]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge tag 'gpio-for-linus' of git://git.secretlab.ca/git/linux-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /* MCA banks polled by the period polling timer for corrected events */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102
103 static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105 /*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111 /* Do initial initialization of a struct mce */
112 void mce_setup(struct mce *m)
113 {
114 memset(m, 0, sizeof(struct mce));
115 m->cpu = m->extcpu = smp_processor_id();
116 rdtscll(m->tsc);
117 /* We hope get_seconds stays lockless */
118 m->time = get_seconds();
119 m->cpuvendor = boot_cpu_data.x86_vendor;
120 m->cpuid = cpuid_eax(1);
121 m->socketid = cpu_data(m->extcpu).phys_proc_id;
122 m->apicid = cpu_data(m->extcpu).initial_apicid;
123 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124 }
125
126 DEFINE_PER_CPU(struct mce, injectm);
127 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129 /*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135 static struct mce_log mcelog = {
136 .signature = MCE_LOG_SIGNATURE,
137 .len = MCE_LOG_LEN,
138 .recordlen = sizeof(struct mce),
139 };
140
141 void mce_log(struct mce *mce)
142 {
143 unsigned next, entry;
144 int ret = 0;
145
146 /* Emit the trace record: */
147 trace_mce_record(mce);
148
149 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150 if (ret == NOTIFY_STOP)
151 return;
152
153 mce->finished = 0;
154 wmb();
155 for (;;) {
156 entry = rcu_dereference_check_mce(mcelog.next);
157 for (;;) {
158
159 /*
160 * When the buffer fills up discard new entries.
161 * Assume that the earlier errors are the more
162 * interesting ones:
163 */
164 if (entry >= MCE_LOG_LEN) {
165 set_bit(MCE_OVERFLOW,
166 (unsigned long *)&mcelog.flags);
167 return;
168 }
169 /* Old left over entry. Skip: */
170 if (mcelog.entry[entry].finished) {
171 entry++;
172 continue;
173 }
174 break;
175 }
176 smp_rmb();
177 next = entry + 1;
178 if (cmpxchg(&mcelog.next, entry, next) == entry)
179 break;
180 }
181 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182 wmb();
183 mcelog.entry[entry].finished = 1;
184 wmb();
185
186 mce->finished = 1;
187 set_bit(0, &mce_need_notify);
188 }
189
190 static void drain_mcelog_buffer(void)
191 {
192 unsigned int next, i, prev = 0;
193
194 next = ACCESS_ONCE(mcelog.next);
195
196 do {
197 struct mce *m;
198
199 /* drain what was logged during boot */
200 for (i = prev; i < next; i++) {
201 unsigned long start = jiffies;
202 unsigned retries = 1;
203
204 m = &mcelog.entry[i];
205
206 while (!m->finished) {
207 if (time_after_eq(jiffies, start + 2*retries))
208 retries++;
209
210 cpu_relax();
211
212 if (!m->finished && retries >= 4) {
213 pr_err("MCE: skipping error being logged currently!\n");
214 break;
215 }
216 }
217 smp_rmb();
218 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219 }
220
221 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222 prev = next;
223 next = cmpxchg(&mcelog.next, prev, 0);
224 } while (next != prev);
225 }
226
227
228 void mce_register_decode_chain(struct notifier_block *nb)
229 {
230 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231 drain_mcelog_buffer();
232 }
233 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235 void mce_unregister_decode_chain(struct notifier_block *nb)
236 {
237 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238 }
239 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241 static void print_mce(struct mce *m)
242 {
243 int ret = 0;
244
245 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246 m->extcpu, m->mcgstatus, m->bank, m->status);
247
248 if (m->ip) {
249 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251 m->cs, m->ip);
252
253 if (m->cs == __KERNEL_CS)
254 print_symbol("{%s}", m->ip);
255 pr_cont("\n");
256 }
257
258 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259 if (m->addr)
260 pr_cont("ADDR %llx ", m->addr);
261 if (m->misc)
262 pr_cont("MISC %llx ", m->misc);
263
264 pr_cont("\n");
265 /*
266 * Note this output is parsed by external tools and old fields
267 * should not be changed.
268 */
269 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 cpu_data(m->extcpu).microcode);
272
273 /*
274 * Print out human-readable details about the MCE error,
275 * (if the CPU has an implementation for that)
276 */
277 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278 if (ret == NOTIFY_STOP)
279 return;
280
281 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282 }
283
284 #define PANIC_TIMEOUT 5 /* 5 seconds */
285
286 static atomic_t mce_paniced;
287
288 static int fake_panic;
289 static atomic_t mce_fake_paniced;
290
291 /* Panic in progress. Enable interrupts and wait for final IPI */
292 static void wait_for_panic(void)
293 {
294 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296 preempt_disable();
297 local_irq_enable();
298 while (timeout-- > 0)
299 udelay(1);
300 if (panic_timeout == 0)
301 panic_timeout = mce_panic_timeout;
302 panic("Panicing machine check CPU died");
303 }
304
305 static void mce_panic(char *msg, struct mce *final, char *exp)
306 {
307 int i, apei_err = 0;
308
309 if (!fake_panic) {
310 /*
311 * Make sure only one CPU runs in machine check panic
312 */
313 if (atomic_inc_return(&mce_paniced) > 1)
314 wait_for_panic();
315 barrier();
316
317 bust_spinlocks(1);
318 console_verbose();
319 } else {
320 /* Don't log too much for fake panic */
321 if (atomic_inc_return(&mce_fake_paniced) > 1)
322 return;
323 }
324 /* First print corrected ones that are still unlogged */
325 for (i = 0; i < MCE_LOG_LEN; i++) {
326 struct mce *m = &mcelog.entry[i];
327 if (!(m->status & MCI_STATUS_VAL))
328 continue;
329 if (!(m->status & MCI_STATUS_UC)) {
330 print_mce(m);
331 if (!apei_err)
332 apei_err = apei_write_mce(m);
333 }
334 }
335 /* Now print uncorrected but with the final one last */
336 for (i = 0; i < MCE_LOG_LEN; i++) {
337 struct mce *m = &mcelog.entry[i];
338 if (!(m->status & MCI_STATUS_VAL))
339 continue;
340 if (!(m->status & MCI_STATUS_UC))
341 continue;
342 if (!final || memcmp(m, final, sizeof(struct mce))) {
343 print_mce(m);
344 if (!apei_err)
345 apei_err = apei_write_mce(m);
346 }
347 }
348 if (final) {
349 print_mce(final);
350 if (!apei_err)
351 apei_err = apei_write_mce(final);
352 }
353 if (cpu_missing)
354 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355 if (exp)
356 pr_emerg(HW_ERR "Machine check: %s\n", exp);
357 if (!fake_panic) {
358 if (panic_timeout == 0)
359 panic_timeout = mce_panic_timeout;
360 panic(msg);
361 } else
362 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363 }
364
365 /* Support code for software error injection */
366
367 static int msr_to_offset(u32 msr)
368 {
369 unsigned bank = __this_cpu_read(injectm.bank);
370
371 if (msr == rip_msr)
372 return offsetof(struct mce, ip);
373 if (msr == MSR_IA32_MCx_STATUS(bank))
374 return offsetof(struct mce, status);
375 if (msr == MSR_IA32_MCx_ADDR(bank))
376 return offsetof(struct mce, addr);
377 if (msr == MSR_IA32_MCx_MISC(bank))
378 return offsetof(struct mce, misc);
379 if (msr == MSR_IA32_MCG_STATUS)
380 return offsetof(struct mce, mcgstatus);
381 return -1;
382 }
383
384 /* MSR access wrappers used for error injection */
385 static u64 mce_rdmsrl(u32 msr)
386 {
387 u64 v;
388
389 if (__this_cpu_read(injectm.finished)) {
390 int offset = msr_to_offset(msr);
391
392 if (offset < 0)
393 return 0;
394 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395 }
396
397 if (rdmsrl_safe(msr, &v)) {
398 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399 /*
400 * Return zero in case the access faulted. This should
401 * not happen normally but can happen if the CPU does
402 * something weird, or if the code is buggy.
403 */
404 v = 0;
405 }
406
407 return v;
408 }
409
410 static void mce_wrmsrl(u32 msr, u64 v)
411 {
412 if (__this_cpu_read(injectm.finished)) {
413 int offset = msr_to_offset(msr);
414
415 if (offset >= 0)
416 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417 return;
418 }
419 wrmsrl(msr, v);
420 }
421
422 /*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428 {
429 mce_setup(m);
430
431 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432 if (regs) {
433 /*
434 * Get the address of the instruction at the time of
435 * the machine check error.
436 */
437 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438 m->ip = regs->ip;
439 m->cs = regs->cs;
440 }
441 /* Use accurate RIP reporting if available. */
442 if (rip_msr)
443 m->ip = mce_rdmsrl(rip_msr);
444 }
445 }
446
447 /*
448 * Simple lockless ring to communicate PFNs from the exception handler with the
449 * process context work function. This is vastly simplified because there's
450 * only a single reader and a single writer.
451 */
452 #define MCE_RING_SIZE 16 /* we use one entry less */
453
454 struct mce_ring {
455 unsigned short start;
456 unsigned short end;
457 unsigned long ring[MCE_RING_SIZE];
458 };
459 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
460
461 /* Runs with CPU affinity in workqueue */
462 static int mce_ring_empty(void)
463 {
464 struct mce_ring *r = &__get_cpu_var(mce_ring);
465
466 return r->start == r->end;
467 }
468
469 static int mce_ring_get(unsigned long *pfn)
470 {
471 struct mce_ring *r;
472 int ret = 0;
473
474 *pfn = 0;
475 get_cpu();
476 r = &__get_cpu_var(mce_ring);
477 if (r->start == r->end)
478 goto out;
479 *pfn = r->ring[r->start];
480 r->start = (r->start + 1) % MCE_RING_SIZE;
481 ret = 1;
482 out:
483 put_cpu();
484 return ret;
485 }
486
487 /* Always runs in MCE context with preempt off */
488 static int mce_ring_add(unsigned long pfn)
489 {
490 struct mce_ring *r = &__get_cpu_var(mce_ring);
491 unsigned next;
492
493 next = (r->end + 1) % MCE_RING_SIZE;
494 if (next == r->start)
495 return -1;
496 r->ring[r->end] = pfn;
497 wmb();
498 r->end = next;
499 return 0;
500 }
501
502 int mce_available(struct cpuinfo_x86 *c)
503 {
504 if (mce_disabled)
505 return 0;
506 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
507 }
508
509 static void mce_schedule_work(void)
510 {
511 if (!mce_ring_empty()) {
512 struct work_struct *work = &__get_cpu_var(mce_work);
513 if (!work_pending(work))
514 schedule_work(work);
515 }
516 }
517
518 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
519
520 static void mce_irq_work_cb(struct irq_work *entry)
521 {
522 mce_notify_irq();
523 mce_schedule_work();
524 }
525
526 static void mce_report_event(struct pt_regs *regs)
527 {
528 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
529 mce_notify_irq();
530 /*
531 * Triggering the work queue here is just an insurance
532 * policy in case the syscall exit notify handler
533 * doesn't run soon enough or ends up running on the
534 * wrong CPU (can happen when audit sleeps)
535 */
536 mce_schedule_work();
537 return;
538 }
539
540 irq_work_queue(&__get_cpu_var(mce_irq_work));
541 }
542
543 /*
544 * Read ADDR and MISC registers.
545 */
546 static void mce_read_aux(struct mce *m, int i)
547 {
548 if (m->status & MCI_STATUS_MISCV)
549 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
550 if (m->status & MCI_STATUS_ADDRV) {
551 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
552
553 /*
554 * Mask the reported address by the reported granularity.
555 */
556 if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
557 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
558 m->addr >>= shift;
559 m->addr <<= shift;
560 }
561 }
562 }
563
564 DEFINE_PER_CPU(unsigned, mce_poll_count);
565
566 /*
567 * Poll for corrected events or events that happened before reset.
568 * Those are just logged through /dev/mcelog.
569 *
570 * This is executed in standard interrupt context.
571 *
572 * Note: spec recommends to panic for fatal unsignalled
573 * errors here. However this would be quite problematic --
574 * we would need to reimplement the Monarch handling and
575 * it would mess up the exclusion between exception handler
576 * and poll hander -- * so we skip this for now.
577 * These cases should not happen anyways, or only when the CPU
578 * is already totally * confused. In this case it's likely it will
579 * not fully execute the machine check handler either.
580 */
581 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
582 {
583 struct mce m;
584 int i;
585
586 this_cpu_inc(mce_poll_count);
587
588 mce_gather_info(&m, NULL);
589
590 for (i = 0; i < banks; i++) {
591 if (!mce_banks[i].ctl || !test_bit(i, *b))
592 continue;
593
594 m.misc = 0;
595 m.addr = 0;
596 m.bank = i;
597 m.tsc = 0;
598
599 barrier();
600 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
601 if (!(m.status & MCI_STATUS_VAL))
602 continue;
603
604 /*
605 * Uncorrected or signalled events are handled by the exception
606 * handler when it is enabled, so don't process those here.
607 *
608 * TBD do the same check for MCI_STATUS_EN here?
609 */
610 if (!(flags & MCP_UC) &&
611 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
612 continue;
613
614 mce_read_aux(&m, i);
615
616 if (!(flags & MCP_TIMESTAMP))
617 m.tsc = 0;
618 /*
619 * Don't get the IP here because it's unlikely to
620 * have anything to do with the actual error location.
621 */
622 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
623 mce_log(&m);
624
625 /*
626 * Clear state for this bank.
627 */
628 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
629 }
630
631 /*
632 * Don't clear MCG_STATUS here because it's only defined for
633 * exceptions.
634 */
635
636 sync_core();
637 }
638 EXPORT_SYMBOL_GPL(machine_check_poll);
639
640 /*
641 * Do a quick check if any of the events requires a panic.
642 * This decides if we keep the events around or clear them.
643 */
644 static int mce_no_way_out(struct mce *m, char **msg)
645 {
646 int i;
647
648 for (i = 0; i < banks; i++) {
649 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
650 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
651 return 1;
652 }
653 return 0;
654 }
655
656 /*
657 * Variable to establish order between CPUs while scanning.
658 * Each CPU spins initially until executing is equal its number.
659 */
660 static atomic_t mce_executing;
661
662 /*
663 * Defines order of CPUs on entry. First CPU becomes Monarch.
664 */
665 static atomic_t mce_callin;
666
667 /*
668 * Check if a timeout waiting for other CPUs happened.
669 */
670 static int mce_timed_out(u64 *t)
671 {
672 /*
673 * The others already did panic for some reason.
674 * Bail out like in a timeout.
675 * rmb() to tell the compiler that system_state
676 * might have been modified by someone else.
677 */
678 rmb();
679 if (atomic_read(&mce_paniced))
680 wait_for_panic();
681 if (!monarch_timeout)
682 goto out;
683 if ((s64)*t < SPINUNIT) {
684 /* CHECKME: Make panic default for 1 too? */
685 if (tolerant < 1)
686 mce_panic("Timeout synchronizing machine check over CPUs",
687 NULL, NULL);
688 cpu_missing = 1;
689 return 1;
690 }
691 *t -= SPINUNIT;
692 out:
693 touch_nmi_watchdog();
694 return 0;
695 }
696
697 /*
698 * The Monarch's reign. The Monarch is the CPU who entered
699 * the machine check handler first. It waits for the others to
700 * raise the exception too and then grades them. When any
701 * error is fatal panic. Only then let the others continue.
702 *
703 * The other CPUs entering the MCE handler will be controlled by the
704 * Monarch. They are called Subjects.
705 *
706 * This way we prevent any potential data corruption in a unrecoverable case
707 * and also makes sure always all CPU's errors are examined.
708 *
709 * Also this detects the case of a machine check event coming from outer
710 * space (not detected by any CPUs) In this case some external agent wants
711 * us to shut down, so panic too.
712 *
713 * The other CPUs might still decide to panic if the handler happens
714 * in a unrecoverable place, but in this case the system is in a semi-stable
715 * state and won't corrupt anything by itself. It's ok to let the others
716 * continue for a bit first.
717 *
718 * All the spin loops have timeouts; when a timeout happens a CPU
719 * typically elects itself to be Monarch.
720 */
721 static void mce_reign(void)
722 {
723 int cpu;
724 struct mce *m = NULL;
725 int global_worst = 0;
726 char *msg = NULL;
727 char *nmsg = NULL;
728
729 /*
730 * This CPU is the Monarch and the other CPUs have run
731 * through their handlers.
732 * Grade the severity of the errors of all the CPUs.
733 */
734 for_each_possible_cpu(cpu) {
735 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
736 &nmsg);
737 if (severity > global_worst) {
738 msg = nmsg;
739 global_worst = severity;
740 m = &per_cpu(mces_seen, cpu);
741 }
742 }
743
744 /*
745 * Cannot recover? Panic here then.
746 * This dumps all the mces in the log buffer and stops the
747 * other CPUs.
748 */
749 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
750 mce_panic("Fatal Machine check", m, msg);
751
752 /*
753 * For UC somewhere we let the CPU who detects it handle it.
754 * Also must let continue the others, otherwise the handling
755 * CPU could deadlock on a lock.
756 */
757
758 /*
759 * No machine check event found. Must be some external
760 * source or one CPU is hung. Panic.
761 */
762 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
763 mce_panic("Machine check from unknown source", NULL, NULL);
764
765 /*
766 * Now clear all the mces_seen so that they don't reappear on
767 * the next mce.
768 */
769 for_each_possible_cpu(cpu)
770 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
771 }
772
773 static atomic_t global_nwo;
774
775 /*
776 * Start of Monarch synchronization. This waits until all CPUs have
777 * entered the exception handler and then determines if any of them
778 * saw a fatal event that requires panic. Then it executes them
779 * in the entry order.
780 * TBD double check parallel CPU hotunplug
781 */
782 static int mce_start(int *no_way_out)
783 {
784 int order;
785 int cpus = num_online_cpus();
786 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
787
788 if (!timeout)
789 return -1;
790
791 atomic_add(*no_way_out, &global_nwo);
792 /*
793 * global_nwo should be updated before mce_callin
794 */
795 smp_wmb();
796 order = atomic_inc_return(&mce_callin);
797
798 /*
799 * Wait for everyone.
800 */
801 while (atomic_read(&mce_callin) != cpus) {
802 if (mce_timed_out(&timeout)) {
803 atomic_set(&global_nwo, 0);
804 return -1;
805 }
806 ndelay(SPINUNIT);
807 }
808
809 /*
810 * mce_callin should be read before global_nwo
811 */
812 smp_rmb();
813
814 if (order == 1) {
815 /*
816 * Monarch: Starts executing now, the others wait.
817 */
818 atomic_set(&mce_executing, 1);
819 } else {
820 /*
821 * Subject: Now start the scanning loop one by one in
822 * the original callin order.
823 * This way when there are any shared banks it will be
824 * only seen by one CPU before cleared, avoiding duplicates.
825 */
826 while (atomic_read(&mce_executing) < order) {
827 if (mce_timed_out(&timeout)) {
828 atomic_set(&global_nwo, 0);
829 return -1;
830 }
831 ndelay(SPINUNIT);
832 }
833 }
834
835 /*
836 * Cache the global no_way_out state.
837 */
838 *no_way_out = atomic_read(&global_nwo);
839
840 return order;
841 }
842
843 /*
844 * Synchronize between CPUs after main scanning loop.
845 * This invokes the bulk of the Monarch processing.
846 */
847 static int mce_end(int order)
848 {
849 int ret = -1;
850 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
851
852 if (!timeout)
853 goto reset;
854 if (order < 0)
855 goto reset;
856
857 /*
858 * Allow others to run.
859 */
860 atomic_inc(&mce_executing);
861
862 if (order == 1) {
863 /* CHECKME: Can this race with a parallel hotplug? */
864 int cpus = num_online_cpus();
865
866 /*
867 * Monarch: Wait for everyone to go through their scanning
868 * loops.
869 */
870 while (atomic_read(&mce_executing) <= cpus) {
871 if (mce_timed_out(&timeout))
872 goto reset;
873 ndelay(SPINUNIT);
874 }
875
876 mce_reign();
877 barrier();
878 ret = 0;
879 } else {
880 /*
881 * Subject: Wait for Monarch to finish.
882 */
883 while (atomic_read(&mce_executing) != 0) {
884 if (mce_timed_out(&timeout))
885 goto reset;
886 ndelay(SPINUNIT);
887 }
888
889 /*
890 * Don't reset anything. That's done by the Monarch.
891 */
892 return 0;
893 }
894
895 /*
896 * Reset all global state.
897 */
898 reset:
899 atomic_set(&global_nwo, 0);
900 atomic_set(&mce_callin, 0);
901 barrier();
902
903 /*
904 * Let others run again.
905 */
906 atomic_set(&mce_executing, 0);
907 return ret;
908 }
909
910 /*
911 * Check if the address reported by the CPU is in a format we can parse.
912 * It would be possible to add code for most other cases, but all would
913 * be somewhat complicated (e.g. segment offset would require an instruction
914 * parser). So only support physical addresses up to page granuality for now.
915 */
916 static int mce_usable_address(struct mce *m)
917 {
918 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
919 return 0;
920 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
921 return 0;
922 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
923 return 0;
924 return 1;
925 }
926
927 static void mce_clear_state(unsigned long *toclear)
928 {
929 int i;
930
931 for (i = 0; i < banks; i++) {
932 if (test_bit(i, toclear))
933 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
934 }
935 }
936
937 /*
938 * Need to save faulting physical address associated with a process
939 * in the machine check handler some place where we can grab it back
940 * later in mce_notify_process()
941 */
942 #define MCE_INFO_MAX 16
943
944 struct mce_info {
945 atomic_t inuse;
946 struct task_struct *t;
947 __u64 paddr;
948 int restartable;
949 } mce_info[MCE_INFO_MAX];
950
951 static void mce_save_info(__u64 addr, int c)
952 {
953 struct mce_info *mi;
954
955 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
956 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
957 mi->t = current;
958 mi->paddr = addr;
959 mi->restartable = c;
960 return;
961 }
962 }
963
964 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
965 }
966
967 static struct mce_info *mce_find_info(void)
968 {
969 struct mce_info *mi;
970
971 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
972 if (atomic_read(&mi->inuse) && mi->t == current)
973 return mi;
974 return NULL;
975 }
976
977 static void mce_clear_info(struct mce_info *mi)
978 {
979 atomic_set(&mi->inuse, 0);
980 }
981
982 /*
983 * The actual machine check handler. This only handles real
984 * exceptions when something got corrupted coming in through int 18.
985 *
986 * This is executed in NMI context not subject to normal locking rules. This
987 * implies that most kernel services cannot be safely used. Don't even
988 * think about putting a printk in there!
989 *
990 * On Intel systems this is entered on all CPUs in parallel through
991 * MCE broadcast. However some CPUs might be broken beyond repair,
992 * so be always careful when synchronizing with others.
993 */
994 void do_machine_check(struct pt_regs *regs, long error_code)
995 {
996 struct mce m, *final;
997 int i;
998 int worst = 0;
999 int severity;
1000 /*
1001 * Establish sequential order between the CPUs entering the machine
1002 * check handler.
1003 */
1004 int order;
1005 /*
1006 * If no_way_out gets set, there is no safe way to recover from this
1007 * MCE. If tolerant is cranked up, we'll try anyway.
1008 */
1009 int no_way_out = 0;
1010 /*
1011 * If kill_it gets set, there might be a way to recover from this
1012 * error.
1013 */
1014 int kill_it = 0;
1015 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1016 char *msg = "Unknown";
1017
1018 atomic_inc(&mce_entry);
1019
1020 this_cpu_inc(mce_exception_count);
1021
1022 if (!banks)
1023 goto out;
1024
1025 mce_gather_info(&m, regs);
1026
1027 final = &__get_cpu_var(mces_seen);
1028 *final = m;
1029
1030 no_way_out = mce_no_way_out(&m, &msg);
1031
1032 barrier();
1033
1034 /*
1035 * When no restart IP might need to kill or panic.
1036 * Assume the worst for now, but if we find the
1037 * severity is MCE_AR_SEVERITY we have other options.
1038 */
1039 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1040 kill_it = 1;
1041
1042 /*
1043 * Go through all the banks in exclusion of the other CPUs.
1044 * This way we don't report duplicated events on shared banks
1045 * because the first one to see it will clear it.
1046 */
1047 order = mce_start(&no_way_out);
1048 for (i = 0; i < banks; i++) {
1049 __clear_bit(i, toclear);
1050 if (!mce_banks[i].ctl)
1051 continue;
1052
1053 m.misc = 0;
1054 m.addr = 0;
1055 m.bank = i;
1056
1057 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1058 if ((m.status & MCI_STATUS_VAL) == 0)
1059 continue;
1060
1061 /*
1062 * Non uncorrected or non signaled errors are handled by
1063 * machine_check_poll. Leave them alone, unless this panics.
1064 */
1065 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1066 !no_way_out)
1067 continue;
1068
1069 /*
1070 * Set taint even when machine check was not enabled.
1071 */
1072 add_taint(TAINT_MACHINE_CHECK);
1073
1074 severity = mce_severity(&m, tolerant, NULL);
1075
1076 /*
1077 * When machine check was for corrected handler don't touch,
1078 * unless we're panicing.
1079 */
1080 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1081 continue;
1082 __set_bit(i, toclear);
1083 if (severity == MCE_NO_SEVERITY) {
1084 /*
1085 * Machine check event was not enabled. Clear, but
1086 * ignore.
1087 */
1088 continue;
1089 }
1090
1091 mce_read_aux(&m, i);
1092
1093 /*
1094 * Action optional error. Queue address for later processing.
1095 * When the ring overflows we just ignore the AO error.
1096 * RED-PEN add some logging mechanism when
1097 * usable_address or mce_add_ring fails.
1098 * RED-PEN don't ignore overflow for tolerant == 0
1099 */
1100 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1101 mce_ring_add(m.addr >> PAGE_SHIFT);
1102
1103 mce_log(&m);
1104
1105 if (severity > worst) {
1106 *final = m;
1107 worst = severity;
1108 }
1109 }
1110
1111 /* mce_clear_state will clear *final, save locally for use later */
1112 m = *final;
1113
1114 if (!no_way_out)
1115 mce_clear_state(toclear);
1116
1117 /*
1118 * Do most of the synchronization with other CPUs.
1119 * When there's any problem use only local no_way_out state.
1120 */
1121 if (mce_end(order) < 0)
1122 no_way_out = worst >= MCE_PANIC_SEVERITY;
1123
1124 /*
1125 * At insane "tolerant" levels we take no action. Otherwise
1126 * we only die if we have no other choice. For less serious
1127 * issues we try to recover, or limit damage to the current
1128 * process.
1129 */
1130 if (tolerant < 3) {
1131 if (no_way_out)
1132 mce_panic("Fatal machine check on current CPU", &m, msg);
1133 if (worst == MCE_AR_SEVERITY) {
1134 /* schedule action before return to userland */
1135 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1136 set_thread_flag(TIF_MCE_NOTIFY);
1137 } else if (kill_it) {
1138 force_sig(SIGBUS, current);
1139 }
1140 }
1141
1142 if (worst > 0)
1143 mce_report_event(regs);
1144 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1145 out:
1146 atomic_dec(&mce_entry);
1147 sync_core();
1148 }
1149 EXPORT_SYMBOL_GPL(do_machine_check);
1150
1151 #ifndef CONFIG_MEMORY_FAILURE
1152 int memory_failure(unsigned long pfn, int vector, int flags)
1153 {
1154 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1155 BUG_ON(flags & MF_ACTION_REQUIRED);
1156 printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1157 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1158
1159 return 0;
1160 }
1161 #endif
1162
1163 /*
1164 * Called in process context that interrupted by MCE and marked with
1165 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1166 * This code is allowed to sleep.
1167 * Attempt possible recovery such as calling the high level VM handler to
1168 * process any corrupted pages, and kill/signal current process if required.
1169 * Action required errors are handled here.
1170 */
1171 void mce_notify_process(void)
1172 {
1173 unsigned long pfn;
1174 struct mce_info *mi = mce_find_info();
1175
1176 if (!mi)
1177 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1178 pfn = mi->paddr >> PAGE_SHIFT;
1179
1180 clear_thread_flag(TIF_MCE_NOTIFY);
1181
1182 pr_err("Uncorrected hardware memory error in user-access at %llx",
1183 mi->paddr);
1184 /*
1185 * We must call memory_failure() here even if the current process is
1186 * doomed. We still need to mark the page as poisoned and alert any
1187 * other users of the page.
1188 */
1189 if (memory_failure(pfn, MCE_VECTOR, MF_ACTION_REQUIRED) < 0 ||
1190 mi->restartable == 0) {
1191 pr_err("Memory error not recovered");
1192 force_sig(SIGBUS, current);
1193 }
1194 mce_clear_info(mi);
1195 }
1196
1197 /*
1198 * Action optional processing happens here (picking up
1199 * from the list of faulting pages that do_machine_check()
1200 * placed into the "ring").
1201 */
1202 static void mce_process_work(struct work_struct *dummy)
1203 {
1204 unsigned long pfn;
1205
1206 while (mce_ring_get(&pfn))
1207 memory_failure(pfn, MCE_VECTOR, 0);
1208 }
1209
1210 #ifdef CONFIG_X86_MCE_INTEL
1211 /***
1212 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1213 * @cpu: The CPU on which the event occurred.
1214 * @status: Event status information
1215 *
1216 * This function should be called by the thermal interrupt after the
1217 * event has been processed and the decision was made to log the event
1218 * further.
1219 *
1220 * The status parameter will be saved to the 'status' field of 'struct mce'
1221 * and historically has been the register value of the
1222 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1223 */
1224 void mce_log_therm_throt_event(__u64 status)
1225 {
1226 struct mce m;
1227
1228 mce_setup(&m);
1229 m.bank = MCE_THERMAL_BANK;
1230 m.status = status;
1231 mce_log(&m);
1232 }
1233 #endif /* CONFIG_X86_MCE_INTEL */
1234
1235 /*
1236 * Periodic polling timer for "silent" machine check errors. If the
1237 * poller finds an MCE, poll 2x faster. When the poller finds no more
1238 * errors, poll 2x slower (up to check_interval seconds).
1239 */
1240 static int check_interval = 5 * 60; /* 5 minutes */
1241
1242 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1243 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1244
1245 static void mce_start_timer(unsigned long data)
1246 {
1247 struct timer_list *t = &per_cpu(mce_timer, data);
1248 int *n;
1249
1250 WARN_ON(smp_processor_id() != data);
1251
1252 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1253 machine_check_poll(MCP_TIMESTAMP,
1254 &__get_cpu_var(mce_poll_banks));
1255 }
1256
1257 /*
1258 * Alert userspace if needed. If we logged an MCE, reduce the
1259 * polling interval, otherwise increase the polling interval.
1260 */
1261 n = &__get_cpu_var(mce_next_interval);
1262 if (mce_notify_irq())
1263 *n = max(*n/2, HZ/100);
1264 else
1265 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1266
1267 t->expires = jiffies + *n;
1268 add_timer_on(t, smp_processor_id());
1269 }
1270
1271 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1272 static void mce_timer_delete_all(void)
1273 {
1274 int cpu;
1275
1276 for_each_online_cpu(cpu)
1277 del_timer_sync(&per_cpu(mce_timer, cpu));
1278 }
1279
1280 static void mce_do_trigger(struct work_struct *work)
1281 {
1282 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1283 }
1284
1285 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1286
1287 /*
1288 * Notify the user(s) about new machine check events.
1289 * Can be called from interrupt context, but not from machine check/NMI
1290 * context.
1291 */
1292 int mce_notify_irq(void)
1293 {
1294 /* Not more than two messages every minute */
1295 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1296
1297 if (test_and_clear_bit(0, &mce_need_notify)) {
1298 /* wake processes polling /dev/mcelog */
1299 wake_up_interruptible(&mce_chrdev_wait);
1300
1301 /*
1302 * There is no risk of missing notifications because
1303 * work_pending is always cleared before the function is
1304 * executed.
1305 */
1306 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1307 schedule_work(&mce_trigger_work);
1308
1309 if (__ratelimit(&ratelimit))
1310 pr_info(HW_ERR "Machine check events logged\n");
1311
1312 return 1;
1313 }
1314 return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(mce_notify_irq);
1317
1318 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1319 {
1320 int i;
1321
1322 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1323 if (!mce_banks)
1324 return -ENOMEM;
1325 for (i = 0; i < banks; i++) {
1326 struct mce_bank *b = &mce_banks[i];
1327
1328 b->ctl = -1ULL;
1329 b->init = 1;
1330 }
1331 return 0;
1332 }
1333
1334 /*
1335 * Initialize Machine Checks for a CPU.
1336 */
1337 static int __cpuinit __mcheck_cpu_cap_init(void)
1338 {
1339 unsigned b;
1340 u64 cap;
1341
1342 rdmsrl(MSR_IA32_MCG_CAP, cap);
1343
1344 b = cap & MCG_BANKCNT_MASK;
1345 if (!banks)
1346 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1347
1348 if (b > MAX_NR_BANKS) {
1349 printk(KERN_WARNING
1350 "MCE: Using only %u machine check banks out of %u\n",
1351 MAX_NR_BANKS, b);
1352 b = MAX_NR_BANKS;
1353 }
1354
1355 /* Don't support asymmetric configurations today */
1356 WARN_ON(banks != 0 && b != banks);
1357 banks = b;
1358 if (!mce_banks) {
1359 int err = __mcheck_cpu_mce_banks_init();
1360
1361 if (err)
1362 return err;
1363 }
1364
1365 /* Use accurate RIP reporting if available. */
1366 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1367 rip_msr = MSR_IA32_MCG_EIP;
1368
1369 if (cap & MCG_SER_P)
1370 mce_ser = 1;
1371
1372 return 0;
1373 }
1374
1375 static void __mcheck_cpu_init_generic(void)
1376 {
1377 mce_banks_t all_banks;
1378 u64 cap;
1379 int i;
1380
1381 /*
1382 * Log the machine checks left over from the previous reset.
1383 */
1384 bitmap_fill(all_banks, MAX_NR_BANKS);
1385 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1386
1387 set_in_cr4(X86_CR4_MCE);
1388
1389 rdmsrl(MSR_IA32_MCG_CAP, cap);
1390 if (cap & MCG_CTL_P)
1391 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1392
1393 for (i = 0; i < banks; i++) {
1394 struct mce_bank *b = &mce_banks[i];
1395
1396 if (!b->init)
1397 continue;
1398 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1399 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1400 }
1401 }
1402
1403 /* Add per CPU specific workarounds here */
1404 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1405 {
1406 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1407 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1408 return -EOPNOTSUPP;
1409 }
1410
1411 /* This should be disabled by the BIOS, but isn't always */
1412 if (c->x86_vendor == X86_VENDOR_AMD) {
1413 if (c->x86 == 15 && banks > 4) {
1414 /*
1415 * disable GART TBL walk error reporting, which
1416 * trips off incorrectly with the IOMMU & 3ware
1417 * & Cerberus:
1418 */
1419 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1420 }
1421 if (c->x86 <= 17 && mce_bootlog < 0) {
1422 /*
1423 * Lots of broken BIOS around that don't clear them
1424 * by default and leave crap in there. Don't log:
1425 */
1426 mce_bootlog = 0;
1427 }
1428 /*
1429 * Various K7s with broken bank 0 around. Always disable
1430 * by default.
1431 */
1432 if (c->x86 == 6 && banks > 0)
1433 mce_banks[0].ctl = 0;
1434
1435 /*
1436 * Turn off MC4_MISC thresholding banks on those models since
1437 * they're not supported there.
1438 */
1439 if (c->x86 == 0x15 &&
1440 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1441 int i;
1442 u64 val, hwcr;
1443 bool need_toggle;
1444 u32 msrs[] = {
1445 0x00000413, /* MC4_MISC0 */
1446 0xc0000408, /* MC4_MISC1 */
1447 };
1448
1449 rdmsrl(MSR_K7_HWCR, hwcr);
1450
1451 /* McStatusWrEn has to be set */
1452 need_toggle = !(hwcr & BIT(18));
1453
1454 if (need_toggle)
1455 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1456
1457 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1458 rdmsrl(msrs[i], val);
1459
1460 /* CntP bit set? */
1461 if (val & BIT(62)) {
1462 val &= ~BIT(62);
1463 wrmsrl(msrs[i], val);
1464 }
1465 }
1466
1467 /* restore old settings */
1468 if (need_toggle)
1469 wrmsrl(MSR_K7_HWCR, hwcr);
1470 }
1471 }
1472
1473 if (c->x86_vendor == X86_VENDOR_INTEL) {
1474 /*
1475 * SDM documents that on family 6 bank 0 should not be written
1476 * because it aliases to another special BIOS controlled
1477 * register.
1478 * But it's not aliased anymore on model 0x1a+
1479 * Don't ignore bank 0 completely because there could be a
1480 * valid event later, merely don't write CTL0.
1481 */
1482
1483 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1484 mce_banks[0].init = 0;
1485
1486 /*
1487 * All newer Intel systems support MCE broadcasting. Enable
1488 * synchronization with a one second timeout.
1489 */
1490 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1491 monarch_timeout < 0)
1492 monarch_timeout = USEC_PER_SEC;
1493
1494 /*
1495 * There are also broken BIOSes on some Pentium M and
1496 * earlier systems:
1497 */
1498 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1499 mce_bootlog = 0;
1500 }
1501 if (monarch_timeout < 0)
1502 monarch_timeout = 0;
1503 if (mce_bootlog != 0)
1504 mce_panic_timeout = 30;
1505
1506 return 0;
1507 }
1508
1509 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1510 {
1511 if (c->x86 != 5)
1512 return 0;
1513
1514 switch (c->x86_vendor) {
1515 case X86_VENDOR_INTEL:
1516 intel_p5_mcheck_init(c);
1517 return 1;
1518 break;
1519 case X86_VENDOR_CENTAUR:
1520 winchip_mcheck_init(c);
1521 return 1;
1522 break;
1523 }
1524
1525 return 0;
1526 }
1527
1528 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1529 {
1530 switch (c->x86_vendor) {
1531 case X86_VENDOR_INTEL:
1532 mce_intel_feature_init(c);
1533 break;
1534 case X86_VENDOR_AMD:
1535 mce_amd_feature_init(c);
1536 break;
1537 default:
1538 break;
1539 }
1540 }
1541
1542 static void __mcheck_cpu_init_timer(void)
1543 {
1544 struct timer_list *t = &__get_cpu_var(mce_timer);
1545 int *n = &__get_cpu_var(mce_next_interval);
1546
1547 setup_timer(t, mce_start_timer, smp_processor_id());
1548
1549 if (mce_ignore_ce)
1550 return;
1551
1552 *n = check_interval * HZ;
1553 if (!*n)
1554 return;
1555 t->expires = round_jiffies(jiffies + *n);
1556 add_timer_on(t, smp_processor_id());
1557 }
1558
1559 /* Handle unconfigured int18 (should never happen) */
1560 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1561 {
1562 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1563 smp_processor_id());
1564 }
1565
1566 /* Call the installed machine check handler for this CPU setup. */
1567 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1568 unexpected_machine_check;
1569
1570 /*
1571 * Called for each booted CPU to set up machine checks.
1572 * Must be called with preempt off:
1573 */
1574 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1575 {
1576 if (mce_disabled)
1577 return;
1578
1579 if (__mcheck_cpu_ancient_init(c))
1580 return;
1581
1582 if (!mce_available(c))
1583 return;
1584
1585 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1586 mce_disabled = 1;
1587 return;
1588 }
1589
1590 machine_check_vector = do_machine_check;
1591
1592 __mcheck_cpu_init_generic();
1593 __mcheck_cpu_init_vendor(c);
1594 __mcheck_cpu_init_timer();
1595 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1596 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1597 }
1598
1599 /*
1600 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1601 */
1602
1603 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1604 static int mce_chrdev_open_count; /* #times opened */
1605 static int mce_chrdev_open_exclu; /* already open exclusive? */
1606
1607 static int mce_chrdev_open(struct inode *inode, struct file *file)
1608 {
1609 spin_lock(&mce_chrdev_state_lock);
1610
1611 if (mce_chrdev_open_exclu ||
1612 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1613 spin_unlock(&mce_chrdev_state_lock);
1614
1615 return -EBUSY;
1616 }
1617
1618 if (file->f_flags & O_EXCL)
1619 mce_chrdev_open_exclu = 1;
1620 mce_chrdev_open_count++;
1621
1622 spin_unlock(&mce_chrdev_state_lock);
1623
1624 return nonseekable_open(inode, file);
1625 }
1626
1627 static int mce_chrdev_release(struct inode *inode, struct file *file)
1628 {
1629 spin_lock(&mce_chrdev_state_lock);
1630
1631 mce_chrdev_open_count--;
1632 mce_chrdev_open_exclu = 0;
1633
1634 spin_unlock(&mce_chrdev_state_lock);
1635
1636 return 0;
1637 }
1638
1639 static void collect_tscs(void *data)
1640 {
1641 unsigned long *cpu_tsc = (unsigned long *)data;
1642
1643 rdtscll(cpu_tsc[smp_processor_id()]);
1644 }
1645
1646 static int mce_apei_read_done;
1647
1648 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1649 static int __mce_read_apei(char __user **ubuf, size_t usize)
1650 {
1651 int rc;
1652 u64 record_id;
1653 struct mce m;
1654
1655 if (usize < sizeof(struct mce))
1656 return -EINVAL;
1657
1658 rc = apei_read_mce(&m, &record_id);
1659 /* Error or no more MCE record */
1660 if (rc <= 0) {
1661 mce_apei_read_done = 1;
1662 /*
1663 * When ERST is disabled, mce_chrdev_read() should return
1664 * "no record" instead of "no device."
1665 */
1666 if (rc == -ENODEV)
1667 return 0;
1668 return rc;
1669 }
1670 rc = -EFAULT;
1671 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1672 return rc;
1673 /*
1674 * In fact, we should have cleared the record after that has
1675 * been flushed to the disk or sent to network in
1676 * /sbin/mcelog, but we have no interface to support that now,
1677 * so just clear it to avoid duplication.
1678 */
1679 rc = apei_clear_mce(record_id);
1680 if (rc) {
1681 mce_apei_read_done = 1;
1682 return rc;
1683 }
1684 *ubuf += sizeof(struct mce);
1685
1686 return 0;
1687 }
1688
1689 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1690 size_t usize, loff_t *off)
1691 {
1692 char __user *buf = ubuf;
1693 unsigned long *cpu_tsc;
1694 unsigned prev, next;
1695 int i, err;
1696
1697 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1698 if (!cpu_tsc)
1699 return -ENOMEM;
1700
1701 mutex_lock(&mce_chrdev_read_mutex);
1702
1703 if (!mce_apei_read_done) {
1704 err = __mce_read_apei(&buf, usize);
1705 if (err || buf != ubuf)
1706 goto out;
1707 }
1708
1709 next = rcu_dereference_check_mce(mcelog.next);
1710
1711 /* Only supports full reads right now */
1712 err = -EINVAL;
1713 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1714 goto out;
1715
1716 err = 0;
1717 prev = 0;
1718 do {
1719 for (i = prev; i < next; i++) {
1720 unsigned long start = jiffies;
1721 struct mce *m = &mcelog.entry[i];
1722
1723 while (!m->finished) {
1724 if (time_after_eq(jiffies, start + 2)) {
1725 memset(m, 0, sizeof(*m));
1726 goto timeout;
1727 }
1728 cpu_relax();
1729 }
1730 smp_rmb();
1731 err |= copy_to_user(buf, m, sizeof(*m));
1732 buf += sizeof(*m);
1733 timeout:
1734 ;
1735 }
1736
1737 memset(mcelog.entry + prev, 0,
1738 (next - prev) * sizeof(struct mce));
1739 prev = next;
1740 next = cmpxchg(&mcelog.next, prev, 0);
1741 } while (next != prev);
1742
1743 synchronize_sched();
1744
1745 /*
1746 * Collect entries that were still getting written before the
1747 * synchronize.
1748 */
1749 on_each_cpu(collect_tscs, cpu_tsc, 1);
1750
1751 for (i = next; i < MCE_LOG_LEN; i++) {
1752 struct mce *m = &mcelog.entry[i];
1753
1754 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1755 err |= copy_to_user(buf, m, sizeof(*m));
1756 smp_rmb();
1757 buf += sizeof(*m);
1758 memset(m, 0, sizeof(*m));
1759 }
1760 }
1761
1762 if (err)
1763 err = -EFAULT;
1764
1765 out:
1766 mutex_unlock(&mce_chrdev_read_mutex);
1767 kfree(cpu_tsc);
1768
1769 return err ? err : buf - ubuf;
1770 }
1771
1772 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1773 {
1774 poll_wait(file, &mce_chrdev_wait, wait);
1775 if (rcu_access_index(mcelog.next))
1776 return POLLIN | POLLRDNORM;
1777 if (!mce_apei_read_done && apei_check_mce())
1778 return POLLIN | POLLRDNORM;
1779 return 0;
1780 }
1781
1782 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1783 unsigned long arg)
1784 {
1785 int __user *p = (int __user *)arg;
1786
1787 if (!capable(CAP_SYS_ADMIN))
1788 return -EPERM;
1789
1790 switch (cmd) {
1791 case MCE_GET_RECORD_LEN:
1792 return put_user(sizeof(struct mce), p);
1793 case MCE_GET_LOG_LEN:
1794 return put_user(MCE_LOG_LEN, p);
1795 case MCE_GETCLEAR_FLAGS: {
1796 unsigned flags;
1797
1798 do {
1799 flags = mcelog.flags;
1800 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1801
1802 return put_user(flags, p);
1803 }
1804 default:
1805 return -ENOTTY;
1806 }
1807 }
1808
1809 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1810 size_t usize, loff_t *off);
1811
1812 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1813 const char __user *ubuf,
1814 size_t usize, loff_t *off))
1815 {
1816 mce_write = fn;
1817 }
1818 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1819
1820 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1821 size_t usize, loff_t *off)
1822 {
1823 if (mce_write)
1824 return mce_write(filp, ubuf, usize, off);
1825 else
1826 return -EINVAL;
1827 }
1828
1829 static const struct file_operations mce_chrdev_ops = {
1830 .open = mce_chrdev_open,
1831 .release = mce_chrdev_release,
1832 .read = mce_chrdev_read,
1833 .write = mce_chrdev_write,
1834 .poll = mce_chrdev_poll,
1835 .unlocked_ioctl = mce_chrdev_ioctl,
1836 .llseek = no_llseek,
1837 };
1838
1839 static struct miscdevice mce_chrdev_device = {
1840 MISC_MCELOG_MINOR,
1841 "mcelog",
1842 &mce_chrdev_ops,
1843 };
1844
1845 /*
1846 * mce=off Disables machine check
1847 * mce=no_cmci Disables CMCI
1848 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1849 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1850 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1851 * monarchtimeout is how long to wait for other CPUs on machine
1852 * check, or 0 to not wait
1853 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1854 * mce=nobootlog Don't log MCEs from before booting.
1855 */
1856 static int __init mcheck_enable(char *str)
1857 {
1858 if (*str == 0) {
1859 enable_p5_mce();
1860 return 1;
1861 }
1862 if (*str == '=')
1863 str++;
1864 if (!strcmp(str, "off"))
1865 mce_disabled = 1;
1866 else if (!strcmp(str, "no_cmci"))
1867 mce_cmci_disabled = 1;
1868 else if (!strcmp(str, "dont_log_ce"))
1869 mce_dont_log_ce = 1;
1870 else if (!strcmp(str, "ignore_ce"))
1871 mce_ignore_ce = 1;
1872 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1873 mce_bootlog = (str[0] == 'b');
1874 else if (isdigit(str[0])) {
1875 get_option(&str, &tolerant);
1876 if (*str == ',') {
1877 ++str;
1878 get_option(&str, &monarch_timeout);
1879 }
1880 } else {
1881 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1882 str);
1883 return 0;
1884 }
1885 return 1;
1886 }
1887 __setup("mce", mcheck_enable);
1888
1889 int __init mcheck_init(void)
1890 {
1891 mcheck_intel_therm_init();
1892
1893 return 0;
1894 }
1895
1896 /*
1897 * mce_syscore: PM support
1898 */
1899
1900 /*
1901 * Disable machine checks on suspend and shutdown. We can't really handle
1902 * them later.
1903 */
1904 static int mce_disable_error_reporting(void)
1905 {
1906 int i;
1907
1908 for (i = 0; i < banks; i++) {
1909 struct mce_bank *b = &mce_banks[i];
1910
1911 if (b->init)
1912 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1913 }
1914 return 0;
1915 }
1916
1917 static int mce_syscore_suspend(void)
1918 {
1919 return mce_disable_error_reporting();
1920 }
1921
1922 static void mce_syscore_shutdown(void)
1923 {
1924 mce_disable_error_reporting();
1925 }
1926
1927 /*
1928 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1929 * Only one CPU is active at this time, the others get re-added later using
1930 * CPU hotplug:
1931 */
1932 static void mce_syscore_resume(void)
1933 {
1934 __mcheck_cpu_init_generic();
1935 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1936 }
1937
1938 static struct syscore_ops mce_syscore_ops = {
1939 .suspend = mce_syscore_suspend,
1940 .shutdown = mce_syscore_shutdown,
1941 .resume = mce_syscore_resume,
1942 };
1943
1944 /*
1945 * mce_device: Sysfs support
1946 */
1947
1948 static void mce_cpu_restart(void *data)
1949 {
1950 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1951 return;
1952 __mcheck_cpu_init_generic();
1953 __mcheck_cpu_init_timer();
1954 }
1955
1956 /* Reinit MCEs after user configuration changes */
1957 static void mce_restart(void)
1958 {
1959 mce_timer_delete_all();
1960 on_each_cpu(mce_cpu_restart, NULL, 1);
1961 }
1962
1963 /* Toggle features for corrected errors */
1964 static void mce_disable_cmci(void *data)
1965 {
1966 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1967 return;
1968 cmci_clear();
1969 }
1970
1971 static void mce_enable_ce(void *all)
1972 {
1973 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1974 return;
1975 cmci_reenable();
1976 cmci_recheck();
1977 if (all)
1978 __mcheck_cpu_init_timer();
1979 }
1980
1981 static struct bus_type mce_subsys = {
1982 .name = "machinecheck",
1983 .dev_name = "machinecheck",
1984 };
1985
1986 DEFINE_PER_CPU(struct device *, mce_device);
1987
1988 __cpuinitdata
1989 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1990
1991 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1992 {
1993 return container_of(attr, struct mce_bank, attr);
1994 }
1995
1996 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1997 char *buf)
1998 {
1999 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2000 }
2001
2002 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2003 const char *buf, size_t size)
2004 {
2005 u64 new;
2006
2007 if (strict_strtoull(buf, 0, &new) < 0)
2008 return -EINVAL;
2009
2010 attr_to_bank(attr)->ctl = new;
2011 mce_restart();
2012
2013 return size;
2014 }
2015
2016 static ssize_t
2017 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2018 {
2019 strcpy(buf, mce_helper);
2020 strcat(buf, "\n");
2021 return strlen(mce_helper) + 1;
2022 }
2023
2024 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2025 const char *buf, size_t siz)
2026 {
2027 char *p;
2028
2029 strncpy(mce_helper, buf, sizeof(mce_helper));
2030 mce_helper[sizeof(mce_helper)-1] = 0;
2031 p = strchr(mce_helper, '\n');
2032
2033 if (p)
2034 *p = 0;
2035
2036 return strlen(mce_helper) + !!p;
2037 }
2038
2039 static ssize_t set_ignore_ce(struct device *s,
2040 struct device_attribute *attr,
2041 const char *buf, size_t size)
2042 {
2043 u64 new;
2044
2045 if (strict_strtoull(buf, 0, &new) < 0)
2046 return -EINVAL;
2047
2048 if (mce_ignore_ce ^ !!new) {
2049 if (new) {
2050 /* disable ce features */
2051 mce_timer_delete_all();
2052 on_each_cpu(mce_disable_cmci, NULL, 1);
2053 mce_ignore_ce = 1;
2054 } else {
2055 /* enable ce features */
2056 mce_ignore_ce = 0;
2057 on_each_cpu(mce_enable_ce, (void *)1, 1);
2058 }
2059 }
2060 return size;
2061 }
2062
2063 static ssize_t set_cmci_disabled(struct device *s,
2064 struct device_attribute *attr,
2065 const char *buf, size_t size)
2066 {
2067 u64 new;
2068
2069 if (strict_strtoull(buf, 0, &new) < 0)
2070 return -EINVAL;
2071
2072 if (mce_cmci_disabled ^ !!new) {
2073 if (new) {
2074 /* disable cmci */
2075 on_each_cpu(mce_disable_cmci, NULL, 1);
2076 mce_cmci_disabled = 1;
2077 } else {
2078 /* enable cmci */
2079 mce_cmci_disabled = 0;
2080 on_each_cpu(mce_enable_ce, NULL, 1);
2081 }
2082 }
2083 return size;
2084 }
2085
2086 static ssize_t store_int_with_restart(struct device *s,
2087 struct device_attribute *attr,
2088 const char *buf, size_t size)
2089 {
2090 ssize_t ret = device_store_int(s, attr, buf, size);
2091 mce_restart();
2092 return ret;
2093 }
2094
2095 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2096 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2097 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2098 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2099
2100 static struct dev_ext_attribute dev_attr_check_interval = {
2101 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2102 &check_interval
2103 };
2104
2105 static struct dev_ext_attribute dev_attr_ignore_ce = {
2106 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2107 &mce_ignore_ce
2108 };
2109
2110 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2111 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2112 &mce_cmci_disabled
2113 };
2114
2115 static struct device_attribute *mce_device_attrs[] = {
2116 &dev_attr_tolerant.attr,
2117 &dev_attr_check_interval.attr,
2118 &dev_attr_trigger,
2119 &dev_attr_monarch_timeout.attr,
2120 &dev_attr_dont_log_ce.attr,
2121 &dev_attr_ignore_ce.attr,
2122 &dev_attr_cmci_disabled.attr,
2123 NULL
2124 };
2125
2126 static cpumask_var_t mce_device_initialized;
2127
2128 static void mce_device_release(struct device *dev)
2129 {
2130 kfree(dev);
2131 }
2132
2133 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2134 static __cpuinit int mce_device_create(unsigned int cpu)
2135 {
2136 struct device *dev;
2137 int err;
2138 int i, j;
2139
2140 if (!mce_available(&boot_cpu_data))
2141 return -EIO;
2142
2143 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2144 if (!dev)
2145 return -ENOMEM;
2146 dev->id = cpu;
2147 dev->bus = &mce_subsys;
2148 dev->release = &mce_device_release;
2149
2150 err = device_register(dev);
2151 if (err)
2152 return err;
2153
2154 for (i = 0; mce_device_attrs[i]; i++) {
2155 err = device_create_file(dev, mce_device_attrs[i]);
2156 if (err)
2157 goto error;
2158 }
2159 for (j = 0; j < banks; j++) {
2160 err = device_create_file(dev, &mce_banks[j].attr);
2161 if (err)
2162 goto error2;
2163 }
2164 cpumask_set_cpu(cpu, mce_device_initialized);
2165 per_cpu(mce_device, cpu) = dev;
2166
2167 return 0;
2168 error2:
2169 while (--j >= 0)
2170 device_remove_file(dev, &mce_banks[j].attr);
2171 error:
2172 while (--i >= 0)
2173 device_remove_file(dev, mce_device_attrs[i]);
2174
2175 device_unregister(dev);
2176
2177 return err;
2178 }
2179
2180 static __cpuinit void mce_device_remove(unsigned int cpu)
2181 {
2182 struct device *dev = per_cpu(mce_device, cpu);
2183 int i;
2184
2185 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2186 return;
2187
2188 for (i = 0; mce_device_attrs[i]; i++)
2189 device_remove_file(dev, mce_device_attrs[i]);
2190
2191 for (i = 0; i < banks; i++)
2192 device_remove_file(dev, &mce_banks[i].attr);
2193
2194 device_unregister(dev);
2195 cpumask_clear_cpu(cpu, mce_device_initialized);
2196 per_cpu(mce_device, cpu) = NULL;
2197 }
2198
2199 /* Make sure there are no machine checks on offlined CPUs. */
2200 static void __cpuinit mce_disable_cpu(void *h)
2201 {
2202 unsigned long action = *(unsigned long *)h;
2203 int i;
2204
2205 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2206 return;
2207
2208 if (!(action & CPU_TASKS_FROZEN))
2209 cmci_clear();
2210 for (i = 0; i < banks; i++) {
2211 struct mce_bank *b = &mce_banks[i];
2212
2213 if (b->init)
2214 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2215 }
2216 }
2217
2218 static void __cpuinit mce_reenable_cpu(void *h)
2219 {
2220 unsigned long action = *(unsigned long *)h;
2221 int i;
2222
2223 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2224 return;
2225
2226 if (!(action & CPU_TASKS_FROZEN))
2227 cmci_reenable();
2228 for (i = 0; i < banks; i++) {
2229 struct mce_bank *b = &mce_banks[i];
2230
2231 if (b->init)
2232 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2233 }
2234 }
2235
2236 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2237 static int __cpuinit
2238 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2239 {
2240 unsigned int cpu = (unsigned long)hcpu;
2241 struct timer_list *t = &per_cpu(mce_timer, cpu);
2242
2243 switch (action) {
2244 case CPU_ONLINE:
2245 case CPU_ONLINE_FROZEN:
2246 mce_device_create(cpu);
2247 if (threshold_cpu_callback)
2248 threshold_cpu_callback(action, cpu);
2249 break;
2250 case CPU_DEAD:
2251 case CPU_DEAD_FROZEN:
2252 if (threshold_cpu_callback)
2253 threshold_cpu_callback(action, cpu);
2254 mce_device_remove(cpu);
2255 break;
2256 case CPU_DOWN_PREPARE:
2257 case CPU_DOWN_PREPARE_FROZEN:
2258 del_timer_sync(t);
2259 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2260 break;
2261 case CPU_DOWN_FAILED:
2262 case CPU_DOWN_FAILED_FROZEN:
2263 if (!mce_ignore_ce && check_interval) {
2264 t->expires = round_jiffies(jiffies +
2265 __get_cpu_var(mce_next_interval));
2266 add_timer_on(t, cpu);
2267 }
2268 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2269 break;
2270 case CPU_POST_DEAD:
2271 /* intentionally ignoring frozen here */
2272 cmci_rediscover(cpu);
2273 break;
2274 }
2275 return NOTIFY_OK;
2276 }
2277
2278 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2279 .notifier_call = mce_cpu_callback,
2280 };
2281
2282 static __init void mce_init_banks(void)
2283 {
2284 int i;
2285
2286 for (i = 0; i < banks; i++) {
2287 struct mce_bank *b = &mce_banks[i];
2288 struct device_attribute *a = &b->attr;
2289
2290 sysfs_attr_init(&a->attr);
2291 a->attr.name = b->attrname;
2292 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2293
2294 a->attr.mode = 0644;
2295 a->show = show_bank;
2296 a->store = set_bank;
2297 }
2298 }
2299
2300 static __init int mcheck_init_device(void)
2301 {
2302 int err;
2303 int i = 0;
2304
2305 if (!mce_available(&boot_cpu_data))
2306 return -EIO;
2307
2308 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2309
2310 mce_init_banks();
2311
2312 err = subsys_system_register(&mce_subsys, NULL);
2313 if (err)
2314 return err;
2315
2316 for_each_online_cpu(i) {
2317 err = mce_device_create(i);
2318 if (err)
2319 return err;
2320 }
2321
2322 register_syscore_ops(&mce_syscore_ops);
2323 register_hotcpu_notifier(&mce_cpu_notifier);
2324
2325 /* register character device /dev/mcelog */
2326 misc_register(&mce_chrdev_device);
2327
2328 return err;
2329 }
2330 device_initcall(mcheck_init_device);
2331
2332 /*
2333 * Old style boot options parsing. Only for compatibility.
2334 */
2335 static int __init mcheck_disable(char *str)
2336 {
2337 mce_disabled = 1;
2338 return 1;
2339 }
2340 __setup("nomce", mcheck_disable);
2341
2342 #ifdef CONFIG_DEBUG_FS
2343 struct dentry *mce_get_debugfs_dir(void)
2344 {
2345 static struct dentry *dmce;
2346
2347 if (!dmce)
2348 dmce = debugfs_create_dir("mce", NULL);
2349
2350 return dmce;
2351 }
2352
2353 static void mce_reset(void)
2354 {
2355 cpu_missing = 0;
2356 atomic_set(&mce_fake_paniced, 0);
2357 atomic_set(&mce_executing, 0);
2358 atomic_set(&mce_callin, 0);
2359 atomic_set(&global_nwo, 0);
2360 }
2361
2362 static int fake_panic_get(void *data, u64 *val)
2363 {
2364 *val = fake_panic;
2365 return 0;
2366 }
2367
2368 static int fake_panic_set(void *data, u64 val)
2369 {
2370 mce_reset();
2371 fake_panic = val;
2372 return 0;
2373 }
2374
2375 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2376 fake_panic_set, "%llu\n");
2377
2378 static int __init mcheck_debugfs_init(void)
2379 {
2380 struct dentry *dmce, *ffake_panic;
2381
2382 dmce = mce_get_debugfs_dir();
2383 if (!dmce)
2384 return -ENOMEM;
2385 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2386 &fake_panic_fops);
2387 if (!ffake_panic)
2388 return -ENOMEM;
2389
2390 return 0;
2391 }
2392 late_initcall(mcheck_debugfs_init);
2393 #endif