]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
45
46 #include <asm/processor.h>
47 #include <asm/traps.h>
48 #include <asm/tlbflush.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51
52 #include "mce-internal.h"
53
54 static DEFINE_MUTEX(mce_chrdev_read_mutex);
55
56 #define mce_log_get_idx_check(p) \
57 ({ \
58 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
59 !lockdep_is_held(&mce_chrdev_read_mutex), \
60 "suspicious mce_log_get_idx_check() usage"); \
61 smp_load_acquire(&(p)); \
62 })
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66
67 #define SPINUNIT 100 /* 100ns */
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 struct mce_bank *mce_banks __read_mostly;
72 struct mce_vendor_flags mce_flags __read_mostly;
73
74 struct mca_config mca_cfg __read_mostly = {
75 .bootlog = -1,
76 /*
77 * Tolerant levels:
78 * 0: always panic on uncorrected errors, log corrected errors
79 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
80 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
81 * 3: never panic or SIGBUS, log all errors (for testing only)
82 */
83 .tolerant = 1,
84 .monarch_timeout = -1
85 };
86
87 /* User mode helper program triggered by machine check event */
88 static unsigned long mce_need_notify;
89 static char mce_helper[128];
90 static char *mce_helper_argv[2] = { mce_helper, NULL };
91
92 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
93
94 static DEFINE_PER_CPU(struct mce, mces_seen);
95 static int cpu_missing;
96
97 /*
98 * MCA banks polled by the period polling timer for corrected events.
99 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
100 */
101 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
102 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
103 };
104
105 /*
106 * MCA banks controlled through firmware first for corrected errors.
107 * This is a global list of banks for which we won't enable CMCI and we
108 * won't poll. Firmware controls these banks and is responsible for
109 * reporting corrected errors through GHES. Uncorrected/recoverable
110 * errors are still notified through a machine check.
111 */
112 mce_banks_t mce_banks_ce_disabled;
113
114 static struct work_struct mce_work;
115 static struct irq_work mce_irq_work;
116
117 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
118
119 /*
120 * CPU/chipset specific EDAC code can register a notifier call here to print
121 * MCE errors in a human-readable form.
122 */
123 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
124
125 /* Do initial initialization of a struct mce */
126 void mce_setup(struct mce *m)
127 {
128 memset(m, 0, sizeof(struct mce));
129 m->cpu = m->extcpu = smp_processor_id();
130 m->tsc = rdtsc();
131 /* We hope get_seconds stays lockless */
132 m->time = get_seconds();
133 m->cpuvendor = boot_cpu_data.x86_vendor;
134 m->cpuid = cpuid_eax(1);
135 m->socketid = cpu_data(m->extcpu).phys_proc_id;
136 m->apicid = cpu_data(m->extcpu).initial_apicid;
137 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
138 }
139
140 DEFINE_PER_CPU(struct mce, injectm);
141 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
142
143 /*
144 * Lockless MCE logging infrastructure.
145 * This avoids deadlocks on printk locks without having to break locks. Also
146 * separate MCEs from kernel messages to avoid bogus bug reports.
147 */
148
149 static struct mce_log mcelog = {
150 .signature = MCE_LOG_SIGNATURE,
151 .len = MCE_LOG_LEN,
152 .recordlen = sizeof(struct mce),
153 };
154
155 void mce_log(struct mce *mce)
156 {
157 unsigned next, entry;
158
159 /* Emit the trace record: */
160 trace_mce_record(mce);
161
162 if (!mce_gen_pool_add(mce))
163 irq_work_queue(&mce_irq_work);
164
165 wmb();
166 for (;;) {
167 entry = mce_log_get_idx_check(mcelog.next);
168 for (;;) {
169
170 /*
171 * When the buffer fills up discard new entries.
172 * Assume that the earlier errors are the more
173 * interesting ones:
174 */
175 if (entry >= MCE_LOG_LEN) {
176 set_bit(MCE_OVERFLOW,
177 (unsigned long *)&mcelog.flags);
178 return;
179 }
180 /* Old left over entry. Skip: */
181 if (mcelog.entry[entry].finished) {
182 entry++;
183 continue;
184 }
185 break;
186 }
187 smp_rmb();
188 next = entry + 1;
189 if (cmpxchg(&mcelog.next, entry, next) == entry)
190 break;
191 }
192 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
193 wmb();
194 mcelog.entry[entry].finished = 1;
195 wmb();
196
197 set_bit(0, &mce_need_notify);
198 }
199
200 void mce_inject_log(struct mce *m)
201 {
202 mutex_lock(&mce_chrdev_read_mutex);
203 mce_log(m);
204 mutex_unlock(&mce_chrdev_read_mutex);
205 }
206 EXPORT_SYMBOL_GPL(mce_inject_log);
207
208 static struct notifier_block mce_srao_nb;
209
210 void mce_register_decode_chain(struct notifier_block *nb)
211 {
212 /* Ensure SRAO notifier has the highest priority in the decode chain. */
213 if (nb != &mce_srao_nb && nb->priority == INT_MAX)
214 nb->priority -= 1;
215
216 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
217 }
218 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
219
220 void mce_unregister_decode_chain(struct notifier_block *nb)
221 {
222 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
223 }
224 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
225
226 static inline u32 ctl_reg(int bank)
227 {
228 return MSR_IA32_MCx_CTL(bank);
229 }
230
231 static inline u32 status_reg(int bank)
232 {
233 return MSR_IA32_MCx_STATUS(bank);
234 }
235
236 static inline u32 addr_reg(int bank)
237 {
238 return MSR_IA32_MCx_ADDR(bank);
239 }
240
241 static inline u32 misc_reg(int bank)
242 {
243 return MSR_IA32_MCx_MISC(bank);
244 }
245
246 static inline u32 smca_ctl_reg(int bank)
247 {
248 return MSR_AMD64_SMCA_MCx_CTL(bank);
249 }
250
251 static inline u32 smca_status_reg(int bank)
252 {
253 return MSR_AMD64_SMCA_MCx_STATUS(bank);
254 }
255
256 static inline u32 smca_addr_reg(int bank)
257 {
258 return MSR_AMD64_SMCA_MCx_ADDR(bank);
259 }
260
261 static inline u32 smca_misc_reg(int bank)
262 {
263 return MSR_AMD64_SMCA_MCx_MISC(bank);
264 }
265
266 struct mca_msr_regs msr_ops = {
267 .ctl = ctl_reg,
268 .status = status_reg,
269 .addr = addr_reg,
270 .misc = misc_reg
271 };
272
273 static void print_mce(struct mce *m)
274 {
275 int ret = 0;
276
277 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
278 m->extcpu, m->mcgstatus, m->bank, m->status);
279
280 if (m->ip) {
281 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
282 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
283 m->cs, m->ip);
284
285 if (m->cs == __KERNEL_CS)
286 print_symbol("{%s}", m->ip);
287 pr_cont("\n");
288 }
289
290 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
291 if (m->addr)
292 pr_cont("ADDR %llx ", m->addr);
293 if (m->misc)
294 pr_cont("MISC %llx ", m->misc);
295
296 if (mce_flags.smca) {
297 if (m->synd)
298 pr_cont("SYND %llx ", m->synd);
299 if (m->ipid)
300 pr_cont("IPID %llx ", m->ipid);
301 }
302
303 pr_cont("\n");
304 /*
305 * Note this output is parsed by external tools and old fields
306 * should not be changed.
307 */
308 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
309 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
310 cpu_data(m->extcpu).microcode);
311
312 /*
313 * Print out human-readable details about the MCE error,
314 * (if the CPU has an implementation for that)
315 */
316 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
317 if (ret == NOTIFY_STOP)
318 return;
319
320 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
321 }
322
323 #define PANIC_TIMEOUT 5 /* 5 seconds */
324
325 static atomic_t mce_panicked;
326
327 static int fake_panic;
328 static atomic_t mce_fake_panicked;
329
330 /* Panic in progress. Enable interrupts and wait for final IPI */
331 static void wait_for_panic(void)
332 {
333 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
334
335 preempt_disable();
336 local_irq_enable();
337 while (timeout-- > 0)
338 udelay(1);
339 if (panic_timeout == 0)
340 panic_timeout = mca_cfg.panic_timeout;
341 panic("Panicing machine check CPU died");
342 }
343
344 static void mce_panic(const char *msg, struct mce *final, char *exp)
345 {
346 int apei_err = 0;
347 struct llist_node *pending;
348 struct mce_evt_llist *l;
349
350 if (!fake_panic) {
351 /*
352 * Make sure only one CPU runs in machine check panic
353 */
354 if (atomic_inc_return(&mce_panicked) > 1)
355 wait_for_panic();
356 barrier();
357
358 bust_spinlocks(1);
359 console_verbose();
360 } else {
361 /* Don't log too much for fake panic */
362 if (atomic_inc_return(&mce_fake_panicked) > 1)
363 return;
364 }
365 pending = mce_gen_pool_prepare_records();
366 /* First print corrected ones that are still unlogged */
367 llist_for_each_entry(l, pending, llnode) {
368 struct mce *m = &l->mce;
369 if (!(m->status & MCI_STATUS_UC)) {
370 print_mce(m);
371 if (!apei_err)
372 apei_err = apei_write_mce(m);
373 }
374 }
375 /* Now print uncorrected but with the final one last */
376 llist_for_each_entry(l, pending, llnode) {
377 struct mce *m = &l->mce;
378 if (!(m->status & MCI_STATUS_UC))
379 continue;
380 if (!final || mce_cmp(m, final)) {
381 print_mce(m);
382 if (!apei_err)
383 apei_err = apei_write_mce(m);
384 }
385 }
386 if (final) {
387 print_mce(final);
388 if (!apei_err)
389 apei_err = apei_write_mce(final);
390 }
391 if (cpu_missing)
392 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
393 if (exp)
394 pr_emerg(HW_ERR "Machine check: %s\n", exp);
395 if (!fake_panic) {
396 if (panic_timeout == 0)
397 panic_timeout = mca_cfg.panic_timeout;
398 panic(msg);
399 } else
400 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
401 }
402
403 /* Support code for software error injection */
404
405 static int msr_to_offset(u32 msr)
406 {
407 unsigned bank = __this_cpu_read(injectm.bank);
408
409 if (msr == mca_cfg.rip_msr)
410 return offsetof(struct mce, ip);
411 if (msr == msr_ops.status(bank))
412 return offsetof(struct mce, status);
413 if (msr == msr_ops.addr(bank))
414 return offsetof(struct mce, addr);
415 if (msr == msr_ops.misc(bank))
416 return offsetof(struct mce, misc);
417 if (msr == MSR_IA32_MCG_STATUS)
418 return offsetof(struct mce, mcgstatus);
419 return -1;
420 }
421
422 /* MSR access wrappers used for error injection */
423 static u64 mce_rdmsrl(u32 msr)
424 {
425 u64 v;
426
427 if (__this_cpu_read(injectm.finished)) {
428 int offset = msr_to_offset(msr);
429
430 if (offset < 0)
431 return 0;
432 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
433 }
434
435 if (rdmsrl_safe(msr, &v)) {
436 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
437 /*
438 * Return zero in case the access faulted. This should
439 * not happen normally but can happen if the CPU does
440 * something weird, or if the code is buggy.
441 */
442 v = 0;
443 }
444
445 return v;
446 }
447
448 static void mce_wrmsrl(u32 msr, u64 v)
449 {
450 if (__this_cpu_read(injectm.finished)) {
451 int offset = msr_to_offset(msr);
452
453 if (offset >= 0)
454 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
455 return;
456 }
457 wrmsrl(msr, v);
458 }
459
460 /*
461 * Collect all global (w.r.t. this processor) status about this machine
462 * check into our "mce" struct so that we can use it later to assess
463 * the severity of the problem as we read per-bank specific details.
464 */
465 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
466 {
467 mce_setup(m);
468
469 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
470 if (regs) {
471 /*
472 * Get the address of the instruction at the time of
473 * the machine check error.
474 */
475 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
476 m->ip = regs->ip;
477 m->cs = regs->cs;
478
479 /*
480 * When in VM86 mode make the cs look like ring 3
481 * always. This is a lie, but it's better than passing
482 * the additional vm86 bit around everywhere.
483 */
484 if (v8086_mode(regs))
485 m->cs |= 3;
486 }
487 /* Use accurate RIP reporting if available. */
488 if (mca_cfg.rip_msr)
489 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
490 }
491 }
492
493 int mce_available(struct cpuinfo_x86 *c)
494 {
495 if (mca_cfg.disabled)
496 return 0;
497 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
498 }
499
500 static void mce_schedule_work(void)
501 {
502 if (!mce_gen_pool_empty() && keventd_up())
503 schedule_work(&mce_work);
504 }
505
506 static void mce_irq_work_cb(struct irq_work *entry)
507 {
508 mce_notify_irq();
509 mce_schedule_work();
510 }
511
512 static void mce_report_event(struct pt_regs *regs)
513 {
514 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
515 mce_notify_irq();
516 /*
517 * Triggering the work queue here is just an insurance
518 * policy in case the syscall exit notify handler
519 * doesn't run soon enough or ends up running on the
520 * wrong CPU (can happen when audit sleeps)
521 */
522 mce_schedule_work();
523 return;
524 }
525
526 irq_work_queue(&mce_irq_work);
527 }
528
529 /*
530 * Check if the address reported by the CPU is in a format we can parse.
531 * It would be possible to add code for most other cases, but all would
532 * be somewhat complicated (e.g. segment offset would require an instruction
533 * parser). So only support physical addresses up to page granuality for now.
534 */
535 static int mce_usable_address(struct mce *m)
536 {
537 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
538 return 0;
539
540 /* Checks after this one are Intel-specific: */
541 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
542 return 1;
543
544 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
545 return 0;
546 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
547 return 0;
548 return 1;
549 }
550
551 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
552 void *data)
553 {
554 struct mce *mce = (struct mce *)data;
555 unsigned long pfn;
556
557 if (!mce)
558 return NOTIFY_DONE;
559
560 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
561 pfn = mce->addr >> PAGE_SHIFT;
562 memory_failure(pfn, MCE_VECTOR, 0);
563 }
564
565 return NOTIFY_OK;
566 }
567 static struct notifier_block mce_srao_nb = {
568 .notifier_call = srao_decode_notifier,
569 .priority = INT_MAX,
570 };
571
572 /*
573 * Read ADDR and MISC registers.
574 */
575 static void mce_read_aux(struct mce *m, int i)
576 {
577 if (m->status & MCI_STATUS_MISCV)
578 m->misc = mce_rdmsrl(msr_ops.misc(i));
579
580 if (m->status & MCI_STATUS_ADDRV) {
581 m->addr = mce_rdmsrl(msr_ops.addr(i));
582
583 /*
584 * Mask the reported address by the reported granularity.
585 */
586 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
587 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
588 m->addr >>= shift;
589 m->addr <<= shift;
590 }
591
592 /*
593 * Extract [55:<lsb>] where lsb is the least significant
594 * *valid* bit of the address bits.
595 */
596 if (mce_flags.smca) {
597 u8 lsb = (m->addr >> 56) & 0x3f;
598
599 m->addr &= GENMASK_ULL(55, lsb);
600 }
601 }
602
603 if (mce_flags.smca) {
604 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
605
606 if (m->status & MCI_STATUS_SYNDV)
607 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
608 }
609 }
610
611 static bool memory_error(struct mce *m)
612 {
613 struct cpuinfo_x86 *c = &boot_cpu_data;
614
615 if (c->x86_vendor == X86_VENDOR_AMD) {
616 /* ErrCodeExt[20:16] */
617 u8 xec = (m->status >> 16) & 0x1f;
618
619 return (xec == 0x0 || xec == 0x8);
620 } else if (c->x86_vendor == X86_VENDOR_INTEL) {
621 /*
622 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
623 *
624 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
625 * indicating a memory error. Bit 8 is used for indicating a
626 * cache hierarchy error. The combination of bit 2 and bit 3
627 * is used for indicating a `generic' cache hierarchy error
628 * But we can't just blindly check the above bits, because if
629 * bit 11 is set, then it is a bus/interconnect error - and
630 * either way the above bits just gives more detail on what
631 * bus/interconnect error happened. Note that bit 12 can be
632 * ignored, as it's the "filter" bit.
633 */
634 return (m->status & 0xef80) == BIT(7) ||
635 (m->status & 0xef00) == BIT(8) ||
636 (m->status & 0xeffc) == 0xc;
637 }
638
639 return false;
640 }
641
642 DEFINE_PER_CPU(unsigned, mce_poll_count);
643
644 /*
645 * Poll for corrected events or events that happened before reset.
646 * Those are just logged through /dev/mcelog.
647 *
648 * This is executed in standard interrupt context.
649 *
650 * Note: spec recommends to panic for fatal unsignalled
651 * errors here. However this would be quite problematic --
652 * we would need to reimplement the Monarch handling and
653 * it would mess up the exclusion between exception handler
654 * and poll hander -- * so we skip this for now.
655 * These cases should not happen anyways, or only when the CPU
656 * is already totally * confused. In this case it's likely it will
657 * not fully execute the machine check handler either.
658 */
659 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
660 {
661 bool error_seen = false;
662 struct mce m;
663 int severity;
664 int i;
665
666 this_cpu_inc(mce_poll_count);
667
668 mce_gather_info(&m, NULL);
669
670 for (i = 0; i < mca_cfg.banks; i++) {
671 if (!mce_banks[i].ctl || !test_bit(i, *b))
672 continue;
673
674 m.misc = 0;
675 m.addr = 0;
676 m.bank = i;
677 m.tsc = 0;
678
679 barrier();
680 m.status = mce_rdmsrl(msr_ops.status(i));
681 if (!(m.status & MCI_STATUS_VAL))
682 continue;
683
684
685 /*
686 * Uncorrected or signalled events are handled by the exception
687 * handler when it is enabled, so don't process those here.
688 *
689 * TBD do the same check for MCI_STATUS_EN here?
690 */
691 if (!(flags & MCP_UC) &&
692 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
693 continue;
694
695 error_seen = true;
696
697 mce_read_aux(&m, i);
698
699 if (!(flags & MCP_TIMESTAMP))
700 m.tsc = 0;
701
702 severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
703
704 if (severity == MCE_DEFERRED_SEVERITY && memory_error(&m))
705 if (m.status & MCI_STATUS_ADDRV)
706 m.severity = severity;
707
708 /*
709 * Don't get the IP here because it's unlikely to
710 * have anything to do with the actual error location.
711 */
712 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
713 mce_log(&m);
714 else if (mce_usable_address(&m)) {
715 /*
716 * Although we skipped logging this, we still want
717 * to take action. Add to the pool so the registered
718 * notifiers will see it.
719 */
720 if (!mce_gen_pool_add(&m))
721 mce_schedule_work();
722 }
723
724 /*
725 * Clear state for this bank.
726 */
727 mce_wrmsrl(msr_ops.status(i), 0);
728 }
729
730 /*
731 * Don't clear MCG_STATUS here because it's only defined for
732 * exceptions.
733 */
734
735 sync_core();
736
737 return error_seen;
738 }
739 EXPORT_SYMBOL_GPL(machine_check_poll);
740
741 /*
742 * Do a quick check if any of the events requires a panic.
743 * This decides if we keep the events around or clear them.
744 */
745 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
746 struct pt_regs *regs)
747 {
748 int i, ret = 0;
749 char *tmp;
750
751 for (i = 0; i < mca_cfg.banks; i++) {
752 m->status = mce_rdmsrl(msr_ops.status(i));
753 if (m->status & MCI_STATUS_VAL) {
754 __set_bit(i, validp);
755 if (quirk_no_way_out)
756 quirk_no_way_out(i, m, regs);
757 }
758
759 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
760 *msg = tmp;
761 ret = 1;
762 }
763 }
764 return ret;
765 }
766
767 /*
768 * Variable to establish order between CPUs while scanning.
769 * Each CPU spins initially until executing is equal its number.
770 */
771 static atomic_t mce_executing;
772
773 /*
774 * Defines order of CPUs on entry. First CPU becomes Monarch.
775 */
776 static atomic_t mce_callin;
777
778 /*
779 * Check if a timeout waiting for other CPUs happened.
780 */
781 static int mce_timed_out(u64 *t, const char *msg)
782 {
783 /*
784 * The others already did panic for some reason.
785 * Bail out like in a timeout.
786 * rmb() to tell the compiler that system_state
787 * might have been modified by someone else.
788 */
789 rmb();
790 if (atomic_read(&mce_panicked))
791 wait_for_panic();
792 if (!mca_cfg.monarch_timeout)
793 goto out;
794 if ((s64)*t < SPINUNIT) {
795 if (mca_cfg.tolerant <= 1)
796 mce_panic(msg, NULL, NULL);
797 cpu_missing = 1;
798 return 1;
799 }
800 *t -= SPINUNIT;
801 out:
802 touch_nmi_watchdog();
803 return 0;
804 }
805
806 /*
807 * The Monarch's reign. The Monarch is the CPU who entered
808 * the machine check handler first. It waits for the others to
809 * raise the exception too and then grades them. When any
810 * error is fatal panic. Only then let the others continue.
811 *
812 * The other CPUs entering the MCE handler will be controlled by the
813 * Monarch. They are called Subjects.
814 *
815 * This way we prevent any potential data corruption in a unrecoverable case
816 * and also makes sure always all CPU's errors are examined.
817 *
818 * Also this detects the case of a machine check event coming from outer
819 * space (not detected by any CPUs) In this case some external agent wants
820 * us to shut down, so panic too.
821 *
822 * The other CPUs might still decide to panic if the handler happens
823 * in a unrecoverable place, but in this case the system is in a semi-stable
824 * state and won't corrupt anything by itself. It's ok to let the others
825 * continue for a bit first.
826 *
827 * All the spin loops have timeouts; when a timeout happens a CPU
828 * typically elects itself to be Monarch.
829 */
830 static void mce_reign(void)
831 {
832 int cpu;
833 struct mce *m = NULL;
834 int global_worst = 0;
835 char *msg = NULL;
836 char *nmsg = NULL;
837
838 /*
839 * This CPU is the Monarch and the other CPUs have run
840 * through their handlers.
841 * Grade the severity of the errors of all the CPUs.
842 */
843 for_each_possible_cpu(cpu) {
844 int severity = mce_severity(&per_cpu(mces_seen, cpu),
845 mca_cfg.tolerant,
846 &nmsg, true);
847 if (severity > global_worst) {
848 msg = nmsg;
849 global_worst = severity;
850 m = &per_cpu(mces_seen, cpu);
851 }
852 }
853
854 /*
855 * Cannot recover? Panic here then.
856 * This dumps all the mces in the log buffer and stops the
857 * other CPUs.
858 */
859 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
860 mce_panic("Fatal machine check", m, msg);
861
862 /*
863 * For UC somewhere we let the CPU who detects it handle it.
864 * Also must let continue the others, otherwise the handling
865 * CPU could deadlock on a lock.
866 */
867
868 /*
869 * No machine check event found. Must be some external
870 * source or one CPU is hung. Panic.
871 */
872 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
873 mce_panic("Fatal machine check from unknown source", NULL, NULL);
874
875 /*
876 * Now clear all the mces_seen so that they don't reappear on
877 * the next mce.
878 */
879 for_each_possible_cpu(cpu)
880 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
881 }
882
883 static atomic_t global_nwo;
884
885 /*
886 * Start of Monarch synchronization. This waits until all CPUs have
887 * entered the exception handler and then determines if any of them
888 * saw a fatal event that requires panic. Then it executes them
889 * in the entry order.
890 * TBD double check parallel CPU hotunplug
891 */
892 static int mce_start(int *no_way_out)
893 {
894 int order;
895 int cpus = num_online_cpus();
896 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
897
898 if (!timeout)
899 return -1;
900
901 atomic_add(*no_way_out, &global_nwo);
902 /*
903 * Rely on the implied barrier below, such that global_nwo
904 * is updated before mce_callin.
905 */
906 order = atomic_inc_return(&mce_callin);
907
908 /*
909 * Wait for everyone.
910 */
911 while (atomic_read(&mce_callin) != cpus) {
912 if (mce_timed_out(&timeout,
913 "Timeout: Not all CPUs entered broadcast exception handler")) {
914 atomic_set(&global_nwo, 0);
915 return -1;
916 }
917 ndelay(SPINUNIT);
918 }
919
920 /*
921 * mce_callin should be read before global_nwo
922 */
923 smp_rmb();
924
925 if (order == 1) {
926 /*
927 * Monarch: Starts executing now, the others wait.
928 */
929 atomic_set(&mce_executing, 1);
930 } else {
931 /*
932 * Subject: Now start the scanning loop one by one in
933 * the original callin order.
934 * This way when there are any shared banks it will be
935 * only seen by one CPU before cleared, avoiding duplicates.
936 */
937 while (atomic_read(&mce_executing) < order) {
938 if (mce_timed_out(&timeout,
939 "Timeout: Subject CPUs unable to finish machine check processing")) {
940 atomic_set(&global_nwo, 0);
941 return -1;
942 }
943 ndelay(SPINUNIT);
944 }
945 }
946
947 /*
948 * Cache the global no_way_out state.
949 */
950 *no_way_out = atomic_read(&global_nwo);
951
952 return order;
953 }
954
955 /*
956 * Synchronize between CPUs after main scanning loop.
957 * This invokes the bulk of the Monarch processing.
958 */
959 static int mce_end(int order)
960 {
961 int ret = -1;
962 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
963
964 if (!timeout)
965 goto reset;
966 if (order < 0)
967 goto reset;
968
969 /*
970 * Allow others to run.
971 */
972 atomic_inc(&mce_executing);
973
974 if (order == 1) {
975 /* CHECKME: Can this race with a parallel hotplug? */
976 int cpus = num_online_cpus();
977
978 /*
979 * Monarch: Wait for everyone to go through their scanning
980 * loops.
981 */
982 while (atomic_read(&mce_executing) <= cpus) {
983 if (mce_timed_out(&timeout,
984 "Timeout: Monarch CPU unable to finish machine check processing"))
985 goto reset;
986 ndelay(SPINUNIT);
987 }
988
989 mce_reign();
990 barrier();
991 ret = 0;
992 } else {
993 /*
994 * Subject: Wait for Monarch to finish.
995 */
996 while (atomic_read(&mce_executing) != 0) {
997 if (mce_timed_out(&timeout,
998 "Timeout: Monarch CPU did not finish machine check processing"))
999 goto reset;
1000 ndelay(SPINUNIT);
1001 }
1002
1003 /*
1004 * Don't reset anything. That's done by the Monarch.
1005 */
1006 return 0;
1007 }
1008
1009 /*
1010 * Reset all global state.
1011 */
1012 reset:
1013 atomic_set(&global_nwo, 0);
1014 atomic_set(&mce_callin, 0);
1015 barrier();
1016
1017 /*
1018 * Let others run again.
1019 */
1020 atomic_set(&mce_executing, 0);
1021 return ret;
1022 }
1023
1024 static void mce_clear_state(unsigned long *toclear)
1025 {
1026 int i;
1027
1028 for (i = 0; i < mca_cfg.banks; i++) {
1029 if (test_bit(i, toclear))
1030 mce_wrmsrl(msr_ops.status(i), 0);
1031 }
1032 }
1033
1034 static int do_memory_failure(struct mce *m)
1035 {
1036 int flags = MF_ACTION_REQUIRED;
1037 int ret;
1038
1039 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1040 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1041 flags |= MF_MUST_KILL;
1042 ret = memory_failure(m->addr >> PAGE_SHIFT, MCE_VECTOR, flags);
1043 if (ret)
1044 pr_err("Memory error not recovered");
1045 return ret;
1046 }
1047
1048 /*
1049 * The actual machine check handler. This only handles real
1050 * exceptions when something got corrupted coming in through int 18.
1051 *
1052 * This is executed in NMI context not subject to normal locking rules. This
1053 * implies that most kernel services cannot be safely used. Don't even
1054 * think about putting a printk in there!
1055 *
1056 * On Intel systems this is entered on all CPUs in parallel through
1057 * MCE broadcast. However some CPUs might be broken beyond repair,
1058 * so be always careful when synchronizing with others.
1059 */
1060 void do_machine_check(struct pt_regs *regs, long error_code)
1061 {
1062 struct mca_config *cfg = &mca_cfg;
1063 struct mce m, *final;
1064 int i;
1065 int worst = 0;
1066 int severity;
1067
1068 /*
1069 * Establish sequential order between the CPUs entering the machine
1070 * check handler.
1071 */
1072 int order = -1;
1073 /*
1074 * If no_way_out gets set, there is no safe way to recover from this
1075 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1076 */
1077 int no_way_out = 0;
1078 /*
1079 * If kill_it gets set, there might be a way to recover from this
1080 * error.
1081 */
1082 int kill_it = 0;
1083 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1084 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1085 char *msg = "Unknown";
1086
1087 /*
1088 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1089 * on Intel.
1090 */
1091 int lmce = 1;
1092
1093 /* If this CPU is offline, just bail out. */
1094 if (cpu_is_offline(smp_processor_id())) {
1095 u64 mcgstatus;
1096
1097 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1098 if (mcgstatus & MCG_STATUS_RIPV) {
1099 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1100 return;
1101 }
1102 }
1103
1104 ist_enter(regs);
1105
1106 this_cpu_inc(mce_exception_count);
1107
1108 if (!cfg->banks)
1109 goto out;
1110
1111 mce_gather_info(&m, regs);
1112
1113 final = this_cpu_ptr(&mces_seen);
1114 *final = m;
1115
1116 memset(valid_banks, 0, sizeof(valid_banks));
1117 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1118
1119 barrier();
1120
1121 /*
1122 * When no restart IP might need to kill or panic.
1123 * Assume the worst for now, but if we find the
1124 * severity is MCE_AR_SEVERITY we have other options.
1125 */
1126 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1127 kill_it = 1;
1128
1129 /*
1130 * Check if this MCE is signaled to only this logical processor,
1131 * on Intel only.
1132 */
1133 if (m.cpuvendor == X86_VENDOR_INTEL)
1134 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1135
1136 /*
1137 * Go through all banks in exclusion of the other CPUs. This way we
1138 * don't report duplicated events on shared banks because the first one
1139 * to see it will clear it. If this is a Local MCE, then no need to
1140 * perform rendezvous.
1141 */
1142 if (!lmce)
1143 order = mce_start(&no_way_out);
1144
1145 for (i = 0; i < cfg->banks; i++) {
1146 __clear_bit(i, toclear);
1147 if (!test_bit(i, valid_banks))
1148 continue;
1149 if (!mce_banks[i].ctl)
1150 continue;
1151
1152 m.misc = 0;
1153 m.addr = 0;
1154 m.bank = i;
1155
1156 m.status = mce_rdmsrl(msr_ops.status(i));
1157 if ((m.status & MCI_STATUS_VAL) == 0)
1158 continue;
1159
1160 /*
1161 * Non uncorrected or non signaled errors are handled by
1162 * machine_check_poll. Leave them alone, unless this panics.
1163 */
1164 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1165 !no_way_out)
1166 continue;
1167
1168 /*
1169 * Set taint even when machine check was not enabled.
1170 */
1171 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1172
1173 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1174
1175 /*
1176 * When machine check was for corrected/deferred handler don't
1177 * touch, unless we're panicing.
1178 */
1179 if ((severity == MCE_KEEP_SEVERITY ||
1180 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1181 continue;
1182 __set_bit(i, toclear);
1183 if (severity == MCE_NO_SEVERITY) {
1184 /*
1185 * Machine check event was not enabled. Clear, but
1186 * ignore.
1187 */
1188 continue;
1189 }
1190
1191 mce_read_aux(&m, i);
1192
1193 /* assuming valid severity level != 0 */
1194 m.severity = severity;
1195
1196 mce_log(&m);
1197
1198 if (severity > worst) {
1199 *final = m;
1200 worst = severity;
1201 }
1202 }
1203
1204 /* mce_clear_state will clear *final, save locally for use later */
1205 m = *final;
1206
1207 if (!no_way_out)
1208 mce_clear_state(toclear);
1209
1210 /*
1211 * Do most of the synchronization with other CPUs.
1212 * When there's any problem use only local no_way_out state.
1213 */
1214 if (!lmce) {
1215 if (mce_end(order) < 0)
1216 no_way_out = worst >= MCE_PANIC_SEVERITY;
1217 } else {
1218 /*
1219 * Local MCE skipped calling mce_reign()
1220 * If we found a fatal error, we need to panic here.
1221 */
1222 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1223 mce_panic("Machine check from unknown source",
1224 NULL, NULL);
1225 }
1226
1227 /*
1228 * If tolerant is at an insane level we drop requests to kill
1229 * processes and continue even when there is no way out.
1230 */
1231 if (cfg->tolerant == 3)
1232 kill_it = 0;
1233 else if (no_way_out)
1234 mce_panic("Fatal machine check on current CPU", &m, msg);
1235
1236 if (worst > 0)
1237 mce_report_event(regs);
1238 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1239 out:
1240 sync_core();
1241
1242 if (worst != MCE_AR_SEVERITY && !kill_it)
1243 goto out_ist;
1244
1245 /* Fault was in user mode and we need to take some action */
1246 if ((m.cs & 3) == 3) {
1247 ist_begin_non_atomic(regs);
1248 local_irq_enable();
1249
1250 if (kill_it || do_memory_failure(&m))
1251 force_sig(SIGBUS, current);
1252 local_irq_disable();
1253 ist_end_non_atomic();
1254 } else {
1255 if (!fixup_exception(regs, X86_TRAP_MC))
1256 mce_panic("Failed kernel mode recovery", &m, NULL);
1257 }
1258
1259 out_ist:
1260 ist_exit(regs);
1261 }
1262 EXPORT_SYMBOL_GPL(do_machine_check);
1263
1264 #ifndef CONFIG_MEMORY_FAILURE
1265 int memory_failure(unsigned long pfn, int vector, int flags)
1266 {
1267 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1268 BUG_ON(flags & MF_ACTION_REQUIRED);
1269 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1270 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1271 pfn);
1272
1273 return 0;
1274 }
1275 #endif
1276
1277 /*
1278 * Action optional processing happens here (picking up
1279 * from the list of faulting pages that do_machine_check()
1280 * placed into the genpool).
1281 */
1282 static void mce_process_work(struct work_struct *dummy)
1283 {
1284 mce_gen_pool_process();
1285 }
1286
1287 #ifdef CONFIG_X86_MCE_INTEL
1288 /***
1289 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1290 * @cpu: The CPU on which the event occurred.
1291 * @status: Event status information
1292 *
1293 * This function should be called by the thermal interrupt after the
1294 * event has been processed and the decision was made to log the event
1295 * further.
1296 *
1297 * The status parameter will be saved to the 'status' field of 'struct mce'
1298 * and historically has been the register value of the
1299 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1300 */
1301 void mce_log_therm_throt_event(__u64 status)
1302 {
1303 struct mce m;
1304
1305 mce_setup(&m);
1306 m.bank = MCE_THERMAL_BANK;
1307 m.status = status;
1308 mce_log(&m);
1309 }
1310 #endif /* CONFIG_X86_MCE_INTEL */
1311
1312 /*
1313 * Periodic polling timer for "silent" machine check errors. If the
1314 * poller finds an MCE, poll 2x faster. When the poller finds no more
1315 * errors, poll 2x slower (up to check_interval seconds).
1316 */
1317 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1318
1319 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1320 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1321
1322 static unsigned long mce_adjust_timer_default(unsigned long interval)
1323 {
1324 return interval;
1325 }
1326
1327 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1328
1329 static void __restart_timer(struct timer_list *t, unsigned long interval)
1330 {
1331 unsigned long when = jiffies + interval;
1332 unsigned long flags;
1333
1334 local_irq_save(flags);
1335
1336 if (timer_pending(t)) {
1337 if (time_before(when, t->expires))
1338 mod_timer(t, when);
1339 } else {
1340 t->expires = round_jiffies(when);
1341 add_timer_on(t, smp_processor_id());
1342 }
1343
1344 local_irq_restore(flags);
1345 }
1346
1347 static void mce_timer_fn(unsigned long data)
1348 {
1349 struct timer_list *t = this_cpu_ptr(&mce_timer);
1350 int cpu = smp_processor_id();
1351 unsigned long iv;
1352
1353 WARN_ON(cpu != data);
1354
1355 iv = __this_cpu_read(mce_next_interval);
1356
1357 if (mce_available(this_cpu_ptr(&cpu_info))) {
1358 machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_poll_banks));
1359
1360 if (mce_intel_cmci_poll()) {
1361 iv = mce_adjust_timer(iv);
1362 goto done;
1363 }
1364 }
1365
1366 /*
1367 * Alert userspace if needed. If we logged an MCE, reduce the polling
1368 * interval, otherwise increase the polling interval.
1369 */
1370 if (mce_notify_irq())
1371 iv = max(iv / 2, (unsigned long) HZ/100);
1372 else
1373 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1374
1375 done:
1376 __this_cpu_write(mce_next_interval, iv);
1377 __restart_timer(t, iv);
1378 }
1379
1380 /*
1381 * Ensure that the timer is firing in @interval from now.
1382 */
1383 void mce_timer_kick(unsigned long interval)
1384 {
1385 struct timer_list *t = this_cpu_ptr(&mce_timer);
1386 unsigned long iv = __this_cpu_read(mce_next_interval);
1387
1388 __restart_timer(t, interval);
1389
1390 if (interval < iv)
1391 __this_cpu_write(mce_next_interval, interval);
1392 }
1393
1394 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1395 static void mce_timer_delete_all(void)
1396 {
1397 int cpu;
1398
1399 for_each_online_cpu(cpu)
1400 del_timer_sync(&per_cpu(mce_timer, cpu));
1401 }
1402
1403 static void mce_do_trigger(struct work_struct *work)
1404 {
1405 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1406 }
1407
1408 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1409
1410 /*
1411 * Notify the user(s) about new machine check events.
1412 * Can be called from interrupt context, but not from machine check/NMI
1413 * context.
1414 */
1415 int mce_notify_irq(void)
1416 {
1417 /* Not more than two messages every minute */
1418 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1419
1420 if (test_and_clear_bit(0, &mce_need_notify)) {
1421 /* wake processes polling /dev/mcelog */
1422 wake_up_interruptible(&mce_chrdev_wait);
1423
1424 if (mce_helper[0])
1425 schedule_work(&mce_trigger_work);
1426
1427 if (__ratelimit(&ratelimit))
1428 pr_info(HW_ERR "Machine check events logged\n");
1429
1430 return 1;
1431 }
1432 return 0;
1433 }
1434 EXPORT_SYMBOL_GPL(mce_notify_irq);
1435
1436 static int __mcheck_cpu_mce_banks_init(void)
1437 {
1438 int i;
1439 u8 num_banks = mca_cfg.banks;
1440
1441 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1442 if (!mce_banks)
1443 return -ENOMEM;
1444
1445 for (i = 0; i < num_banks; i++) {
1446 struct mce_bank *b = &mce_banks[i];
1447
1448 b->ctl = -1ULL;
1449 b->init = 1;
1450 }
1451 return 0;
1452 }
1453
1454 /*
1455 * Initialize Machine Checks for a CPU.
1456 */
1457 static int __mcheck_cpu_cap_init(void)
1458 {
1459 unsigned b;
1460 u64 cap;
1461
1462 rdmsrl(MSR_IA32_MCG_CAP, cap);
1463
1464 b = cap & MCG_BANKCNT_MASK;
1465 if (!mca_cfg.banks)
1466 pr_info("CPU supports %d MCE banks\n", b);
1467
1468 if (b > MAX_NR_BANKS) {
1469 pr_warn("Using only %u machine check banks out of %u\n",
1470 MAX_NR_BANKS, b);
1471 b = MAX_NR_BANKS;
1472 }
1473
1474 /* Don't support asymmetric configurations today */
1475 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1476 mca_cfg.banks = b;
1477
1478 if (!mce_banks) {
1479 int err = __mcheck_cpu_mce_banks_init();
1480
1481 if (err)
1482 return err;
1483 }
1484
1485 /* Use accurate RIP reporting if available. */
1486 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1487 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1488
1489 if (cap & MCG_SER_P)
1490 mca_cfg.ser = true;
1491
1492 return 0;
1493 }
1494
1495 static void __mcheck_cpu_init_generic(void)
1496 {
1497 enum mcp_flags m_fl = 0;
1498 mce_banks_t all_banks;
1499 u64 cap;
1500
1501 if (!mca_cfg.bootlog)
1502 m_fl = MCP_DONTLOG;
1503
1504 /*
1505 * Log the machine checks left over from the previous reset.
1506 */
1507 bitmap_fill(all_banks, MAX_NR_BANKS);
1508 machine_check_poll(MCP_UC | m_fl, &all_banks);
1509
1510 cr4_set_bits(X86_CR4_MCE);
1511
1512 rdmsrl(MSR_IA32_MCG_CAP, cap);
1513 if (cap & MCG_CTL_P)
1514 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1515 }
1516
1517 static void __mcheck_cpu_init_clear_banks(void)
1518 {
1519 int i;
1520
1521 for (i = 0; i < mca_cfg.banks; i++) {
1522 struct mce_bank *b = &mce_banks[i];
1523
1524 if (!b->init)
1525 continue;
1526 wrmsrl(msr_ops.ctl(i), b->ctl);
1527 wrmsrl(msr_ops.status(i), 0);
1528 }
1529 }
1530
1531 /*
1532 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1533 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1534 * Vol 3B Table 15-20). But this confuses both the code that determines
1535 * whether the machine check occurred in kernel or user mode, and also
1536 * the severity assessment code. Pretend that EIPV was set, and take the
1537 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1538 */
1539 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1540 {
1541 if (bank != 0)
1542 return;
1543 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1544 return;
1545 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1546 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1547 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1548 MCACOD)) !=
1549 (MCI_STATUS_UC|MCI_STATUS_EN|
1550 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1551 MCI_STATUS_AR|MCACOD_INSTR))
1552 return;
1553
1554 m->mcgstatus |= MCG_STATUS_EIPV;
1555 m->ip = regs->ip;
1556 m->cs = regs->cs;
1557 }
1558
1559 /* Add per CPU specific workarounds here */
1560 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1561 {
1562 struct mca_config *cfg = &mca_cfg;
1563
1564 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1565 pr_info("unknown CPU type - not enabling MCE support\n");
1566 return -EOPNOTSUPP;
1567 }
1568
1569 /* This should be disabled by the BIOS, but isn't always */
1570 if (c->x86_vendor == X86_VENDOR_AMD) {
1571 if (c->x86 == 15 && cfg->banks > 4) {
1572 /*
1573 * disable GART TBL walk error reporting, which
1574 * trips off incorrectly with the IOMMU & 3ware
1575 * & Cerberus:
1576 */
1577 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1578 }
1579 if (c->x86 < 17 && cfg->bootlog < 0) {
1580 /*
1581 * Lots of broken BIOS around that don't clear them
1582 * by default and leave crap in there. Don't log:
1583 */
1584 cfg->bootlog = 0;
1585 }
1586 /*
1587 * Various K7s with broken bank 0 around. Always disable
1588 * by default.
1589 */
1590 if (c->x86 == 6 && cfg->banks > 0)
1591 mce_banks[0].ctl = 0;
1592
1593 /*
1594 * overflow_recov is supported for F15h Models 00h-0fh
1595 * even though we don't have a CPUID bit for it.
1596 */
1597 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1598 mce_flags.overflow_recov = 1;
1599
1600 /*
1601 * Turn off MC4_MISC thresholding banks on those models since
1602 * they're not supported there.
1603 */
1604 if (c->x86 == 0x15 &&
1605 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1606 int i;
1607 u64 hwcr;
1608 bool need_toggle;
1609 u32 msrs[] = {
1610 0x00000413, /* MC4_MISC0 */
1611 0xc0000408, /* MC4_MISC1 */
1612 };
1613
1614 rdmsrl(MSR_K7_HWCR, hwcr);
1615
1616 /* McStatusWrEn has to be set */
1617 need_toggle = !(hwcr & BIT(18));
1618
1619 if (need_toggle)
1620 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1621
1622 /* Clear CntP bit safely */
1623 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1624 msr_clear_bit(msrs[i], 62);
1625
1626 /* restore old settings */
1627 if (need_toggle)
1628 wrmsrl(MSR_K7_HWCR, hwcr);
1629 }
1630 }
1631
1632 if (c->x86_vendor == X86_VENDOR_INTEL) {
1633 /*
1634 * SDM documents that on family 6 bank 0 should not be written
1635 * because it aliases to another special BIOS controlled
1636 * register.
1637 * But it's not aliased anymore on model 0x1a+
1638 * Don't ignore bank 0 completely because there could be a
1639 * valid event later, merely don't write CTL0.
1640 */
1641
1642 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1643 mce_banks[0].init = 0;
1644
1645 /*
1646 * All newer Intel systems support MCE broadcasting. Enable
1647 * synchronization with a one second timeout.
1648 */
1649 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1650 cfg->monarch_timeout < 0)
1651 cfg->monarch_timeout = USEC_PER_SEC;
1652
1653 /*
1654 * There are also broken BIOSes on some Pentium M and
1655 * earlier systems:
1656 */
1657 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1658 cfg->bootlog = 0;
1659
1660 if (c->x86 == 6 && c->x86_model == 45)
1661 quirk_no_way_out = quirk_sandybridge_ifu;
1662 }
1663 if (cfg->monarch_timeout < 0)
1664 cfg->monarch_timeout = 0;
1665 if (cfg->bootlog != 0)
1666 cfg->panic_timeout = 30;
1667
1668 return 0;
1669 }
1670
1671 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1672 {
1673 if (c->x86 != 5)
1674 return 0;
1675
1676 switch (c->x86_vendor) {
1677 case X86_VENDOR_INTEL:
1678 intel_p5_mcheck_init(c);
1679 return 1;
1680 break;
1681 case X86_VENDOR_CENTAUR:
1682 winchip_mcheck_init(c);
1683 return 1;
1684 break;
1685 default:
1686 return 0;
1687 }
1688
1689 return 0;
1690 }
1691
1692 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1693 {
1694 switch (c->x86_vendor) {
1695 case X86_VENDOR_INTEL:
1696 mce_intel_feature_init(c);
1697 mce_adjust_timer = cmci_intel_adjust_timer;
1698 break;
1699
1700 case X86_VENDOR_AMD: {
1701 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1702 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1703 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1704
1705 /*
1706 * Install proper ops for Scalable MCA enabled processors
1707 */
1708 if (mce_flags.smca) {
1709 msr_ops.ctl = smca_ctl_reg;
1710 msr_ops.status = smca_status_reg;
1711 msr_ops.addr = smca_addr_reg;
1712 msr_ops.misc = smca_misc_reg;
1713 }
1714 mce_amd_feature_init(c);
1715
1716 break;
1717 }
1718
1719 default:
1720 break;
1721 }
1722 }
1723
1724 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1725 {
1726 switch (c->x86_vendor) {
1727 case X86_VENDOR_INTEL:
1728 mce_intel_feature_clear(c);
1729 break;
1730 default:
1731 break;
1732 }
1733 }
1734
1735 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1736 {
1737 unsigned long iv = check_interval * HZ;
1738
1739 if (mca_cfg.ignore_ce || !iv)
1740 return;
1741
1742 per_cpu(mce_next_interval, cpu) = iv;
1743
1744 t->expires = round_jiffies(jiffies + iv);
1745 add_timer_on(t, cpu);
1746 }
1747
1748 static void __mcheck_cpu_init_timer(void)
1749 {
1750 struct timer_list *t = this_cpu_ptr(&mce_timer);
1751 unsigned int cpu = smp_processor_id();
1752
1753 setup_pinned_timer(t, mce_timer_fn, cpu);
1754 mce_start_timer(cpu, t);
1755 }
1756
1757 /* Handle unconfigured int18 (should never happen) */
1758 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1759 {
1760 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1761 smp_processor_id());
1762 }
1763
1764 /* Call the installed machine check handler for this CPU setup. */
1765 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1766 unexpected_machine_check;
1767
1768 /*
1769 * Called for each booted CPU to set up machine checks.
1770 * Must be called with preempt off:
1771 */
1772 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1773 {
1774 if (mca_cfg.disabled)
1775 return;
1776
1777 if (__mcheck_cpu_ancient_init(c))
1778 return;
1779
1780 if (!mce_available(c))
1781 return;
1782
1783 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1784 mca_cfg.disabled = true;
1785 return;
1786 }
1787
1788 if (mce_gen_pool_init()) {
1789 mca_cfg.disabled = true;
1790 pr_emerg("Couldn't allocate MCE records pool!\n");
1791 return;
1792 }
1793
1794 machine_check_vector = do_machine_check;
1795
1796 __mcheck_cpu_init_generic();
1797 __mcheck_cpu_init_vendor(c);
1798 __mcheck_cpu_init_clear_banks();
1799 __mcheck_cpu_init_timer();
1800 }
1801
1802 /*
1803 * Called for each booted CPU to clear some machine checks opt-ins
1804 */
1805 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1806 {
1807 if (mca_cfg.disabled)
1808 return;
1809
1810 if (!mce_available(c))
1811 return;
1812
1813 /*
1814 * Possibly to clear general settings generic to x86
1815 * __mcheck_cpu_clear_generic(c);
1816 */
1817 __mcheck_cpu_clear_vendor(c);
1818
1819 }
1820
1821 /*
1822 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1823 */
1824
1825 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1826 static int mce_chrdev_open_count; /* #times opened */
1827 static int mce_chrdev_open_exclu; /* already open exclusive? */
1828
1829 static int mce_chrdev_open(struct inode *inode, struct file *file)
1830 {
1831 spin_lock(&mce_chrdev_state_lock);
1832
1833 if (mce_chrdev_open_exclu ||
1834 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1835 spin_unlock(&mce_chrdev_state_lock);
1836
1837 return -EBUSY;
1838 }
1839
1840 if (file->f_flags & O_EXCL)
1841 mce_chrdev_open_exclu = 1;
1842 mce_chrdev_open_count++;
1843
1844 spin_unlock(&mce_chrdev_state_lock);
1845
1846 return nonseekable_open(inode, file);
1847 }
1848
1849 static int mce_chrdev_release(struct inode *inode, struct file *file)
1850 {
1851 spin_lock(&mce_chrdev_state_lock);
1852
1853 mce_chrdev_open_count--;
1854 mce_chrdev_open_exclu = 0;
1855
1856 spin_unlock(&mce_chrdev_state_lock);
1857
1858 return 0;
1859 }
1860
1861 static void collect_tscs(void *data)
1862 {
1863 unsigned long *cpu_tsc = (unsigned long *)data;
1864
1865 cpu_tsc[smp_processor_id()] = rdtsc();
1866 }
1867
1868 static int mce_apei_read_done;
1869
1870 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1871 static int __mce_read_apei(char __user **ubuf, size_t usize)
1872 {
1873 int rc;
1874 u64 record_id;
1875 struct mce m;
1876
1877 if (usize < sizeof(struct mce))
1878 return -EINVAL;
1879
1880 rc = apei_read_mce(&m, &record_id);
1881 /* Error or no more MCE record */
1882 if (rc <= 0) {
1883 mce_apei_read_done = 1;
1884 /*
1885 * When ERST is disabled, mce_chrdev_read() should return
1886 * "no record" instead of "no device."
1887 */
1888 if (rc == -ENODEV)
1889 return 0;
1890 return rc;
1891 }
1892 rc = -EFAULT;
1893 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1894 return rc;
1895 /*
1896 * In fact, we should have cleared the record after that has
1897 * been flushed to the disk or sent to network in
1898 * /sbin/mcelog, but we have no interface to support that now,
1899 * so just clear it to avoid duplication.
1900 */
1901 rc = apei_clear_mce(record_id);
1902 if (rc) {
1903 mce_apei_read_done = 1;
1904 return rc;
1905 }
1906 *ubuf += sizeof(struct mce);
1907
1908 return 0;
1909 }
1910
1911 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1912 size_t usize, loff_t *off)
1913 {
1914 char __user *buf = ubuf;
1915 unsigned long *cpu_tsc;
1916 unsigned prev, next;
1917 int i, err;
1918
1919 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1920 if (!cpu_tsc)
1921 return -ENOMEM;
1922
1923 mutex_lock(&mce_chrdev_read_mutex);
1924
1925 if (!mce_apei_read_done) {
1926 err = __mce_read_apei(&buf, usize);
1927 if (err || buf != ubuf)
1928 goto out;
1929 }
1930
1931 next = mce_log_get_idx_check(mcelog.next);
1932
1933 /* Only supports full reads right now */
1934 err = -EINVAL;
1935 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1936 goto out;
1937
1938 err = 0;
1939 prev = 0;
1940 do {
1941 for (i = prev; i < next; i++) {
1942 unsigned long start = jiffies;
1943 struct mce *m = &mcelog.entry[i];
1944
1945 while (!m->finished) {
1946 if (time_after_eq(jiffies, start + 2)) {
1947 memset(m, 0, sizeof(*m));
1948 goto timeout;
1949 }
1950 cpu_relax();
1951 }
1952 smp_rmb();
1953 err |= copy_to_user(buf, m, sizeof(*m));
1954 buf += sizeof(*m);
1955 timeout:
1956 ;
1957 }
1958
1959 memset(mcelog.entry + prev, 0,
1960 (next - prev) * sizeof(struct mce));
1961 prev = next;
1962 next = cmpxchg(&mcelog.next, prev, 0);
1963 } while (next != prev);
1964
1965 synchronize_sched();
1966
1967 /*
1968 * Collect entries that were still getting written before the
1969 * synchronize.
1970 */
1971 on_each_cpu(collect_tscs, cpu_tsc, 1);
1972
1973 for (i = next; i < MCE_LOG_LEN; i++) {
1974 struct mce *m = &mcelog.entry[i];
1975
1976 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1977 err |= copy_to_user(buf, m, sizeof(*m));
1978 smp_rmb();
1979 buf += sizeof(*m);
1980 memset(m, 0, sizeof(*m));
1981 }
1982 }
1983
1984 if (err)
1985 err = -EFAULT;
1986
1987 out:
1988 mutex_unlock(&mce_chrdev_read_mutex);
1989 kfree(cpu_tsc);
1990
1991 return err ? err : buf - ubuf;
1992 }
1993
1994 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1995 {
1996 poll_wait(file, &mce_chrdev_wait, wait);
1997 if (READ_ONCE(mcelog.next))
1998 return POLLIN | POLLRDNORM;
1999 if (!mce_apei_read_done && apei_check_mce())
2000 return POLLIN | POLLRDNORM;
2001 return 0;
2002 }
2003
2004 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
2005 unsigned long arg)
2006 {
2007 int __user *p = (int __user *)arg;
2008
2009 if (!capable(CAP_SYS_ADMIN))
2010 return -EPERM;
2011
2012 switch (cmd) {
2013 case MCE_GET_RECORD_LEN:
2014 return put_user(sizeof(struct mce), p);
2015 case MCE_GET_LOG_LEN:
2016 return put_user(MCE_LOG_LEN, p);
2017 case MCE_GETCLEAR_FLAGS: {
2018 unsigned flags;
2019
2020 do {
2021 flags = mcelog.flags;
2022 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
2023
2024 return put_user(flags, p);
2025 }
2026 default:
2027 return -ENOTTY;
2028 }
2029 }
2030
2031 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
2032 size_t usize, loff_t *off);
2033
2034 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
2035 const char __user *ubuf,
2036 size_t usize, loff_t *off))
2037 {
2038 mce_write = fn;
2039 }
2040 EXPORT_SYMBOL_GPL(register_mce_write_callback);
2041
2042 static ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
2043 size_t usize, loff_t *off)
2044 {
2045 if (mce_write)
2046 return mce_write(filp, ubuf, usize, off);
2047 else
2048 return -EINVAL;
2049 }
2050
2051 static const struct file_operations mce_chrdev_ops = {
2052 .open = mce_chrdev_open,
2053 .release = mce_chrdev_release,
2054 .read = mce_chrdev_read,
2055 .write = mce_chrdev_write,
2056 .poll = mce_chrdev_poll,
2057 .unlocked_ioctl = mce_chrdev_ioctl,
2058 .llseek = no_llseek,
2059 };
2060
2061 static struct miscdevice mce_chrdev_device = {
2062 MISC_MCELOG_MINOR,
2063 "mcelog",
2064 &mce_chrdev_ops,
2065 };
2066
2067 static void __mce_disable_bank(void *arg)
2068 {
2069 int bank = *((int *)arg);
2070 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2071 cmci_disable_bank(bank);
2072 }
2073
2074 void mce_disable_bank(int bank)
2075 {
2076 if (bank >= mca_cfg.banks) {
2077 pr_warn(FW_BUG
2078 "Ignoring request to disable invalid MCA bank %d.\n",
2079 bank);
2080 return;
2081 }
2082 set_bit(bank, mce_banks_ce_disabled);
2083 on_each_cpu(__mce_disable_bank, &bank, 1);
2084 }
2085
2086 /*
2087 * mce=off Disables machine check
2088 * mce=no_cmci Disables CMCI
2089 * mce=no_lmce Disables LMCE
2090 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2091 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2092 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2093 * monarchtimeout is how long to wait for other CPUs on machine
2094 * check, or 0 to not wait
2095 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
2096 * mce=nobootlog Don't log MCEs from before booting.
2097 * mce=bios_cmci_threshold Don't program the CMCI threshold
2098 * mce=recovery force enable memcpy_mcsafe()
2099 */
2100 static int __init mcheck_enable(char *str)
2101 {
2102 struct mca_config *cfg = &mca_cfg;
2103
2104 if (*str == 0) {
2105 enable_p5_mce();
2106 return 1;
2107 }
2108 if (*str == '=')
2109 str++;
2110 if (!strcmp(str, "off"))
2111 cfg->disabled = true;
2112 else if (!strcmp(str, "no_cmci"))
2113 cfg->cmci_disabled = true;
2114 else if (!strcmp(str, "no_lmce"))
2115 cfg->lmce_disabled = true;
2116 else if (!strcmp(str, "dont_log_ce"))
2117 cfg->dont_log_ce = true;
2118 else if (!strcmp(str, "ignore_ce"))
2119 cfg->ignore_ce = true;
2120 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2121 cfg->bootlog = (str[0] == 'b');
2122 else if (!strcmp(str, "bios_cmci_threshold"))
2123 cfg->bios_cmci_threshold = true;
2124 else if (!strcmp(str, "recovery"))
2125 cfg->recovery = true;
2126 else if (isdigit(str[0])) {
2127 if (get_option(&str, &cfg->tolerant) == 2)
2128 get_option(&str, &(cfg->monarch_timeout));
2129 } else {
2130 pr_info("mce argument %s ignored. Please use /sys\n", str);
2131 return 0;
2132 }
2133 return 1;
2134 }
2135 __setup("mce", mcheck_enable);
2136
2137 int __init mcheck_init(void)
2138 {
2139 mcheck_intel_therm_init();
2140 mce_register_decode_chain(&mce_srao_nb);
2141 mcheck_vendor_init_severity();
2142
2143 INIT_WORK(&mce_work, mce_process_work);
2144 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2145
2146 return 0;
2147 }
2148
2149 /*
2150 * mce_syscore: PM support
2151 */
2152
2153 /*
2154 * Disable machine checks on suspend and shutdown. We can't really handle
2155 * them later.
2156 */
2157 static void mce_disable_error_reporting(void)
2158 {
2159 int i;
2160
2161 for (i = 0; i < mca_cfg.banks; i++) {
2162 struct mce_bank *b = &mce_banks[i];
2163
2164 if (b->init)
2165 wrmsrl(msr_ops.ctl(i), 0);
2166 }
2167 return;
2168 }
2169
2170 static void vendor_disable_error_reporting(void)
2171 {
2172 /*
2173 * Don't clear on Intel CPUs. Some of these MSRs are socket-wide.
2174 * Disabling them for just a single offlined CPU is bad, since it will
2175 * inhibit reporting for all shared resources on the socket like the
2176 * last level cache (LLC), the integrated memory controller (iMC), etc.
2177 */
2178 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2179 return;
2180
2181 mce_disable_error_reporting();
2182 }
2183
2184 static int mce_syscore_suspend(void)
2185 {
2186 vendor_disable_error_reporting();
2187 return 0;
2188 }
2189
2190 static void mce_syscore_shutdown(void)
2191 {
2192 vendor_disable_error_reporting();
2193 }
2194
2195 /*
2196 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2197 * Only one CPU is active at this time, the others get re-added later using
2198 * CPU hotplug:
2199 */
2200 static void mce_syscore_resume(void)
2201 {
2202 __mcheck_cpu_init_generic();
2203 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2204 __mcheck_cpu_init_clear_banks();
2205 }
2206
2207 static struct syscore_ops mce_syscore_ops = {
2208 .suspend = mce_syscore_suspend,
2209 .shutdown = mce_syscore_shutdown,
2210 .resume = mce_syscore_resume,
2211 };
2212
2213 /*
2214 * mce_device: Sysfs support
2215 */
2216
2217 static void mce_cpu_restart(void *data)
2218 {
2219 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2220 return;
2221 __mcheck_cpu_init_generic();
2222 __mcheck_cpu_init_clear_banks();
2223 __mcheck_cpu_init_timer();
2224 }
2225
2226 /* Reinit MCEs after user configuration changes */
2227 static void mce_restart(void)
2228 {
2229 mce_timer_delete_all();
2230 on_each_cpu(mce_cpu_restart, NULL, 1);
2231 }
2232
2233 /* Toggle features for corrected errors */
2234 static void mce_disable_cmci(void *data)
2235 {
2236 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2237 return;
2238 cmci_clear();
2239 }
2240
2241 static void mce_enable_ce(void *all)
2242 {
2243 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2244 return;
2245 cmci_reenable();
2246 cmci_recheck();
2247 if (all)
2248 __mcheck_cpu_init_timer();
2249 }
2250
2251 static struct bus_type mce_subsys = {
2252 .name = "machinecheck",
2253 .dev_name = "machinecheck",
2254 };
2255
2256 DEFINE_PER_CPU(struct device *, mce_device);
2257
2258 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2259
2260 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2261 {
2262 return container_of(attr, struct mce_bank, attr);
2263 }
2264
2265 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2266 char *buf)
2267 {
2268 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2269 }
2270
2271 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2272 const char *buf, size_t size)
2273 {
2274 u64 new;
2275
2276 if (kstrtou64(buf, 0, &new) < 0)
2277 return -EINVAL;
2278
2279 attr_to_bank(attr)->ctl = new;
2280 mce_restart();
2281
2282 return size;
2283 }
2284
2285 static ssize_t
2286 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2287 {
2288 strcpy(buf, mce_helper);
2289 strcat(buf, "\n");
2290 return strlen(mce_helper) + 1;
2291 }
2292
2293 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2294 const char *buf, size_t siz)
2295 {
2296 char *p;
2297
2298 strncpy(mce_helper, buf, sizeof(mce_helper));
2299 mce_helper[sizeof(mce_helper)-1] = 0;
2300 p = strchr(mce_helper, '\n');
2301
2302 if (p)
2303 *p = 0;
2304
2305 return strlen(mce_helper) + !!p;
2306 }
2307
2308 static ssize_t set_ignore_ce(struct device *s,
2309 struct device_attribute *attr,
2310 const char *buf, size_t size)
2311 {
2312 u64 new;
2313
2314 if (kstrtou64(buf, 0, &new) < 0)
2315 return -EINVAL;
2316
2317 if (mca_cfg.ignore_ce ^ !!new) {
2318 if (new) {
2319 /* disable ce features */
2320 mce_timer_delete_all();
2321 on_each_cpu(mce_disable_cmci, NULL, 1);
2322 mca_cfg.ignore_ce = true;
2323 } else {
2324 /* enable ce features */
2325 mca_cfg.ignore_ce = false;
2326 on_each_cpu(mce_enable_ce, (void *)1, 1);
2327 }
2328 }
2329 return size;
2330 }
2331
2332 static ssize_t set_cmci_disabled(struct device *s,
2333 struct device_attribute *attr,
2334 const char *buf, size_t size)
2335 {
2336 u64 new;
2337
2338 if (kstrtou64(buf, 0, &new) < 0)
2339 return -EINVAL;
2340
2341 if (mca_cfg.cmci_disabled ^ !!new) {
2342 if (new) {
2343 /* disable cmci */
2344 on_each_cpu(mce_disable_cmci, NULL, 1);
2345 mca_cfg.cmci_disabled = true;
2346 } else {
2347 /* enable cmci */
2348 mca_cfg.cmci_disabled = false;
2349 on_each_cpu(mce_enable_ce, NULL, 1);
2350 }
2351 }
2352 return size;
2353 }
2354
2355 static ssize_t store_int_with_restart(struct device *s,
2356 struct device_attribute *attr,
2357 const char *buf, size_t size)
2358 {
2359 ssize_t ret = device_store_int(s, attr, buf, size);
2360 mce_restart();
2361 return ret;
2362 }
2363
2364 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2365 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2366 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2367 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2368
2369 static struct dev_ext_attribute dev_attr_check_interval = {
2370 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2371 &check_interval
2372 };
2373
2374 static struct dev_ext_attribute dev_attr_ignore_ce = {
2375 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2376 &mca_cfg.ignore_ce
2377 };
2378
2379 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2380 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2381 &mca_cfg.cmci_disabled
2382 };
2383
2384 static struct device_attribute *mce_device_attrs[] = {
2385 &dev_attr_tolerant.attr,
2386 &dev_attr_check_interval.attr,
2387 &dev_attr_trigger,
2388 &dev_attr_monarch_timeout.attr,
2389 &dev_attr_dont_log_ce.attr,
2390 &dev_attr_ignore_ce.attr,
2391 &dev_attr_cmci_disabled.attr,
2392 NULL
2393 };
2394
2395 static cpumask_var_t mce_device_initialized;
2396
2397 static void mce_device_release(struct device *dev)
2398 {
2399 kfree(dev);
2400 }
2401
2402 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2403 static int mce_device_create(unsigned int cpu)
2404 {
2405 struct device *dev;
2406 int err;
2407 int i, j;
2408
2409 if (!mce_available(&boot_cpu_data))
2410 return -EIO;
2411
2412 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2413 if (!dev)
2414 return -ENOMEM;
2415 dev->id = cpu;
2416 dev->bus = &mce_subsys;
2417 dev->release = &mce_device_release;
2418
2419 err = device_register(dev);
2420 if (err) {
2421 put_device(dev);
2422 return err;
2423 }
2424
2425 for (i = 0; mce_device_attrs[i]; i++) {
2426 err = device_create_file(dev, mce_device_attrs[i]);
2427 if (err)
2428 goto error;
2429 }
2430 for (j = 0; j < mca_cfg.banks; j++) {
2431 err = device_create_file(dev, &mce_banks[j].attr);
2432 if (err)
2433 goto error2;
2434 }
2435 cpumask_set_cpu(cpu, mce_device_initialized);
2436 per_cpu(mce_device, cpu) = dev;
2437
2438 return 0;
2439 error2:
2440 while (--j >= 0)
2441 device_remove_file(dev, &mce_banks[j].attr);
2442 error:
2443 while (--i >= 0)
2444 device_remove_file(dev, mce_device_attrs[i]);
2445
2446 device_unregister(dev);
2447
2448 return err;
2449 }
2450
2451 static void mce_device_remove(unsigned int cpu)
2452 {
2453 struct device *dev = per_cpu(mce_device, cpu);
2454 int i;
2455
2456 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2457 return;
2458
2459 for (i = 0; mce_device_attrs[i]; i++)
2460 device_remove_file(dev, mce_device_attrs[i]);
2461
2462 for (i = 0; i < mca_cfg.banks; i++)
2463 device_remove_file(dev, &mce_banks[i].attr);
2464
2465 device_unregister(dev);
2466 cpumask_clear_cpu(cpu, mce_device_initialized);
2467 per_cpu(mce_device, cpu) = NULL;
2468 }
2469
2470 /* Make sure there are no machine checks on offlined CPUs. */
2471 static void mce_disable_cpu(void *h)
2472 {
2473 unsigned long action = *(unsigned long *)h;
2474
2475 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2476 return;
2477
2478 if (!(action & CPU_TASKS_FROZEN))
2479 cmci_clear();
2480
2481 vendor_disable_error_reporting();
2482 }
2483
2484 static void mce_reenable_cpu(void *h)
2485 {
2486 unsigned long action = *(unsigned long *)h;
2487 int i;
2488
2489 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2490 return;
2491
2492 if (!(action & CPU_TASKS_FROZEN))
2493 cmci_reenable();
2494 for (i = 0; i < mca_cfg.banks; i++) {
2495 struct mce_bank *b = &mce_banks[i];
2496
2497 if (b->init)
2498 wrmsrl(msr_ops.ctl(i), b->ctl);
2499 }
2500 }
2501
2502 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2503 static int
2504 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2505 {
2506 unsigned int cpu = (unsigned long)hcpu;
2507 struct timer_list *t = &per_cpu(mce_timer, cpu);
2508
2509 switch (action & ~CPU_TASKS_FROZEN) {
2510 case CPU_ONLINE:
2511 mce_device_create(cpu);
2512 if (threshold_cpu_callback)
2513 threshold_cpu_callback(action, cpu);
2514 break;
2515 case CPU_DEAD:
2516 if (threshold_cpu_callback)
2517 threshold_cpu_callback(action, cpu);
2518 mce_device_remove(cpu);
2519 mce_intel_hcpu_update(cpu);
2520
2521 /* intentionally ignoring frozen here */
2522 if (!(action & CPU_TASKS_FROZEN))
2523 cmci_rediscover();
2524 break;
2525 case CPU_DOWN_PREPARE:
2526 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2527 del_timer_sync(t);
2528 break;
2529 case CPU_DOWN_FAILED:
2530 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2531 mce_start_timer(cpu, t);
2532 break;
2533 }
2534
2535 return NOTIFY_OK;
2536 }
2537
2538 static struct notifier_block mce_cpu_notifier = {
2539 .notifier_call = mce_cpu_callback,
2540 };
2541
2542 static __init void mce_init_banks(void)
2543 {
2544 int i;
2545
2546 for (i = 0; i < mca_cfg.banks; i++) {
2547 struct mce_bank *b = &mce_banks[i];
2548 struct device_attribute *a = &b->attr;
2549
2550 sysfs_attr_init(&a->attr);
2551 a->attr.name = b->attrname;
2552 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2553
2554 a->attr.mode = 0644;
2555 a->show = show_bank;
2556 a->store = set_bank;
2557 }
2558 }
2559
2560 static __init int mcheck_init_device(void)
2561 {
2562 int err;
2563 int i = 0;
2564
2565 if (!mce_available(&boot_cpu_data)) {
2566 err = -EIO;
2567 goto err_out;
2568 }
2569
2570 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2571 err = -ENOMEM;
2572 goto err_out;
2573 }
2574
2575 mce_init_banks();
2576
2577 err = subsys_system_register(&mce_subsys, NULL);
2578 if (err)
2579 goto err_out_mem;
2580
2581 cpu_notifier_register_begin();
2582 for_each_online_cpu(i) {
2583 err = mce_device_create(i);
2584 if (err) {
2585 /*
2586 * Register notifier anyway (and do not unreg it) so
2587 * that we don't leave undeleted timers, see notifier
2588 * callback above.
2589 */
2590 __register_hotcpu_notifier(&mce_cpu_notifier);
2591 cpu_notifier_register_done();
2592 goto err_device_create;
2593 }
2594 }
2595
2596 __register_hotcpu_notifier(&mce_cpu_notifier);
2597 cpu_notifier_register_done();
2598
2599 register_syscore_ops(&mce_syscore_ops);
2600
2601 /* register character device /dev/mcelog */
2602 err = misc_register(&mce_chrdev_device);
2603 if (err)
2604 goto err_register;
2605
2606 return 0;
2607
2608 err_register:
2609 unregister_syscore_ops(&mce_syscore_ops);
2610
2611 err_device_create:
2612 /*
2613 * We didn't keep track of which devices were created above, but
2614 * even if we had, the set of online cpus might have changed.
2615 * Play safe and remove for every possible cpu, since
2616 * mce_device_remove() will do the right thing.
2617 */
2618 for_each_possible_cpu(i)
2619 mce_device_remove(i);
2620
2621 err_out_mem:
2622 free_cpumask_var(mce_device_initialized);
2623
2624 err_out:
2625 pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2626
2627 return err;
2628 }
2629 device_initcall_sync(mcheck_init_device);
2630
2631 /*
2632 * Old style boot options parsing. Only for compatibility.
2633 */
2634 static int __init mcheck_disable(char *str)
2635 {
2636 mca_cfg.disabled = true;
2637 return 1;
2638 }
2639 __setup("nomce", mcheck_disable);
2640
2641 #ifdef CONFIG_DEBUG_FS
2642 struct dentry *mce_get_debugfs_dir(void)
2643 {
2644 static struct dentry *dmce;
2645
2646 if (!dmce)
2647 dmce = debugfs_create_dir("mce", NULL);
2648
2649 return dmce;
2650 }
2651
2652 static void mce_reset(void)
2653 {
2654 cpu_missing = 0;
2655 atomic_set(&mce_fake_panicked, 0);
2656 atomic_set(&mce_executing, 0);
2657 atomic_set(&mce_callin, 0);
2658 atomic_set(&global_nwo, 0);
2659 }
2660
2661 static int fake_panic_get(void *data, u64 *val)
2662 {
2663 *val = fake_panic;
2664 return 0;
2665 }
2666
2667 static int fake_panic_set(void *data, u64 val)
2668 {
2669 mce_reset();
2670 fake_panic = val;
2671 return 0;
2672 }
2673
2674 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2675 fake_panic_set, "%llu\n");
2676
2677 static int __init mcheck_debugfs_init(void)
2678 {
2679 struct dentry *dmce, *ffake_panic;
2680
2681 dmce = mce_get_debugfs_dir();
2682 if (!dmce)
2683 return -ENOMEM;
2684 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2685 &fake_panic_fops);
2686 if (!ffake_panic)
2687 return -ENOMEM;
2688
2689 return 0;
2690 }
2691 #else
2692 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2693 #endif
2694
2695 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2696 EXPORT_SYMBOL_GPL(mcsafe_key);
2697
2698 static int __init mcheck_late_init(void)
2699 {
2700 if (mca_cfg.recovery)
2701 static_branch_inc(&mcsafe_key);
2702
2703 mcheck_debugfs_init();
2704
2705 /*
2706 * Flush out everything that has been logged during early boot, now that
2707 * everything has been initialized (workqueues, decoders, ...).
2708 */
2709 mce_schedule_work();
2710
2711 return 0;
2712 }
2713 late_initcall(mcheck_late_init);