*
345 * Return zero in case the access faulted. This should
346 * not happen normally but can happen if the CPU does
347 * something weird, or if the code is buggy.
348 */
349 v = 0;
350 }
351
352 return v;
353 }
354
355 static void mce_wrmsrl(u32 msr, u64 v)
356 {
357 if (__get_cpu_var(injectm).finished) {
358 int offset = msr_to_offset(msr);
359
360 if (offset >= 0)
361 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
362 return;
363 }
364 wrmsrl(msr, v);
365 }
366
367 /*
368 * Simple lockless ring to communicate PFNs from the exception handler with the
369 * process context work function. This is vastly simplified because there's
370 * only a single reader and a single writer.
371 */
372 #define MCE_RING_SIZE 16 /* we use one entry less */
373
374 struct mce_ring {
375 unsigned short start;
376 unsigned short end;
377 unsigned long ring[MCE_RING_SIZE];
378 };
379 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
380
381 /* Runs with CPU affinity in workqueue */
382 static int mce_ring_empty(void)
383 {
384 struct mce_ring *r = &__get_cpu_var(mce_ring);
385
386 return r->start == r->end;
387 }
388
389 static int mce_ring_get(unsigned long *pfn)
390 {
391 struct mce_ring *r;
392 int ret = 0;
393
394 *pfn = 0;
395 get_cpu();
396 r = &__get_cpu_var(mce_ring);
397 if (r->start == r->end)
398 goto out;
399 *pfn = r->ring[r->start];
400 r->start = (r->start + 1) % MCE_RING_SIZE;
401 ret = 1;
402 out:
403 put_cpu();
404 return ret;
405 }
406
407 /* Always runs in MCE context with preempt off */
408 static int mce_ring_add(unsigned long pfn)
409 {
410 struct mce_ring *r = &__get_cpu_var(mce_ring);
411 unsigned next;
412
413 next = (r->end + 1) % MCE_RING_SIZE;
414 if (next == r->start)
415 return -1;
416 r->ring[r->end] = pfn;
417 wmb();
418 r->end = next;
419 return 0;
420 }
421
422 int mce_available(struct cpuinfo_x86 *c)
423 {
424 if (mce_disabled)
425 return 0;
426 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
427 }
428
429 static void mce_schedule_work(void)
430 {
431 if (!mce_ring_empty()) {
432 struct work_struct *work = &__get_cpu_var(mce_work);
433 if (!work_pending(work))
434 schedule_work(work);
435 }
436 }
437
438 /*
439 * Get the address of the instruction at the time of the machine check
440 * error.
441 */
442 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
443 {
444
445 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
446 m->ip = regs->ip;
447 m->cs = regs->cs;
448 } else {
449 m->ip = 0;
450 m->cs = 0;
451 }
452 if (rip_msr)
453 m->ip = mce_rdmsrl(rip_msr);
454 }
455
456 #ifdef CONFIG_X86_LOCAL_APIC
457 /*
458 * Called after interrupts have been reenabled again
459 * when a MCE happened during an interrupts off region
460 * in the kernel.
461 */
462 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
463 {
464 ack_APIC_irq();
465 exit_idle();
466 irq_enter();
467 mce_notify_irq();
468 mce_schedule_work();
469 irq_exit();
470 }
471 #endif
472
473 static void mce_report_event(struct pt_regs *regs)
474 {
475 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
476 mce_notify_irq();
477 /*
478 * Triggering the work queue here is just an insurance
479 * policy in case the syscall exit notify handler
480 * doesn't run soon enough or ends up running on the
481 * wrong CPU (can happen when audit sleeps)
482 */
483 mce_schedule_work();
484 return;
485 }
486
487 #ifdef CONFIG_X86_LOCAL_APIC
488 /*
489 * Without APIC do not notify. The event will be picked
490 * up eventually.
491 */
492 if (!cpu_has_apic)
493 return;
494
495 /*
496 * When interrupts are disabled we cannot use
497 * kernel services safely. Trigger an self interrupt
498 * through the APIC to instead do the notification
499 * after interrupts are reenabled again.
500 */
501 apic->send_IPI_self(MCE_SELF_VECTOR);
502
503 /*
504 * Wait for idle afterwards again so that we don't leave the
505 * APIC in a non idle state because the normal APIC writes
506 * cannot exclude us.
507 */
508 apic_wait_icr_idle();
509 #endif
510 }
511
512 DEFINE_PER_CPU(unsigned, mce_poll_count);
513
514 /*
515 * Poll for corrected events or events that happened before reset.
516 * Those are just logged through /dev/mcelog.
517 *
518 * This is executed in standard interrupt context.
519 *
520 * Note: spec recommends to panic for fatal unsignalled
521 * errors here. However this would be quite problematic --
522 * we would need to reimplement the Monarch handling and
523 * it would mess up the exclusion between exception handler
524 * and poll hander -- * so we skip this for now.
525 * These cases should not happen anyways, or only when the CPU
526 * is already totally * confused. In this case it's likely it will
527 * not fully execute the machine check handler either.
528 */
529 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
530 {
531 struct mce m;
532 int i;
533
534 __get_cpu_var(mce_poll_count)++;
535
536 mce_setup(&m);
537
538 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
539 for (i = 0; i < banks; i++) {
540 if (!mce_banks[i].ctl || !test_bit(i, *b))
541 continue;
542
543 m.misc = 0;
544 m.addr = 0;
545 m.bank = i;
546 m.tsc = 0;
547
548 barrier();
549 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
550 if (!(m.status & MCI_STATUS_VAL))
551 continue;
552
553 /*
554 * Uncorrected or signalled events are handled by the exception
555 * handler when it is enabled, so don't process those here.
556 *
557 * TBD do the same check for MCI_STATUS_EN here?
558 */
559 if (!(flags & MCP_UC) &&
560 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
561 continue;
562
563 if (m.status & MCI_STATUS_MISCV)
564 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
565 if (m.status & MCI_STATUS_ADDRV)
566 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
567
568 if (!(flags & MCP_TIMESTAMP))
569 m.tsc = 0;
570 /*
571 * Don't get the IP here because it's unlikely to
572 * have anything to do with the actual error location.
573 */
574 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
575 mce_log(&m);
576 add_taint(TAINT_MACHINE_CHECK);
577 }
578
579 /*
580 * Clear state for this bank.
581 */
582 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
583 }
584
585 /*
586 * Don't clear MCG_STATUS here because it's only defined for
587 * exceptions.
588 */
589
590 sync_core();
591 }
592 EXPORT_SYMBOL_GPL(machine_check_poll);
593
594 /*
595 * Do a quick check if any of the events requires a panic.
596 * This decides if we keep the events around or clear them.
597 */
598 static int mce_no_way_out(struct mce *m, char **msg)
599 {
600 int i;
601
602 for (i = 0; i < banks; i++) {
603 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
604 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
605 return 1;
606 }
607 return 0;
608 }
609
610 /*
611 * Variable to establish order between CPUs while scanning.
612 * Each CPU spins initially until executing is equal its number.
613 */
614 static atomic_t mce_executing;
615
616 /*
617 * Defines order of CPUs on entry. First CPU becomes Monarch.
618 */
619 static atomic_t mce_callin;
620
621 /*
622 * Check if a timeout waiting for other CPUs happened.
623 */
624 static int mce_timed_out(u64 *t)
625 {
626 /*
627 * The others already did panic for some reason.
628 * Bail out like in a timeout.
629 * rmb() to tell the compiler that system_state
630 * might have been modified by someone else.
631 */
632 rmb();
633 if (atomic_read(&mce_paniced))
634 wait_for_panic();
635 if (!monarch_timeout)
636 goto out;
637 if ((s64)*t < SPINUNIT) {
638 /* CHECKME: Make panic default for 1 too? */
639 if (tolerant < 1)
640 mce_panic("Timeout synchronizing machine check over CPUs",
641 NULL, NULL);
642 cpu_missing = 1;
643 return 1;
644 }
645 *t -= SPINUNIT;
646 out:
647 touch_nmi_watchdog();
648 return 0;
649 }
650
651 /*
652 * The Monarch's reign. The Monarch is the CPU who entered
653 * the machine check handler first. It waits for the others to
654 * raise the exception too and then grades them. When any
655 * error is fatal panic. Only then let the others continue.
656 *
657 * The other CPUs entering the MCE handler will be controlled by the
658 * Monarch. They are called Subjects.
659 *
660 * This way we prevent any potential data corruption in a unrecoverable case
661 * and also makes sure always all CPU's errors are examined.
662 *
663 * Also this detects the case of a machine check event coming from outer
664 * space (not detected by any CPUs) In this case some external agent wants
665 * us to shut down, so panic too.
666 *
667 * The other CPUs might still decide to panic if the handler happens
668 * in a unrecoverable place, but in this case the system is in a semi-stable
669 * state and won't corrupt anything by itself. It's ok to let the others
670 * continue for a bit first.
671 *
672 * All the spin loops have timeouts; when a timeout happens a CPU
673 * typically elects itself to be Monarch.
674 */
675 static void mce_reign(void)
676 {
677 int cpu;
678 struct mce *m = NULL;
679 int global_worst = 0;
680 char *msg = NULL;
681 char *nmsg = NULL;
682
683 /*
684 * This CPU is the Monarch and the other CPUs have run
685 * through their handlers.
686 * Grade the severity of the errors of all the CPUs.
687 */
688 for_each_possible_cpu(cpu) {
689 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
690 &nmsg);
691 if (severity > global_worst) {
692 msg = nmsg;
693 global_worst = severity;
694 m = &per_cpu(mces_seen, cpu);
695 }
696 }
697
698 /*
699 * Cannot recover? Panic here then.
700 * This dumps all the mces in the log buffer and stops the
701 * other CPUs.
702 */
703 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
704 mce_panic("Fatal Machine check", m, msg);
705
706 /*
707 * For UC somewhere we let the CPU who detects it handle it.
708 * Also must let continue the others, otherwise the handling
709 * CPU could deadlock on a lock.
710 */
711
712 /*
713 * No machine check event found. Must be some external
714 * source or one CPU is hung. Panic.
715 */
716 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
717 mce_panic("Machine check from unknown source", NULL, NULL);
718
719 /*
720 * Now clear all the mces_seen so that they don't reappear on
721 * the next mce.
722 */
723 for_each_possible_cpu(cpu)
724 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
725 }
726
727 static atomic_t global_nwo;
728
729 /*
730 * Start of Monarch synchronization. This waits until all CPUs have
731 * entered the exception handler and then determines if any of them
732 * saw a fatal event that requires panic. Then it executes them
733 * in the entry order.
734 * TBD double check parallel CPU hotunplug
735 */
736 static int mce_start(int *no_way_out)
737 {
738 int order;
739 int cpus = num_online_cpus();
740 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
741
742 if (!timeout)
743 return -1;
744
745 atomic_add(*no_way_out, &global_nwo);
746 /*
747 * global_nwo should be updated before mce_callin
748 */
749 smp_wmb();
750 order = atomic_inc_return(&mce_callin);
751
752 /*
753 * Wait for everyone.
754 */
755 while (atomic_read(&mce_callin) != cpus) {
756 if (mce_timed_out(&timeout)) {
757 atomic_set(&global_nwo, 0);
758 return -1;
759 }
760 ndelay(SPINUNIT);
761 }
762
763 /*
764 * mce_callin should be read before global_nwo
765 */
766 smp_rmb();
767
768 if (order == 1) {
769 /*
770 * Monarch: Starts executing now, the others wait.
771 */
772 atomic_set(&mce_executing, 1);
773 } else {
774 /*
775 * Subject: Now start the scanning loop one by one in
776 * the original callin order.
777 * This way when there are any shared banks it will be
778 * only seen by one CPU before cleared, avoiding duplicates.
779 */
780 while (atomic_read(&mce_executing) < order) {
781 if (mce_timed_out(&timeout)) {
782 atomic_set(&global_nwo, 0);
783 return -1;
784 }
785 ndelay(SPINUNIT);
786 }
787 }
788
789 /*
790 * Cache the global no_way_out state.
791 */
792 *no_way_out = atomic_read(&global_nwo);
793
794 return order;
795 }
796
797 /*
798 * Synchronize between CPUs after main scanning loop.
799 * This invokes the bulk of the Monarch processing.
800 */
801 static int mce_end(int order)
802 {
803 int ret = -1;
804 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
805
806 if (!timeout)
807 goto reset;
808 if (order < 0)
809 goto reset;
810
811 /*
812 * Allow others to run.
813 */
814 atomic_inc(&mce_executing);
815
816 if (order == 1) {
817 /* CHECKME: Can this race with a parallel hotplug? */
818 int cpus = num_online_cpus();
819
820 /*
821 * Monarch: Wait for everyone to go through their scanning
822 * loops.
823 */
824 while (atomic_read(&mce_executing) <= cpus) {
825 if (mce_timed_out(&timeout))
826 goto reset;
827 ndelay(SPINUNIT);
828 }
829
830 mce_reign();
831 barrier();
832 ret = 0;
833 } else {
834 /*
835 * Subject: Wait for Monarch to finish.
836 */
837 while (atomic_read(&mce_executing) != 0) {
838 if (mce_timed_out(&timeout))
839 goto reset;
840 ndelay(SPINUNIT);
841 }
842
843 /*
844 * Don't reset anything. That's done by the Monarch.
845 */
846 return 0;
847 }
848
849 /*
850 * Reset all global state.
851 */
852 reset:
853 atomic_set(&global_nwo, 0);
854 atomic_set(&mce_callin, 0);
855 barrier();
856
857 /*
858 * Let others run again.
859 */
860 atomic_set(&mce_executing, 0);
861 return ret;
862 }
863
864 /*
865 * Check if the address reported by the CPU is in a format we can parse.
866 * It would be possible to add code for most other cases, but all would
867 * be somewhat complicated (e.g. segment offset would require an instruction
868 * parser). So only support physical addresses upto page granuality for now.
869 */
870 static int mce_usable_address(struct mce *m)
871 {
872 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
873 return 0;
874 if ((m->misc & 0x3f) > PAGE_SHIFT)
875 return 0;
876 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
877 return 0;
878 return 1;
879 }
880
881 static void mce_clear_state(unsigned long *toclear)
882 {
883 int i;
884
885 for (i = 0; i < banks; i++) {
886 if (test_bit(i, toclear))
887 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
888 }
889 }
890
891 /*
892 * The actual machine check handler. This only handles real
893 * exceptions when something got corrupted coming in through int 18.
894 *
895 * This is executed in NMI context not subject to normal locking rules. This
896 * implies that most kernel services cannot be safely used. Don't even
897 * think about putting a printk in there!
898 *
899 * On Intel systems this is entered on all CPUs in parallel through
900 * MCE broadcast. However some CPUs might be broken beyond repair,
901 * so be always careful when synchronizing with others.
902 */
903 void do_machine_check(struct pt_regs *regs, long error_code)
904 {
905 struct mce m, *final;
906 int i;
907 int worst = 0;
908 int severity;
909 /*
910 * Establish sequential order between the CPUs entering the machine
911 * check handler.
912 */
913 int order;
914 /*
915 * If no_way_out gets set, there is no safe way to recover from this
916 * MCE. If tolerant is cranked up, we'll try anyway.
917 */
918 int no_way_out = 0;
919 /*
920 * If kill_it gets set, there might be a way to recover from this
921 * error.
922 */
923 int kill_it = 0;
924 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
925 char *msg = "Unknown";
926
927 atomic_inc(&mce_entry);
928
929 __get_cpu_var(mce_exception_count)++;
930
931 if (notify_die(DIE_NMI, "machine check", regs, error_code,
932 18, SIGKILL) == NOTIFY_STOP)
933 goto out;
934 if (!banks)
935 goto out;
936
937 mce_setup(&m);
938
939 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
940 final = &__get_cpu_var(mces_seen);
941 *final = m;
942
943 no_way_out = mce_no_way_out(&m, &msg);
944
945 barrier();
946
947 /*
948 * When no restart IP must always kill or panic.
949 */
950 if (!(m.mcgstatus & MCG_STATUS_RIPV))
951 kill_it = 1;
952
953 /*
954 * Go through all the banks in exclusion of the other CPUs.
955 * This way we don't report duplicated events on shared banks
956 * because the first one to see it will clear it.
957 */
958 order = mce_start(&no_way_out);
959 for (i = 0; i < banks; i++) {
960 __clear_bit(i, toclear);
961 if (!mce_banks[i].ctl)
962 continue;
963
964 m.misc = 0;
965 m.addr = 0;
966 m.bank = i;
967
968 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
969 if ((m.status & MCI_STATUS_VAL) == 0)
970 continue;
971
972 /*
973 * Non uncorrected or non signaled errors are handled by
974 * machine_check_poll. Leave them alone, unless this panics.
975 */
976 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
977 !no_way_out)
978 continue;
979
980 /*
981 * Set taint even when machine check was not enabled.
982 */
983 add_taint(TAINT_MACHINE_CHECK);
984
985 severity = mce_severity(&m, tolerant, NULL);
986
987 /*
988 * When machine check was for corrected handler don't touch,
989 * unless we're panicing.
990 */
991 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
992 continue;
993 __set_bit(i, toclear);
994 if (severity == MCE_NO_SEVERITY) {
995 /*
996 * Machine check event was not enabled. Clear, but
997 * ignore.
998 */
999 continue;
1000 }
1001
1002 /*
1003 * Kill on action required.
1004 */
1005 if (severity == MCE_AR_SEVERITY)
1006 kill_it = 1;
1007
1008 if (m.status & MCI_STATUS_MISCV)
1009 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1010 if (m.status & MCI_STATUS_ADDRV)
1011 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1012
1013 /*
1014 * Action optional error. Queue address for later processing.
1015 * When the ring overflows we just ignore the AO error.
1016 * RED-PEN add some logging mechanism when
1017 * usable_address or mce_add_ring fails.
1018 * RED-PEN don't ignore overflow for tolerant == 0
1019 */
1020 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1021 mce_ring_add(m.addr >> PAGE_SHIFT);
1022
1023 mce_get_rip(&m, regs);
1024 mce_log(&m);
1025
1026 if (severity > worst) {
1027 *final = m;
1028 worst = severity;
1029 }
1030 }
1031
1032 if (!no_way_out)
1033 mce_clear_state(toclear);
1034
1035 /*
1036 * Do most of the synchronization with other CPUs.
1037 * When there's any problem use only local no_way_out state.
1038 */
1039 if (mce_end(order) < 0)
1040 no_way_out = worst >= MCE_PANIC_SEVERITY;
1041
1042 /*
1043 * If we have decided that we just CAN'T continue, and the user
1044 * has not set tolerant to an insane level, give up and die.
1045 *
1046 * This is mainly used in the case when the system doesn't
1047 * support MCE broadcasting or it has been disabled.
1048 */
1049 if (no_way_out && tolerant < 3)
1050 mce_panic("Fatal machine check on current CPU", final, msg);
1051
1052 /*
1053 * If the error seems to be unrecoverable, something should be
1054 * done. Try to kill as little as possible. If we can kill just
1055 * one task, do that. If the user has set the tolerance very
1056 * high, don't try to do anything at all.
1057 */
1058
1059 if (kill_it && tolerant < 3)
1060 force_sig(SIGBUS, current);
1061
1062 /* notify userspace ASAP */
1063 set_thread_flag(TIF_MCE_NOTIFY);
1064
1065 if (worst > 0)
1066 mce_report_event(regs);
1067 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1068 out:
1069 atomic_dec(&mce_entry);
1070 sync_core();
1071 }
1072 EXPORT_SYMBOL_GPL(do_machine_check);
1073
1074 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1075 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1076 {
1077 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1078 }
1079
1080 /*
1081 * Called after mce notification in process context. This code
1082 * is allowed to sleep. Call the high level VM handler to process
1083 * any corrupted pages.
1084 * Assume that the work queue code only calls this one at a time
1085 * per CPU.
1086 * Note we don't disable preemption, so this code might run on the wrong
1087 * CPU. In this case the event is picked up by the scheduled work queue.
1088 * This is merely a fast path to expedite processing in some common
1089 * cases.
1090 */
1091 void mce_notify_process(void)
1092 {
1093 unsigned long pfn;
1094 mce_notify_irq();
1095 while (mce_ring_get(&pfn))
1096 memory_failure(pfn, MCE_VECTOR);
1097 }
1098
1099 static void mce_process_work(struct work_struct *dummy)
1100 {
1101 mce_notify_process();
1102 }
1103
1104 #ifdef CONFIG_X86_MCE_INTEL
1105 /***
1106 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1107 * @cpu: The CPU on which the event occurred.
1108 * @status: Event status information
1109 *
1110 * This function should be called by the thermal interrupt after the
1111 * event has been processed and the decision was made to log the event
1112 * further.
1113 *
1114 * The status parameter will be saved to the 'status' field of 'struct mce'
1115 * and historically has been the register value of the
1116 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1117 */
1118 void mce_log_therm_throt_event(__u64 status)
1119 {
1120 struct mce m;
1121
1122 mce_setup(&m);
1123 m.bank = MCE_THERMAL_BANK;
1124 m.status = status;
1125 mce_log(&m);
1126 }
1127 #endif /* CONFIG_X86_MCE_INTEL */
1128
1129 /*
1130 * Periodic polling timer for "silent" machine check errors. If the
1131 * poller finds an MCE, poll 2x faster. When the poller finds no more
1132 * errors, poll 2x slower (up to check_interval seconds).
1133 */
1134 static int check_interval = 5 * 60; /* 5 minutes */
1135
1136 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1137 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1138
1139 static void mce_start_timer(unsigned long data)
1140 {
1141 struct timer_list *t = &per_cpu(mce_timer, data);
1142 int *n;
1143
1144 WARN_ON(smp_processor_id() != data);
1145
1146 if (mce_available(&current_cpu_data)) {
1147 machine_check_poll(MCP_TIMESTAMP,
1148 &__get_cpu_var(mce_poll_banks));
1149 }
1150
1151 /*
1152 * Alert userspace if needed. If we logged an MCE, reduce the
1153 * polling interval, otherwise increase the polling interval.
1154 */
1155 n = &__get_cpu_var(mce_next_interval);
1156 if (mce_notify_irq())
1157 *n = max(*n/2, HZ/100);
1158 else
1159 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1160
1161 t->expires = jiffies + *n;
1162 add_timer_on(t, smp_processor_id());
1163 }
1164
1165 static void mce_do_trigger(struct work_struct *work)
1166 {
1167 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1168 }
1169
1170 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1171
1172 /*
1173 * Notify the user(s) about new machine check events.
1174 * Can be called from interrupt context, but not from machine check/NMI
1175 * context.
1176 */
1177 int mce_notify_irq(void)
1178 {
1179 /* Not more than two messages every minute */
1180 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1181
1182 clear_thread_flag(TIF_MCE_NOTIFY);
1183
1184 if (test_and_clear_bit(0, &mce_need_notify)) {
1185 wake_up_interruptible(&mce_wait);
1186
1187 /*
1188 * There is no risk of missing notifications because
1189 * work_pending is always cleared before the function is
1190 * executed.
1191 */
1192 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1193 schedule_work(&mce_trigger_work);
1194
1195 if (__ratelimit(&ratelimit))
1196 printk(KERN_INFO "Machine check events logged\n");
1197
1198 return 1;
1199 }
1200 return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(mce_notify_irq);
1203
1204 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1205 {
1206 int i;
1207
1208 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1209 if (!mce_banks)
1210 return -ENOMEM;
1211 for (i = 0; i < banks; i++) {
1212 struct mce_bank *b = &mce_banks[i];
1213
1214 b->ctl = -1ULL;
1215 b->init = 1;
1216 }
1217 return 0;
1218 }
1219
1220 /*
1221 * Initialize Machine Checks for a CPU.
1222 */
1223 static int __cpuinit __mcheck_cpu_cap_init(void)
1224 {
1225 unsigned b;
1226 u64 cap;
1227
1228 rdmsrl(MSR_IA32_MCG_CAP, cap);
1229
1230 b = cap & MCG_BANKCNT_MASK;
1231 if (!banks)
1232 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1233
1234 if (b > MAX_NR_BANKS) {
1235 printk(KERN_WARNING
1236 "MCE: Using only %u machine check banks out of %u\n",
1237 MAX_NR_BANKS, b);
1238 b = MAX_NR_BANKS;
1239 }
1240
1241 /* Don't support asymmetric configurations today */
1242 WARN_ON(banks != 0 && b != banks);
1243 banks = b;
1244 if (!mce_banks) {
1245 int err = __mcheck_cpu_mce_banks_init();
1246
1247 if (err)
1248 return err;
1249 }
1250
1251 /* Use accurate RIP reporting if available. */
1252 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1253 rip_msr = MSR_IA32_MCG_EIP;
1254
1255 if (cap & MCG_SER_P)
1256 mce_ser = 1;
1257
1258 return 0;
1259 }
1260
1261 static void __mcheck_cpu_init_generic(void)
1262 {
1263 mce_banks_t all_banks;
1264 u64 cap;
1265 int i;
1266
1267 /*
1268 * Log the machine checks left over from the previous reset.
1269 */
1270 bitmap_fill(all_banks, MAX_NR_BANKS);
1271 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1272
1273 set_in_cr4(X86_CR4_MCE);
1274
1275 rdmsrl(MSR_IA32_MCG_CAP, cap);
1276 if (cap & MCG_CTL_P)
1277 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1278
1279 for (i = 0; i < banks; i++) {
1280 struct mce_bank *b = &mce_banks[i];
1281
1282 if (!b->init)
1283 continue;
1284 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1285 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1286 }
1287 }
1288
1289 /* Add per CPU specific workarounds here */
1290 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1291 {
1292 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1293 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1294 return -EOPNOTSUPP;
1295 }
1296
1297 /* This should be disabled by the BIOS, but isn't always */
1298 if (c->x86_vendor == X86_VENDOR_AMD) {
1299 if (c->x86 == 15 && banks > 4) {
1300 /*
1301 * disable GART TBL walk error reporting, which
1302 * trips off incorrectly with the IOMMU & 3ware
1303 * & Cerberus:
1304 */
1305 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1306 }
1307 if (c->x86 <= 17 && mce_bootlog < 0) {
1308 /*
1309 * Lots of broken BIOS around that don't clear them
1310 * by default and leave crap in there. Don't log:
1311 */
1312 mce_bootlog = 0;
1313 }
1314 /*
1315 * Various K7s with broken bank 0 around. Always disable
1316 * by default.
1317 */
1318 if (c->x86 == 6 && banks > 0)
1319 mce_banks[0].ctl = 0;
1320 }
1321
1322 if (c->x86_vendor == X86_VENDOR_INTEL) {
1323 /*
1324 * SDM documents that on family 6 bank 0 should not be written
1325 * because it aliases to another special BIOS controlled
1326 * register.
1327 * But it's not aliased anymore on model 0x1a+
1328 * Don't ignore bank 0 completely because there could be a
1329 * valid event later, merely don't write CTL0.
1330 */
1331
1332 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1333 mce_banks[0].init = 0;
1334
1335 /*
1336 * All newer Intel systems support MCE broadcasting. Enable
1337 * synchronization with a one second timeout.
1338 */
1339 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1340 monarch_timeout < 0)
1341 monarch_timeout = USEC_PER_SEC;
1342
1343 /*
1344 * There are also broken BIOSes on some Pentium M and
1345 * earlier systems:
1346 */
1347 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1348 mce_bootlog = 0;
1349 }
1350 if (monarch_timeout < 0)
1351 monarch_timeout = 0;
1352 if (mce_bootlog != 0)
1353 mce_panic_timeout = 30;
1354
1355 return 0;
1356 }
1357
1358 static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1359 {
1360 if (c->x86 != 5)
1361 return;
1362 switch (c->x86_vendor) {
1363 case X86_VENDOR_INTEL:
1364 intel_p5_mcheck_init(c);
1365 break;
1366 case X86_VENDOR_CENTAUR:
1367 winchip_mcheck_init(c);
1368 break;
1369 }
1370 }
1371
1372 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1373 {
1374 switch (c->x86_vendor) {
1375 case X86_VENDOR_INTEL:
1376 mce_intel_feature_init(c);
1377 break;
1378 case X86_VENDOR_AMD:
1379 mce_amd_feature_init(c);
1380 break;
1381 default:
1382 break;
1383 }
1384 }
1385
1386 static void __mcheck_cpu_init_timer(void)
1387 {
1388 struct timer_list *t = &__get_cpu_var(mce_timer);
1389 int *n = &__get_cpu_var(mce_next_interval);
1390
1391 setup_timer(t, mce_start_timer, smp_processor_id());
1392
1393 if (mce_ignore_ce)
1394 return;
1395
1396 *n = check_interval * HZ;
1397 if (!*n)
1398 return;
1399 t->expires = round_jiffies(jiffies + *n);
1400 add_timer_on(t, smp_processor_id());
1401 }
1402
1403 /* Handle unconfigured int18 (should never happen) */
1404 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1405 {
1406 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1407 smp_processor_id());
1408 }
1409
1410 /* Call the installed machine check handler for this CPU setup. */
1411 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1412 unexpected_machine_check;
1413
1414 /*
1415 * Called for each booted CPU to set up machine checks.
1416 * Must be called with preempt off:
1417 */
1418 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1419 {
1420 if (mce_disabled)
1421 return;
1422
1423 __mcheck_cpu_ancient_init(c);
1424
1425 if (!mce_available(c))
1426 return;
1427
1428 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1429 mce_disabled = 1;
1430 return;
1431 }
1432
1433 machine_check_vector = do_machine_check;
1434
1435 __mcheck_cpu_init_generic();
1436 __mcheck_cpu_init_vendor(c);
1437 __mcheck_cpu_init_timer();
1438 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1439
1440 }
1441
1442 /*
1443 * Character device to read and clear the MCE log.
1444 */
1445
1446 static DEFINE_SPINLOCK(mce_state_lock);
1447 static int open_count; /* #times opened */
1448 static int open_exclu; /* already open exclusive? */
1449
1450 static int mce_open(struct inode *inode, struct file *file)
1451 {
1452 spin_lock(&mce_state_lock);
1453
1454 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1455 spin_unlock(&mce_state_lock);
1456
1457 return -EBUSY;
1458 }
1459
1460 if (file->f_flags & O_EXCL)
1461 open_exclu = 1;
1462 open_count++;
1463
1464 spin_unlock(&mce_state_lock);
1465
1466 return nonseekable_open(inode, file);
1467 }
1468
1469 static int mce_release(struct inode *inode, struct file *file)
1470 {
1471 spin_lock(&mce_state_lock);
1472
1473 open_count--;
1474 open_exclu = 0;
1475
1476 spin_unlock(&mce_state_lock);
1477
1478 return 0;
1479 }
1480
1481 static void collect_tscs(void *data)
1482 {
1483 unsigned long *cpu_tsc = (unsigned long *)data;
1484
1485 rdtscll(cpu_tsc[smp_processor_id()]);
1486 }
1487
1488 static DEFINE_MUTEX(mce_read_mutex);
1489
1490 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1491 loff_t *off)
1492 {
1493 char __user *buf = ubuf;
1494 unsigned long *cpu_tsc;
1495 unsigned prev, next;
1496 int i, err;
1497
1498 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1499 if (!cpu_tsc)
1500 return -ENOMEM;
1501
1502 mutex_lock(&mce_read_mutex);
1503 next = rcu_dereference(mcelog.next);
1504
1505 /* Only supports full reads right now */
1506 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1507 mutex_unlock(&mce_read_mutex);
1508 kfree(cpu_tsc);
1509
1510 return -EINVAL;
1511 }
1512
1513 err = 0;
1514 prev = 0;
1515 do {
1516 for (i = prev; i < next; i++) {
1517 unsigned long start = jiffies;
1518
1519 while (!mcelog.entry[i].finished) {
1520 if (time_after_eq(jiffies, start + 2)) {
1521 memset(mcelog.entry + i, 0,
1522 sizeof(struct mce));
1523 goto timeout;
1524 }
1525 cpu_relax();
1526 }
1527 smp_rmb();
1528 err |= copy_to_user(buf, mcelog.entry + i,
1529 sizeof(struct mce));
1530 buf += sizeof(struct mce);
1531 timeout:
1532 ;
1533 }
1534
1535 memset(mcelog.entry + prev, 0,
1536 (next - prev) * sizeof(struct mce));
1537 prev = next;
1538 next = cmpxchg(&mcelog.next, prev, 0);
1539 } while (next != prev);
1540
1541 synchronize_sched();
1542
1543 /*
1544 * Collect entries that were still getting written before the
1545 * synchronize.
1546 */
1547 on_each_cpu(collect_tscs, cpu_tsc, 1);
1548
1549 for (i = next; i < MCE_LOG_LEN; i++) {
1550 if (mcelog.entry[i].finished &&
1551 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1552 err |= copy_to_user(buf, mcelog.entry+i,
1553 sizeof(struct mce));
1554 smp_rmb();
1555 buf += sizeof(struct mce);
1556 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1557 }
1558 }
1559 mutex_unlock(&mce_read_mutex);
1560 kfree(cpu_tsc);
1561
1562 return err ? -EFAULT : buf - ubuf;
1563 }
1564
1565 static unsigned int mce_poll(struct file *file, poll_table *wait)
1566 {
1567 poll_wait(file, &mce_wait, wait);
1568 if (rcu_dereference(mcelog.next))
1569 return POLLIN | POLLRDNORM;
1570 return 0;
1571 }
1572
1573 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1574 {
1575 int __user *p = (int __user *)arg;
1576
1577 if (!capable(CAP_SYS_ADMIN))
1578 return -EPERM;
1579
1580 switch (cmd) {
1581 case MCE_GET_RECORD_LEN:
1582 return put_user(sizeof(struct mce), p);
1583 case MCE_GET_LOG_LEN:
1584 return put_user(MCE_LOG_LEN, p);
1585 case MCE_GETCLEAR_FLAGS: {
1586 unsigned flags;
1587
1588 do {
1589 flags = mcelog.flags;
1590 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1591
1592 return put_user(flags, p);
1593 }
1594 default:
1595 return -ENOTTY;
1596 }
1597 }
1598
1599 /* Modified in mce-inject.c, so not static or const */
1600 struct file_operations mce_chrdev_ops = {
1601 .open = mce_open,
1602 .release = mce_release,
1603 .read = mce_read,
1604 .poll = mce_poll,
1605 .unlocked_ioctl = mce_ioctl,
1606 };
1607 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1608
1609 static struct miscdevice mce_log_device = {
1610 MISC_MCELOG_MINOR,
1611 "mcelog",
1612 &mce_chrdev_ops,
1613 };
1614
1615 /*
1616 * mce=off Disables machine check
1617 * mce=no_cmci Disables CMCI
1618 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1619 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1620 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1621 * monarchtimeout is how long to wait for other CPUs on machine
1622 * check, or 0 to not wait
1623 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1624 * mce=nobootlog Don't log MCEs from before booting.
1625 */
1626 static int __init mcheck_enable(char *str)
1627 {
1628 if (*str == 0) {
1629 enable_p5_mce();
1630 return 1;
1631 }
1632 if (*str == '=')
1633 str++;
1634 if (!strcmp(str, "off"))
1635 mce_disabled = 1;
1636 else if (!strcmp(str, "no_cmci"))
1637 mce_cmci_disabled = 1;
1638 else if (!strcmp(str, "dont_log_ce"))
1639 mce_dont_log_ce = 1;
1640 else if (!strcmp(str, "ignore_ce"))
1641 mce_ignore_ce = 1;
1642 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1643 mce_bootlog = (str[0] == 'b');
1644 else if (isdigit(str[0])) {
1645 get_option(&str, &tolerant);
1646 if (*str == ',') {
1647 ++str;
1648 get_option(&str, &monarch_timeout);
1649 }
1650 } else {
1651 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1652 str);
1653 return 0;
1654 }
1655 return 1;
1656 }
1657 __setup("mce", mcheck_enable);
1658
1659 int __init mcheck_init(void)
1660 {
1661 atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1662
1663 mcheck_intel_therm_init();
1664
1665 return 0;
1666 }
1667
1668 /*
1669 * Sysfs support
1670 */
1671
1672 /*
1673 * Disable machine checks on suspend and shutdown. We can't really handle
1674 * them later.
1675 */
1676 static int mce_disable_error_reporting(void)
1677 {
1678 int i;
1679
1680 for (i = 0; i < banks; i++) {
1681 struct mce_bank *b = &mce_banks[i];
1682
1683 if (b->init)
1684 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1685 }
1686 return 0;
1687 }
1688
1689 static int mce_suspend(struct sys_device *dev, pm_message_t state)
1690 {
1691 return mce_disable_error_reporting();
1692 }
1693
1694 static int mce_shutdown(struct sys_device *dev)
1695 {
1696 return mce_disable_error_reporting();
1697 }
1698
1699 /*
1700 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1701 * Only one CPU is active at this time, the others get re-added later using
1702 * CPU hotplug:
1703 */
1704 static int mce_resume(struct sys_device *dev)
1705 {
1706 __mcheck_cpu_init_generic();
1707 __mcheck_cpu_init_vendor(&current_cpu_data);
1708
1709 return 0;
1710 }
1711
1712 static void mce_cpu_restart(void *data)
1713 {
1714 del_timer_sync(&__get_cpu_var(mce_timer));
1715 if (!mce_available(&current_cpu_data))
1716 return;
1717 __mcheck_cpu_init_generic();
1718 __mcheck_cpu_init_timer();
1719 }
1720
1721 /* Reinit MCEs after user configuration changes */
1722 static void mce_restart(void)
1723 {
1724 on_each_cpu(mce_cpu_restart, NULL, 1);
1725 }
1726
1727 /* Toggle features for corrected errors */
1728 static void mce_disable_ce(void *all)
1729 {
1730 if (!mce_available(&current_cpu_data))
1731 return;
1732 if (all)
1733 del_timer_sync(&__get_cpu_var(mce_timer));
1734 cmci_clear();
1735 }
1736
1737 static void mce_enable_ce(void *all)
1738 {
1739 if (!mce_available(&current_cpu_data))
1740 return;
1741 cmci_reenable();
1742 cmci_recheck();
1743 if (all)
1744 __mcheck_cpu_init_timer();
1745 }
1746
1747 static struct sysdev_class mce_sysclass = {
1748 .suspend = mce_suspend,
1749 .shutdown = mce_shutdown,
1750 .resume = mce_resume,
1751 .name = "machinecheck",
1752 };
1753
1754 DEFINE_PER_CPU(struct sys_device, mce_dev);
1755
1756 __cpuinitdata
1757 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1758
1759 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1760 {
1761 return container_of(attr, struct mce_bank, attr);
1762 }
1763
1764 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1765 char *buf)
1766 {
1767 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1768 }
1769
1770 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1771 const char *buf, size_t size)
1772 {
1773 u64 new;
1774
1775 if (strict_strtoull(buf, 0, &new) < 0)
1776 return -EINVAL;
1777
1778 attr_to_bank(attr)->ctl = new;
1779 mce_restart();
1780
1781 return size;
1782 }
1783
1784 static ssize_t
1785 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1786 {
1787 strcpy(buf, mce_helper);
1788 strcat(buf, "\n");
1789 return strlen(mce_helper) + 1;
1790 }
1791
1792 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1793 const char *buf, size_t siz)
1794 {
1795 char *p;
1796
1797 strncpy(mce_helper, buf, sizeof(mce_helper));
1798 mce_helper[sizeof(mce_helper)-1] = 0;
1799 p = strchr(mce_helper, '\n');
1800
1801 if (p)
1802 *p = 0;
1803
1804 return strlen(mce_helper) + !!p;
1805 }
1806
1807 static ssize_t set_ignore_ce(struct sys_device *s,
1808 struct sysdev_attribute *attr,
1809 const char *buf, size_t size)
1810 {
1811 u64 new;
1812
1813 if (strict_strtoull(buf, 0, &new) < 0)
1814 return -EINVAL;
1815
1816 if (mce_ignore_ce ^ !!new) {
1817 if (new) {
1818 /* disable ce features */
1819 on_each_cpu(mce_disable_ce, (void *)1, 1);
1820 mce_ignore_ce = 1;
1821 } else {
1822 /* enable ce features */
1823 mce_ignore_ce = 0;
1824 on_each_cpu(mce_enable_ce, (void *)1, 1);
1825 }
1826 }
1827 return size;
1828 }
1829
1830 static ssize_t set_cmci_disabled(struct sys_device *s,
1831 struct sysdev_attribute *attr,
1832 const char *buf, size_t size)
1833 {
1834 u64 new;
1835
1836 if (strict_strtoull(buf, 0, &new) < 0)
1837 return -EINVAL;
1838
1839 if (mce_cmci_disabled ^ !!new) {
1840 if (new) {
1841 /* disable cmci */
1842 on_each_cpu(mce_disable_ce, NULL, 1);
1843 mce_cmci_disabled = 1;
1844 } else {
1845 /* enable cmci */
1846 mce_cmci_disabled = 0;
1847 on_each_cpu(mce_enable_ce, NULL, 1);
1848 }
1849 }
1850 return size;
1851 }
1852
1853 static ssize_t store_int_with_restart(struct sys_device *s,
1854 struct sysdev_attribute *attr,
1855 const char *buf, size_t size)
1856 {
1857 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1858 mce_restart();
1859 return ret;
1860 }
1861
1862 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1863 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1864 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1865 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1866
1867 static struct sysdev_ext_attribute attr_check_interval = {
1868 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1869 store_int_with_restart),
1870 &check_interval
1871 };
1872
1873 static struct sysdev_ext_attribute attr_ignore_ce = {
1874 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1875 &mce_ignore_ce
1876 };
1877
1878 static struct sysdev_ext_attribute attr_cmci_disabled = {
1879 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1880 &mce_cmci_disabled
1881 };
1882
1883 static struct sysdev_attribute *mce_attrs[] = {
1884 &attr_tolerant.attr,
1885 &attr_check_interval.attr,
1886 &attr_trigger,
1887 &attr_monarch_timeout.attr,
1888 &attr_dont_log_ce.attr,
1889 &attr_ignore_ce.attr,
1890 &attr_cmci_disabled.attr,
1891 NULL
1892 };
1893
1894 static cpumask_var_t mce_dev_initialized;
1895
1896 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1897 static __cpuinit int mce_create_device(unsigned int cpu)
1898 {
1899 int err;
1900 int i, j;
1901
1902 if (!mce_available(&boot_cpu_data))
1903 return -EIO;
1904
1905 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1906 per_cpu(mce_dev, cpu).id = cpu;
1907 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1908
1909 err = sysdev_register(&per_cpu(mce_dev, cpu));
1910 if (err)
1911 return err;
1912
1913 for (i = 0; mce_attrs[i]; i++) {
1914 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1915 if (err)
1916 goto error;
1917 }
1918 for (j = 0; j < banks; j++) {
1919 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1920 &mce_banks[j].attr);
1921 if (err)
1922 goto error2;
1923 }
1924 cpumask_set_cpu(cpu, mce_dev_initialized);
1925
1926 return 0;
1927 error2:
1928 while (--j >= 0)
1929 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1930 error:
1931 while (--i >= 0)
1932 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1933
1934 sysdev_unregister(&per_cpu(mce_dev, cpu));
1935
1936 return err;
1937 }
1938
1939 static __cpuinit void mce_remove_device(unsigned int cpu)
1940 {
1941 int i;
1942
1943 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1944 return;
1945
1946 for (i = 0; mce_attrs[i]; i++)
1947 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1948
1949 for (i = 0; i < banks; i++)
1950 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
1951
1952 sysdev_unregister(&per_cpu(mce_dev, cpu));
1953 cpumask_clear_cpu(cpu, mce_dev_initialized);
1954 }
1955
1956 /* Make sure there are no machine checks on offlined CPUs. */
1957 static void __cpuinit mce_disable_cpu(void *h)
1958 {
1959 unsigned long action = *(unsigned long *)h;
1960 int i;
1961
1962 if (!mce_available(&current_cpu_data))
1963 return;
1964
1965 if (!(action & CPU_TASKS_FROZEN))
1966 cmci_clear();
1967 for (i = 0; i < banks; i++) {
1968 struct mce_bank *b = &mce_banks[i];
1969
1970 if (b->init)
1971 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1972 }
1973 }
1974
1975 static void __cpuinit mce_reenable_cpu(void *h)
1976 {
1977 unsigned long action = *(unsigned long *)h;
1978 int i;
1979
1980 if (!mce_available(&current_cpu_data))
1981 return;
1982
1983 if (!(action & CPU_TASKS_FROZEN))
1984 cmci_reenable();
1985 for (i = 0; i < banks; i++) {
1986 struct mce_bank *b = &mce_banks[i];
1987
1988 if (b->init)
1989 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1990 }
1991 }
1992
1993 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
1994 static int __cpuinit
1995 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1996 {
1997 unsigned int cpu = (unsigned long)hcpu;
1998 struct timer_list *t = &per_cpu(mce_timer, cpu);
1999
2000 switch (action) {
2001 case CPU_ONLINE:
2002 case CPU_ONLINE_FROZEN:
2003 mce_create_device(cpu);
2004 if (threshold_cpu_callback)
2005 threshold_cpu_callback(action, cpu);
2006 break;
2007 case CPU_DEAD:
2008 case CPU_DEAD_FROZEN:
2009 if (threshold_cpu_callback)
2010 threshold_cpu_callback(action, cpu);
2011 mce_remove_device(cpu);
2012 break;
2013 case CPU_DOWN_PREPARE:
2014 case CPU_DOWN_PREPARE_FROZEN:
2015 del_timer_sync(t);
2016 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2017 break;
2018 case CPU_DOWN_FAILED:
2019 case CPU_DOWN_FAILED_FROZEN:
2020 if (!mce_ignore_ce && check_interval) {
2021 t->expires = round_jiffies(jiffies +
2022 __get_cpu_var(mce_next_interval));
2023 add_timer_on(t, cpu);
2024 }
2025 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2026 break;
2027 case CPU_POST_DEAD:
2028 /* intentionally ignoring frozen here */
2029 cmci_rediscover(cpu);
2030 break;
2031 }
2032 return NOTIFY_OK;
2033 }
2034
2035 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2036 .notifier_call = mce_cpu_callback,
2037 };
2038
2039 static __init void mce_init_banks(void)
2040 {
2041 int i;
2042
2043 for (i = 0; i < banks; i++) {
2044 struct mce_bank *b = &mce_banks[i];
2045 struct sysdev_attribute *a = &b->attr;
2046
2047 a->attr.name = b->attrname;
2048 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2049
2050 a->attr.mode = 0644;
2051 a->show = show_bank;
2052 a->store = set_bank;
2053 }
2054 }
2055
2056 static __init int mcheck_init_device(void)
2057 {
2058 int err;
2059 int i = 0;
2060
2061 if (!mce_available(&boot_cpu_data))
2062 return -EIO;
2063
2064 zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2065
2066 mce_init_banks();
2067
2068 err = sysdev_class_register(&mce_sysclass);
2069 if (err)
2070 return err;
2071
2072 for_each_online_cpu(i) {
2073 err = mce_create_device(i);
2074 if (err)
2075 return err;
2076 }
2077
2078 register_hotcpu_notifier(&mce_cpu_notifier);
2079 misc_register(&mce_log_device);
2080
2081 return err;
2082 }
2083
2084 device_initcall(mcheck_init_device);
2085
2086 /*
2087 * Old style boot options parsing. Only for compatibility.
2088 */
2089 static int __init mcheck_disable(char *str)
2090 {
2091 mce_disabled = 1;
2092 return 1;
2093 }
2094 __setup("nomce", mcheck_disable);
2095
2096 #ifdef CONFIG_DEBUG_FS
2097 struct dentry *mce_get_debugfs_dir(void)
2098 {
2099 static struct dentry *dmce;
2100
2101 if (!dmce)
2102 dmce = debugfs_create_dir("mce", NULL);
2103
2104 return dmce;
2105 }
2106
2107 static void mce_reset(void)
2108 {
2109 cpu_missing = 0;
2110 atomic_set(&mce_fake_paniced, 0);
2111 atomic_set(&mce_executing, 0);
2112 atomic_set(&mce_callin, 0);
2113 atomic_set(&global_nwo, 0);
2114 }
2115
2116 static int fake_panic_get(void *data, u64 *val)
2117 {
2118 *val = fake_panic;
2119 return 0;
2120 }
2121
2122 static int fake_panic_set(void *data, u64 val)
2123 {
2124 mce_reset();
2125 fake_panic = val;
2126 return 0;
2127 }
2128
2129 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2130 fake_panic_set, "%llu\n");
2131
2132 static int __init mcheck_debugfs_init(void)
2133 {
2134 struct dentry *dmce, *ffake_panic;
2135
2136 dmce = mce_get_debugfs_dir();
2137 if (!dmce)
2138 return -ENOMEM;
2139 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2140 &fake_panic_fops);
2141 if (!ffake_panic)
2142 return -ENOMEM;
2143
2144 return 0;
2145 }
2146 late_initcall(mcheck_debugfs_init);
2147 #endif