]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /* MCA banks polled by the period polling timer for corrected events */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102
103 static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105 /*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111 /* Do initial initialization of a struct mce */
112 void mce_setup(struct mce *m)
113 {
114 memset(m, 0, sizeof(struct mce));
115 m->cpu = m->extcpu = smp_processor_id();
116 rdtscll(m->tsc);
117 /* We hope get_seconds stays lockless */
118 m->time = get_seconds();
119 m->cpuvendor = boot_cpu_data.x86_vendor;
120 m->cpuid = cpuid_eax(1);
121 m->socketid = cpu_data(m->extcpu).phys_proc_id;
122 m->apicid = cpu_data(m->extcpu).initial_apicid;
123 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124 }
125
126 DEFINE_PER_CPU(struct mce, injectm);
127 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129 /*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135 static struct mce_log mcelog = {
136 .signature = MCE_LOG_SIGNATURE,
137 .len = MCE_LOG_LEN,
138 .recordlen = sizeof(struct mce),
139 };
140
141 void mce_log(struct mce *mce)
142 {
143 unsigned next, entry;
144 int ret = 0;
145
146 /* Emit the trace record: */
147 trace_mce_record(mce);
148
149 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150 if (ret == NOTIFY_STOP)
151 return;
152
153 mce->finished = 0;
154 wmb();
155 for (;;) {
156 entry = rcu_dereference_check_mce(mcelog.next);
157 for (;;) {
158
159 /*
160 * When the buffer fills up discard new entries.
161 * Assume that the earlier errors are the more
162 * interesting ones:
163 */
164 if (entry >= MCE_LOG_LEN) {
165 set_bit(MCE_OVERFLOW,
166 (unsigned long *)&mcelog.flags);
167 return;
168 }
169 /* Old left over entry. Skip: */
170 if (mcelog.entry[entry].finished) {
171 entry++;
172 continue;
173 }
174 break;
175 }
176 smp_rmb();
177 next = entry + 1;
178 if (cmpxchg(&mcelog.next, entry, next) == entry)
179 break;
180 }
181 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182 wmb();
183 mcelog.entry[entry].finished = 1;
184 wmb();
185
186 mce->finished = 1;
187 set_bit(0, &mce_need_notify);
188 }
189
190 static void drain_mcelog_buffer(void)
191 {
192 unsigned int next, i, prev = 0;
193
194 next = ACCESS_ONCE(mcelog.next);
195
196 do {
197 struct mce *m;
198
199 /* drain what was logged during boot */
200 for (i = prev; i < next; i++) {
201 unsigned long start = jiffies;
202 unsigned retries = 1;
203
204 m = &mcelog.entry[i];
205
206 while (!m->finished) {
207 if (time_after_eq(jiffies, start + 2*retries))
208 retries++;
209
210 cpu_relax();
211
212 if (!m->finished && retries >= 4) {
213 pr_err("MCE: skipping error being logged currently!\n");
214 break;
215 }
216 }
217 smp_rmb();
218 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219 }
220
221 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222 prev = next;
223 next = cmpxchg(&mcelog.next, prev, 0);
224 } while (next != prev);
225 }
226
227
228 void mce_register_decode_chain(struct notifier_block *nb)
229 {
230 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231 drain_mcelog_buffer();
232 }
233 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235 void mce_unregister_decode_chain(struct notifier_block *nb)
236 {
237 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238 }
239 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241 static void print_mce(struct mce *m)
242 {
243 int ret = 0;
244
245 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246 m->extcpu, m->mcgstatus, m->bank, m->status);
247
248 if (m->ip) {
249 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251 m->cs, m->ip);
252
253 if (m->cs == __KERNEL_CS)
254 print_symbol("{%s}", m->ip);
255 pr_cont("\n");
256 }
257
258 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259 if (m->addr)
260 pr_cont("ADDR %llx ", m->addr);
261 if (m->misc)
262 pr_cont("MISC %llx ", m->misc);
263
264 pr_cont("\n");
265 /*
266 * Note this output is parsed by external tools and old fields
267 * should not be changed.
268 */
269 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 cpu_data(m->extcpu).microcode);
272
273 /*
274 * Print out human-readable details about the MCE error,
275 * (if the CPU has an implementation for that)
276 */
277 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278 if (ret == NOTIFY_STOP)
279 return;
280
281 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282 }
283
284 #define PANIC_TIMEOUT 5 /* 5 seconds */
285
286 static atomic_t mce_paniced;
287
288 static int fake_panic;
289 static atomic_t mce_fake_paniced;
290
291 /* Panic in progress. Enable interrupts and wait for final IPI */
292 static void wait_for_panic(void)
293 {
294 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296 preempt_disable();
297 local_irq_enable();
298 while (timeout-- > 0)
299 udelay(1);
300 if (panic_timeout == 0)
301 panic_timeout = mce_panic_timeout;
302 panic("Panicing machine check CPU died");
303 }
304
305 static void mce_panic(char *msg, struct mce *final, char *exp)
306 {
307 int i, apei_err = 0;
308
309 if (!fake_panic) {
310 /*
311 * Make sure only one CPU runs in machine check panic
312 */
313 if (atomic_inc_return(&mce_paniced) > 1)
314 wait_for_panic();
315 barrier();
316
317 bust_spinlocks(1);
318 console_verbose();
319 } else {
320 /* Don't log too much for fake panic */
321 if (atomic_inc_return(&mce_fake_paniced) > 1)
322 return;
323 }
324 /* First print corrected ones that are still unlogged */
325 for (i = 0; i < MCE_LOG_LEN; i++) {
326 struct mce *m = &mcelog.entry[i];
327 if (!(m->status & MCI_STATUS_VAL))
328 continue;
329 if (!(m->status & MCI_STATUS_UC)) {
330 print_mce(m);
331 if (!apei_err)
332 apei_err = apei_write_mce(m);
333 }
334 }
335 /* Now print uncorrected but with the final one last */
336 for (i = 0; i < MCE_LOG_LEN; i++) {
337 struct mce *m = &mcelog.entry[i];
338 if (!(m->status & MCI_STATUS_VAL))
339 continue;
340 if (!(m->status & MCI_STATUS_UC))
341 continue;
342 if (!final || memcmp(m, final, sizeof(struct mce))) {
343 print_mce(m);
344 if (!apei_err)
345 apei_err = apei_write_mce(m);
346 }
347 }
348 if (final) {
349 print_mce(final);
350 if (!apei_err)
351 apei_err = apei_write_mce(final);
352 }
353 if (cpu_missing)
354 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355 if (exp)
356 pr_emerg(HW_ERR "Machine check: %s\n", exp);
357 if (!fake_panic) {
358 if (panic_timeout == 0)
359 panic_timeout = mce_panic_timeout;
360 panic(msg);
361 } else
362 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363 }
364
365 /* Support code for software error injection */
366
367 static int msr_to_offset(u32 msr)
368 {
369 unsigned bank = __this_cpu_read(injectm.bank);
370
371 if (msr == rip_msr)
372 return offsetof(struct mce, ip);
373 if (msr == MSR_IA32_MCx_STATUS(bank))
374 return offsetof(struct mce, status);
375 if (msr == MSR_IA32_MCx_ADDR(bank))
376 return offsetof(struct mce, addr);
377 if (msr == MSR_IA32_MCx_MISC(bank))
378 return offsetof(struct mce, misc);
379 if (msr == MSR_IA32_MCG_STATUS)
380 return offsetof(struct mce, mcgstatus);
381 return -1;
382 }
383
384 /* MSR access wrappers used for error injection */
385 static u64 mce_rdmsrl(u32 msr)
386 {
387 u64 v;
388
389 if (__this_cpu_read(injectm.finished)) {
390 int offset = msr_to_offset(msr);
391
392 if (offset < 0)
393 return 0;
394 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395 }
396
397 if (rdmsrl_safe(msr, &v)) {
398 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399 /*
400 * Return zero in case the access faulted. This should
401 * not happen normally but can happen if the CPU does
402 * something weird, or if the code is buggy.
403 */
404 v = 0;
405 }
406
407 return v;
408 }
409
410 static void mce_wrmsrl(u32 msr, u64 v)
411 {
412 if (__this_cpu_read(injectm.finished)) {
413 int offset = msr_to_offset(msr);
414
415 if (offset >= 0)
416 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417 return;
418 }
419 wrmsrl(msr, v);
420 }
421
422 /*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428 {
429 mce_setup(m);
430
431 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432 if (regs) {
433 /*
434 * Get the address of the instruction at the time of
435 * the machine check error.
436 */
437 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438 m->ip = regs->ip;
439 m->cs = regs->cs;
440
441 /*
442 * When in VM86 mode make the cs look like ring 3
443 * always. This is a lie, but it's better than passing
444 * the additional vm86 bit around everywhere.
445 */
446 if (v8086_mode(regs))
447 m->cs |= 3;
448 }
449 /* Use accurate RIP reporting if available. */
450 if (rip_msr)
451 m->ip = mce_rdmsrl(rip_msr);
452 }
453 }
454
455 /*
456 * Simple lockless ring to communicate PFNs from the exception handler with the
457 * process context work function. This is vastly simplified because there's
458 * only a single reader and a single writer.
459 */
460 #define MCE_RING_SIZE 16 /* we use one entry less */
461
462 struct mce_ring {
463 unsigned short start;
464 unsigned short end;
465 unsigned long ring[MCE_RING_SIZE];
466 };
467 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
468
469 /* Runs with CPU affinity in workqueue */
470 static int mce_ring_empty(void)
471 {
472 struct mce_ring *r = &__get_cpu_var(mce_ring);
473
474 return r->start == r->end;
475 }
476
477 static int mce_ring_get(unsigned long *pfn)
478 {
479 struct mce_ring *r;
480 int ret = 0;
481
482 *pfn = 0;
483 get_cpu();
484 r = &__get_cpu_var(mce_ring);
485 if (r->start == r->end)
486 goto out;
487 *pfn = r->ring[r->start];
488 r->start = (r->start + 1) % MCE_RING_SIZE;
489 ret = 1;
490 out:
491 put_cpu();
492 return ret;
493 }
494
495 /* Always runs in MCE context with preempt off */
496 static int mce_ring_add(unsigned long pfn)
497 {
498 struct mce_ring *r = &__get_cpu_var(mce_ring);
499 unsigned next;
500
501 next = (r->end + 1) % MCE_RING_SIZE;
502 if (next == r->start)
503 return -1;
504 r->ring[r->end] = pfn;
505 wmb();
506 r->end = next;
507 return 0;
508 }
509
510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 if (mce_disabled)
513 return 0;
514 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516
517 static void mce_schedule_work(void)
518 {
519 if (!mce_ring_empty()) {
520 struct work_struct *work = &__get_cpu_var(mce_work);
521 if (!work_pending(work))
522 schedule_work(work);
523 }
524 }
525
526 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
527
528 static void mce_irq_work_cb(struct irq_work *entry)
529 {
530 mce_notify_irq();
531 mce_schedule_work();
532 }
533
534 static void mce_report_event(struct pt_regs *regs)
535 {
536 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
537 mce_notify_irq();
538 /*
539 * Triggering the work queue here is just an insurance
540 * policy in case the syscall exit notify handler
541 * doesn't run soon enough or ends up running on the
542 * wrong CPU (can happen when audit sleeps)
543 */
544 mce_schedule_work();
545 return;
546 }
547
548 irq_work_queue(&__get_cpu_var(mce_irq_work));
549 }
550
551 /*
552 * Read ADDR and MISC registers.
553 */
554 static void mce_read_aux(struct mce *m, int i)
555 {
556 if (m->status & MCI_STATUS_MISCV)
557 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
558 if (m->status & MCI_STATUS_ADDRV) {
559 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
560
561 /*
562 * Mask the reported address by the reported granularity.
563 */
564 if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
565 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
566 m->addr >>= shift;
567 m->addr <<= shift;
568 }
569 }
570 }
571
572 DEFINE_PER_CPU(unsigned, mce_poll_count);
573
574 /*
575 * Poll for corrected events or events that happened before reset.
576 * Those are just logged through /dev/mcelog.
577 *
578 * This is executed in standard interrupt context.
579 *
580 * Note: spec recommends to panic for fatal unsignalled
581 * errors here. However this would be quite problematic --
582 * we would need to reimplement the Monarch handling and
583 * it would mess up the exclusion between exception handler
584 * and poll hander -- * so we skip this for now.
585 * These cases should not happen anyways, or only when the CPU
586 * is already totally * confused. In this case it's likely it will
587 * not fully execute the machine check handler either.
588 */
589 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
590 {
591 struct mce m;
592 int i;
593
594 this_cpu_inc(mce_poll_count);
595
596 mce_gather_info(&m, NULL);
597
598 for (i = 0; i < banks; i++) {
599 if (!mce_banks[i].ctl || !test_bit(i, *b))
600 continue;
601
602 m.misc = 0;
603 m.addr = 0;
604 m.bank = i;
605 m.tsc = 0;
606
607 barrier();
608 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
609 if (!(m.status & MCI_STATUS_VAL))
610 continue;
611
612 /*
613 * Uncorrected or signalled events are handled by the exception
614 * handler when it is enabled, so don't process those here.
615 *
616 * TBD do the same check for MCI_STATUS_EN here?
617 */
618 if (!(flags & MCP_UC) &&
619 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
620 continue;
621
622 mce_read_aux(&m, i);
623
624 if (!(flags & MCP_TIMESTAMP))
625 m.tsc = 0;
626 /*
627 * Don't get the IP here because it's unlikely to
628 * have anything to do with the actual error location.
629 */
630 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
631 mce_log(&m);
632
633 /*
634 * Clear state for this bank.
635 */
636 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
637 }
638
639 /*
640 * Don't clear MCG_STATUS here because it's only defined for
641 * exceptions.
642 */
643
644 sync_core();
645 }
646 EXPORT_SYMBOL_GPL(machine_check_poll);
647
648 /*
649 * Do a quick check if any of the events requires a panic.
650 * This decides if we keep the events around or clear them.
651 */
652 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp)
653 {
654 int i, ret = 0;
655
656 for (i = 0; i < banks; i++) {
657 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
658 if (m->status & MCI_STATUS_VAL)
659 __set_bit(i, validp);
660 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
661 ret = 1;
662 }
663 return ret;
664 }
665
666 /*
667 * Variable to establish order between CPUs while scanning.
668 * Each CPU spins initially until executing is equal its number.
669 */
670 static atomic_t mce_executing;
671
672 /*
673 * Defines order of CPUs on entry. First CPU becomes Monarch.
674 */
675 static atomic_t mce_callin;
676
677 /*
678 * Check if a timeout waiting for other CPUs happened.
679 */
680 static int mce_timed_out(u64 *t)
681 {
682 /*
683 * The others already did panic for some reason.
684 * Bail out like in a timeout.
685 * rmb() to tell the compiler that system_state
686 * might have been modified by someone else.
687 */
688 rmb();
689 if (atomic_read(&mce_paniced))
690 wait_for_panic();
691 if (!monarch_timeout)
692 goto out;
693 if ((s64)*t < SPINUNIT) {
694 /* CHECKME: Make panic default for 1 too? */
695 if (tolerant < 1)
696 mce_panic("Timeout synchronizing machine check over CPUs",
697 NULL, NULL);
698 cpu_missing = 1;
699 return 1;
700 }
701 *t -= SPINUNIT;
702 out:
703 touch_nmi_watchdog();
704 return 0;
705 }
706
707 /*
708 * The Monarch's reign. The Monarch is the CPU who entered
709 * the machine check handler first. It waits for the others to
710 * raise the exception too and then grades them. When any
711 * error is fatal panic. Only then let the others continue.
712 *
713 * The other CPUs entering the MCE handler will be controlled by the
714 * Monarch. They are called Subjects.
715 *
716 * This way we prevent any potential data corruption in a unrecoverable case
717 * and also makes sure always all CPU's errors are examined.
718 *
719 * Also this detects the case of a machine check event coming from outer
720 * space (not detected by any CPUs) In this case some external agent wants
721 * us to shut down, so panic too.
722 *
723 * The other CPUs might still decide to panic if the handler happens
724 * in a unrecoverable place, but in this case the system is in a semi-stable
725 * state and won't corrupt anything by itself. It's ok to let the others
726 * continue for a bit first.
727 *
728 * All the spin loops have timeouts; when a timeout happens a CPU
729 * typically elects itself to be Monarch.
730 */
731 static void mce_reign(void)
732 {
733 int cpu;
734 struct mce *m = NULL;
735 int global_worst = 0;
736 char *msg = NULL;
737 char *nmsg = NULL;
738
739 /*
740 * This CPU is the Monarch and the other CPUs have run
741 * through their handlers.
742 * Grade the severity of the errors of all the CPUs.
743 */
744 for_each_possible_cpu(cpu) {
745 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
746 &nmsg);
747 if (severity > global_worst) {
748 msg = nmsg;
749 global_worst = severity;
750 m = &per_cpu(mces_seen, cpu);
751 }
752 }
753
754 /*
755 * Cannot recover? Panic here then.
756 * This dumps all the mces in the log buffer and stops the
757 * other CPUs.
758 */
759 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
760 mce_panic("Fatal Machine check", m, msg);
761
762 /*
763 * For UC somewhere we let the CPU who detects it handle it.
764 * Also must let continue the others, otherwise the handling
765 * CPU could deadlock on a lock.
766 */
767
768 /*
769 * No machine check event found. Must be some external
770 * source or one CPU is hung. Panic.
771 */
772 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
773 mce_panic("Machine check from unknown source", NULL, NULL);
774
775 /*
776 * Now clear all the mces_seen so that they don't reappear on
777 * the next mce.
778 */
779 for_each_possible_cpu(cpu)
780 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
781 }
782
783 static atomic_t global_nwo;
784
785 /*
786 * Start of Monarch synchronization. This waits until all CPUs have
787 * entered the exception handler and then determines if any of them
788 * saw a fatal event that requires panic. Then it executes them
789 * in the entry order.
790 * TBD double check parallel CPU hotunplug
791 */
792 static int mce_start(int *no_way_out)
793 {
794 int order;
795 int cpus = num_online_cpus();
796 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
797
798 if (!timeout)
799 return -1;
800
801 atomic_add(*no_way_out, &global_nwo);
802 /*
803 * global_nwo should be updated before mce_callin
804 */
805 smp_wmb();
806 order = atomic_inc_return(&mce_callin);
807
808 /*
809 * Wait for everyone.
810 */
811 while (atomic_read(&mce_callin) != cpus) {
812 if (mce_timed_out(&timeout)) {
813 atomic_set(&global_nwo, 0);
814 return -1;
815 }
816 ndelay(SPINUNIT);
817 }
818
819 /*
820 * mce_callin should be read before global_nwo
821 */
822 smp_rmb();
823
824 if (order == 1) {
825 /*
826 * Monarch: Starts executing now, the others wait.
827 */
828 atomic_set(&mce_executing, 1);
829 } else {
830 /*
831 * Subject: Now start the scanning loop one by one in
832 * the original callin order.
833 * This way when there are any shared banks it will be
834 * only seen by one CPU before cleared, avoiding duplicates.
835 */
836 while (atomic_read(&mce_executing) < order) {
837 if (mce_timed_out(&timeout)) {
838 atomic_set(&global_nwo, 0);
839 return -1;
840 }
841 ndelay(SPINUNIT);
842 }
843 }
844
845 /*
846 * Cache the global no_way_out state.
847 */
848 *no_way_out = atomic_read(&global_nwo);
849
850 return order;
851 }
852
853 /*
854 * Synchronize between CPUs after main scanning loop.
855 * This invokes the bulk of the Monarch processing.
856 */
857 static int mce_end(int order)
858 {
859 int ret = -1;
860 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
861
862 if (!timeout)
863 goto reset;
864 if (order < 0)
865 goto reset;
866
867 /*
868 * Allow others to run.
869 */
870 atomic_inc(&mce_executing);
871
872 if (order == 1) {
873 /* CHECKME: Can this race with a parallel hotplug? */
874 int cpus = num_online_cpus();
875
876 /*
877 * Monarch: Wait for everyone to go through their scanning
878 * loops.
879 */
880 while (atomic_read(&mce_executing) <= cpus) {
881 if (mce_timed_out(&timeout))
882 goto reset;
883 ndelay(SPINUNIT);
884 }
885
886 mce_reign();
887 barrier();
888 ret = 0;
889 } else {
890 /*
891 * Subject: Wait for Monarch to finish.
892 */
893 while (atomic_read(&mce_executing) != 0) {
894 if (mce_timed_out(&timeout))
895 goto reset;
896 ndelay(SPINUNIT);
897 }
898
899 /*
900 * Don't reset anything. That's done by the Monarch.
901 */
902 return 0;
903 }
904
905 /*
906 * Reset all global state.
907 */
908 reset:
909 atomic_set(&global_nwo, 0);
910 atomic_set(&mce_callin, 0);
911 barrier();
912
913 /*
914 * Let others run again.
915 */
916 atomic_set(&mce_executing, 0);
917 return ret;
918 }
919
920 /*
921 * Check if the address reported by the CPU is in a format we can parse.
922 * It would be possible to add code for most other cases, but all would
923 * be somewhat complicated (e.g. segment offset would require an instruction
924 * parser). So only support physical addresses up to page granuality for now.
925 */
926 static int mce_usable_address(struct mce *m)
927 {
928 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
929 return 0;
930 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
931 return 0;
932 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
933 return 0;
934 return 1;
935 }
936
937 static void mce_clear_state(unsigned long *toclear)
938 {
939 int i;
940
941 for (i = 0; i < banks; i++) {
942 if (test_bit(i, toclear))
943 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
944 }
945 }
946
947 /*
948 * Need to save faulting physical address associated with a process
949 * in the machine check handler some place where we can grab it back
950 * later in mce_notify_process()
951 */
952 #define MCE_INFO_MAX 16
953
954 struct mce_info {
955 atomic_t inuse;
956 struct task_struct *t;
957 __u64 paddr;
958 int restartable;
959 } mce_info[MCE_INFO_MAX];
960
961 static void mce_save_info(__u64 addr, int c)
962 {
963 struct mce_info *mi;
964
965 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
966 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
967 mi->t = current;
968 mi->paddr = addr;
969 mi->restartable = c;
970 return;
971 }
972 }
973
974 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
975 }
976
977 static struct mce_info *mce_find_info(void)
978 {
979 struct mce_info *mi;
980
981 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
982 if (atomic_read(&mi->inuse) && mi->t == current)
983 return mi;
984 return NULL;
985 }
986
987 static void mce_clear_info(struct mce_info *mi)
988 {
989 atomic_set(&mi->inuse, 0);
990 }
991
992 /*
993 * The actual machine check handler. This only handles real
994 * exceptions when something got corrupted coming in through int 18.
995 *
996 * This is executed in NMI context not subject to normal locking rules. This
997 * implies that most kernel services cannot be safely used. Don't even
998 * think about putting a printk in there!
999 *
1000 * On Intel systems this is entered on all CPUs in parallel through
1001 * MCE broadcast. However some CPUs might be broken beyond repair,
1002 * so be always careful when synchronizing with others.
1003 */
1004 void do_machine_check(struct pt_regs *regs, long error_code)
1005 {
1006 struct mce m, *final;
1007 int i;
1008 int worst = 0;
1009 int severity;
1010 /*
1011 * Establish sequential order between the CPUs entering the machine
1012 * check handler.
1013 */
1014 int order;
1015 /*
1016 * If no_way_out gets set, there is no safe way to recover from this
1017 * MCE. If tolerant is cranked up, we'll try anyway.
1018 */
1019 int no_way_out = 0;
1020 /*
1021 * If kill_it gets set, there might be a way to recover from this
1022 * error.
1023 */
1024 int kill_it = 0;
1025 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1026 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1027 char *msg = "Unknown";
1028
1029 atomic_inc(&mce_entry);
1030
1031 this_cpu_inc(mce_exception_count);
1032
1033 if (!banks)
1034 goto out;
1035
1036 mce_gather_info(&m, regs);
1037
1038 final = &__get_cpu_var(mces_seen);
1039 *final = m;
1040
1041 memset(valid_banks, 0, sizeof(valid_banks));
1042 no_way_out = mce_no_way_out(&m, &msg, valid_banks);
1043
1044 barrier();
1045
1046 /*
1047 * When no restart IP might need to kill or panic.
1048 * Assume the worst for now, but if we find the
1049 * severity is MCE_AR_SEVERITY we have other options.
1050 */
1051 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1052 kill_it = 1;
1053
1054 /*
1055 * Go through all the banks in exclusion of the other CPUs.
1056 * This way we don't report duplicated events on shared banks
1057 * because the first one to see it will clear it.
1058 */
1059 order = mce_start(&no_way_out);
1060 for (i = 0; i < banks; i++) {
1061 __clear_bit(i, toclear);
1062 if (!test_bit(i, valid_banks))
1063 continue;
1064 if (!mce_banks[i].ctl)
1065 continue;
1066
1067 m.misc = 0;
1068 m.addr = 0;
1069 m.bank = i;
1070
1071 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1072 if ((m.status & MCI_STATUS_VAL) == 0)
1073 continue;
1074
1075 /*
1076 * Non uncorrected or non signaled errors are handled by
1077 * machine_check_poll. Leave them alone, unless this panics.
1078 */
1079 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1080 !no_way_out)
1081 continue;
1082
1083 /*
1084 * Set taint even when machine check was not enabled.
1085 */
1086 add_taint(TAINT_MACHINE_CHECK);
1087
1088 severity = mce_severity(&m, tolerant, NULL);
1089
1090 /*
1091 * When machine check was for corrected handler don't touch,
1092 * unless we're panicing.
1093 */
1094 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1095 continue;
1096 __set_bit(i, toclear);
1097 if (severity == MCE_NO_SEVERITY) {
1098 /*
1099 * Machine check event was not enabled. Clear, but
1100 * ignore.
1101 */
1102 continue;
1103 }
1104
1105 mce_read_aux(&m, i);
1106
1107 /*
1108 * Action optional error. Queue address for later processing.
1109 * When the ring overflows we just ignore the AO error.
1110 * RED-PEN add some logging mechanism when
1111 * usable_address or mce_add_ring fails.
1112 * RED-PEN don't ignore overflow for tolerant == 0
1113 */
1114 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1115 mce_ring_add(m.addr >> PAGE_SHIFT);
1116
1117 mce_log(&m);
1118
1119 if (severity > worst) {
1120 *final = m;
1121 worst = severity;
1122 }
1123 }
1124
1125 /* mce_clear_state will clear *final, save locally for use later */
1126 m = *final;
1127
1128 if (!no_way_out)
1129 mce_clear_state(toclear);
1130
1131 /*
1132 * Do most of the synchronization with other CPUs.
1133 * When there's any problem use only local no_way_out state.
1134 */
1135 if (mce_end(order) < 0)
1136 no_way_out = worst >= MCE_PANIC_SEVERITY;
1137
1138 /*
1139 * At insane "tolerant" levels we take no action. Otherwise
1140 * we only die if we have no other choice. For less serious
1141 * issues we try to recover, or limit damage to the current
1142 * process.
1143 */
1144 if (tolerant < 3) {
1145 if (no_way_out)
1146 mce_panic("Fatal machine check on current CPU", &m, msg);
1147 if (worst == MCE_AR_SEVERITY) {
1148 /* schedule action before return to userland */
1149 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1150 set_thread_flag(TIF_MCE_NOTIFY);
1151 } else if (kill_it) {
1152 force_sig(SIGBUS, current);
1153 }
1154 }
1155
1156 if (worst > 0)
1157 mce_report_event(regs);
1158 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1159 out:
1160 atomic_dec(&mce_entry);
1161 sync_core();
1162 }
1163 EXPORT_SYMBOL_GPL(do_machine_check);
1164
1165 #ifndef CONFIG_MEMORY_FAILURE
1166 int memory_failure(unsigned long pfn, int vector, int flags)
1167 {
1168 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1169 BUG_ON(flags & MF_ACTION_REQUIRED);
1170 printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1171 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1172
1173 return 0;
1174 }
1175 #endif
1176
1177 /*
1178 * Called in process context that interrupted by MCE and marked with
1179 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1180 * This code is allowed to sleep.
1181 * Attempt possible recovery such as calling the high level VM handler to
1182 * process any corrupted pages, and kill/signal current process if required.
1183 * Action required errors are handled here.
1184 */
1185 void mce_notify_process(void)
1186 {
1187 unsigned long pfn;
1188 struct mce_info *mi = mce_find_info();
1189
1190 if (!mi)
1191 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1192 pfn = mi->paddr >> PAGE_SHIFT;
1193
1194 clear_thread_flag(TIF_MCE_NOTIFY);
1195
1196 pr_err("Uncorrected hardware memory error in user-access at %llx",
1197 mi->paddr);
1198 /*
1199 * We must call memory_failure() here even if the current process is
1200 * doomed. We still need to mark the page as poisoned and alert any
1201 * other users of the page.
1202 */
1203 if (memory_failure(pfn, MCE_VECTOR, MF_ACTION_REQUIRED) < 0 ||
1204 mi->restartable == 0) {
1205 pr_err("Memory error not recovered");
1206 force_sig(SIGBUS, current);
1207 }
1208 mce_clear_info(mi);
1209 }
1210
1211 /*
1212 * Action optional processing happens here (picking up
1213 * from the list of faulting pages that do_machine_check()
1214 * placed into the "ring").
1215 */
1216 static void mce_process_work(struct work_struct *dummy)
1217 {
1218 unsigned long pfn;
1219
1220 while (mce_ring_get(&pfn))
1221 memory_failure(pfn, MCE_VECTOR, 0);
1222 }
1223
1224 #ifdef CONFIG_X86_MCE_INTEL
1225 /***
1226 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1227 * @cpu: The CPU on which the event occurred.
1228 * @status: Event status information
1229 *
1230 * This function should be called by the thermal interrupt after the
1231 * event has been processed and the decision was made to log the event
1232 * further.
1233 *
1234 * The status parameter will be saved to the 'status' field of 'struct mce'
1235 * and historically has been the register value of the
1236 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1237 */
1238 void mce_log_therm_throt_event(__u64 status)
1239 {
1240 struct mce m;
1241
1242 mce_setup(&m);
1243 m.bank = MCE_THERMAL_BANK;
1244 m.status = status;
1245 mce_log(&m);
1246 }
1247 #endif /* CONFIG_X86_MCE_INTEL */
1248
1249 /*
1250 * Periodic polling timer for "silent" machine check errors. If the
1251 * poller finds an MCE, poll 2x faster. When the poller finds no more
1252 * errors, poll 2x slower (up to check_interval seconds).
1253 */
1254 static int check_interval = 5 * 60; /* 5 minutes */
1255
1256 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1257 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1258
1259 static void mce_start_timer(unsigned long data)
1260 {
1261 struct timer_list *t = &per_cpu(mce_timer, data);
1262 int *n;
1263
1264 WARN_ON(smp_processor_id() != data);
1265
1266 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1267 machine_check_poll(MCP_TIMESTAMP,
1268 &__get_cpu_var(mce_poll_banks));
1269 }
1270
1271 /*
1272 * Alert userspace if needed. If we logged an MCE, reduce the
1273 * polling interval, otherwise increase the polling interval.
1274 */
1275 n = &__get_cpu_var(mce_next_interval);
1276 if (mce_notify_irq())
1277 *n = max(*n/2, HZ/100);
1278 else
1279 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1280
1281 t->expires = jiffies + *n;
1282 add_timer_on(t, smp_processor_id());
1283 }
1284
1285 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1286 static void mce_timer_delete_all(void)
1287 {
1288 int cpu;
1289
1290 for_each_online_cpu(cpu)
1291 del_timer_sync(&per_cpu(mce_timer, cpu));
1292 }
1293
1294 static void mce_do_trigger(struct work_struct *work)
1295 {
1296 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1297 }
1298
1299 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1300
1301 /*
1302 * Notify the user(s) about new machine check events.
1303 * Can be called from interrupt context, but not from machine check/NMI
1304 * context.
1305 */
1306 int mce_notify_irq(void)
1307 {
1308 /* Not more than two messages every minute */
1309 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1310
1311 if (test_and_clear_bit(0, &mce_need_notify)) {
1312 /* wake processes polling /dev/mcelog */
1313 wake_up_interruptible(&mce_chrdev_wait);
1314
1315 /*
1316 * There is no risk of missing notifications because
1317 * work_pending is always cleared before the function is
1318 * executed.
1319 */
1320 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1321 schedule_work(&mce_trigger_work);
1322
1323 if (__ratelimit(&ratelimit))
1324 pr_info(HW_ERR "Machine check events logged\n");
1325
1326 return 1;
1327 }
1328 return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(mce_notify_irq);
1331
1332 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1333 {
1334 int i;
1335
1336 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1337 if (!mce_banks)
1338 return -ENOMEM;
1339 for (i = 0; i < banks; i++) {
1340 struct mce_bank *b = &mce_banks[i];
1341
1342 b->ctl = -1ULL;
1343 b->init = 1;
1344 }
1345 return 0;
1346 }
1347
1348 /*
1349 * Initialize Machine Checks for a CPU.
1350 */
1351 static int __cpuinit __mcheck_cpu_cap_init(void)
1352 {
1353 unsigned b;
1354 u64 cap;
1355
1356 rdmsrl(MSR_IA32_MCG_CAP, cap);
1357
1358 b = cap & MCG_BANKCNT_MASK;
1359 if (!banks)
1360 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1361
1362 if (b > MAX_NR_BANKS) {
1363 printk(KERN_WARNING
1364 "MCE: Using only %u machine check banks out of %u\n",
1365 MAX_NR_BANKS, b);
1366 b = MAX_NR_BANKS;
1367 }
1368
1369 /* Don't support asymmetric configurations today */
1370 WARN_ON(banks != 0 && b != banks);
1371 banks = b;
1372 if (!mce_banks) {
1373 int err = __mcheck_cpu_mce_banks_init();
1374
1375 if (err)
1376 return err;
1377 }
1378
1379 /* Use accurate RIP reporting if available. */
1380 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1381 rip_msr = MSR_IA32_MCG_EIP;
1382
1383 if (cap & MCG_SER_P)
1384 mce_ser = 1;
1385
1386 return 0;
1387 }
1388
1389 static void __mcheck_cpu_init_generic(void)
1390 {
1391 mce_banks_t all_banks;
1392 u64 cap;
1393 int i;
1394
1395 /*
1396 * Log the machine checks left over from the previous reset.
1397 */
1398 bitmap_fill(all_banks, MAX_NR_BANKS);
1399 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1400
1401 set_in_cr4(X86_CR4_MCE);
1402
1403 rdmsrl(MSR_IA32_MCG_CAP, cap);
1404 if (cap & MCG_CTL_P)
1405 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1406
1407 for (i = 0; i < banks; i++) {
1408 struct mce_bank *b = &mce_banks[i];
1409
1410 if (!b->init)
1411 continue;
1412 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1413 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1414 }
1415 }
1416
1417 /* Add per CPU specific workarounds here */
1418 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1419 {
1420 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1421 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1422 return -EOPNOTSUPP;
1423 }
1424
1425 /* This should be disabled by the BIOS, but isn't always */
1426 if (c->x86_vendor == X86_VENDOR_AMD) {
1427 if (c->x86 == 15 && banks > 4) {
1428 /*
1429 * disable GART TBL walk error reporting, which
1430 * trips off incorrectly with the IOMMU & 3ware
1431 * & Cerberus:
1432 */
1433 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1434 }
1435 if (c->x86 <= 17 && mce_bootlog < 0) {
1436 /*
1437 * Lots of broken BIOS around that don't clear them
1438 * by default and leave crap in there. Don't log:
1439 */
1440 mce_bootlog = 0;
1441 }
1442 /*
1443 * Various K7s with broken bank 0 around. Always disable
1444 * by default.
1445 */
1446 if (c->x86 == 6 && banks > 0)
1447 mce_banks[0].ctl = 0;
1448
1449 /*
1450 * Turn off MC4_MISC thresholding banks on those models since
1451 * they're not supported there.
1452 */
1453 if (c->x86 == 0x15 &&
1454 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1455 int i;
1456 u64 val, hwcr;
1457 bool need_toggle;
1458 u32 msrs[] = {
1459 0x00000413, /* MC4_MISC0 */
1460 0xc0000408, /* MC4_MISC1 */
1461 };
1462
1463 rdmsrl(MSR_K7_HWCR, hwcr);
1464
1465 /* McStatusWrEn has to be set */
1466 need_toggle = !(hwcr & BIT(18));
1467
1468 if (need_toggle)
1469 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1470
1471 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1472 rdmsrl(msrs[i], val);
1473
1474 /* CntP bit set? */
1475 if (val & BIT(62)) {
1476 val &= ~BIT(62);
1477 wrmsrl(msrs[i], val);
1478 }
1479 }
1480
1481 /* restore old settings */
1482 if (need_toggle)
1483 wrmsrl(MSR_K7_HWCR, hwcr);
1484 }
1485 }
1486
1487 if (c->x86_vendor == X86_VENDOR_INTEL) {
1488 /*
1489 * SDM documents that on family 6 bank 0 should not be written
1490 * because it aliases to another special BIOS controlled
1491 * register.
1492 * But it's not aliased anymore on model 0x1a+
1493 * Don't ignore bank 0 completely because there could be a
1494 * valid event later, merely don't write CTL0.
1495 */
1496
1497 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1498 mce_banks[0].init = 0;
1499
1500 /*
1501 * All newer Intel systems support MCE broadcasting. Enable
1502 * synchronization with a one second timeout.
1503 */
1504 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1505 monarch_timeout < 0)
1506 monarch_timeout = USEC_PER_SEC;
1507
1508 /*
1509 * There are also broken BIOSes on some Pentium M and
1510 * earlier systems:
1511 */
1512 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1513 mce_bootlog = 0;
1514 }
1515 if (monarch_timeout < 0)
1516 monarch_timeout = 0;
1517 if (mce_bootlog != 0)
1518 mce_panic_timeout = 30;
1519
1520 return 0;
1521 }
1522
1523 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1524 {
1525 if (c->x86 != 5)
1526 return 0;
1527
1528 switch (c->x86_vendor) {
1529 case X86_VENDOR_INTEL:
1530 intel_p5_mcheck_init(c);
1531 return 1;
1532 break;
1533 case X86_VENDOR_CENTAUR:
1534 winchip_mcheck_init(c);
1535 return 1;
1536 break;
1537 }
1538
1539 return 0;
1540 }
1541
1542 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1543 {
1544 switch (c->x86_vendor) {
1545 case X86_VENDOR_INTEL:
1546 mce_intel_feature_init(c);
1547 break;
1548 case X86_VENDOR_AMD:
1549 mce_amd_feature_init(c);
1550 break;
1551 default:
1552 break;
1553 }
1554 }
1555
1556 static void __mcheck_cpu_init_timer(void)
1557 {
1558 struct timer_list *t = &__get_cpu_var(mce_timer);
1559 int *n = &__get_cpu_var(mce_next_interval);
1560
1561 setup_timer(t, mce_start_timer, smp_processor_id());
1562
1563 if (mce_ignore_ce)
1564 return;
1565
1566 *n = check_interval * HZ;
1567 if (!*n)
1568 return;
1569 t->expires = round_jiffies(jiffies + *n);
1570 add_timer_on(t, smp_processor_id());
1571 }
1572
1573 /* Handle unconfigured int18 (should never happen) */
1574 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1575 {
1576 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1577 smp_processor_id());
1578 }
1579
1580 /* Call the installed machine check handler for this CPU setup. */
1581 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1582 unexpected_machine_check;
1583
1584 /*
1585 * Called for each booted CPU to set up machine checks.
1586 * Must be called with preempt off:
1587 */
1588 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1589 {
1590 if (mce_disabled)
1591 return;
1592
1593 if (__mcheck_cpu_ancient_init(c))
1594 return;
1595
1596 if (!mce_available(c))
1597 return;
1598
1599 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1600 mce_disabled = 1;
1601 return;
1602 }
1603
1604 machine_check_vector = do_machine_check;
1605
1606 __mcheck_cpu_init_generic();
1607 __mcheck_cpu_init_vendor(c);
1608 __mcheck_cpu_init_timer();
1609 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1610 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1611 }
1612
1613 /*
1614 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1615 */
1616
1617 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1618 static int mce_chrdev_open_count; /* #times opened */
1619 static int mce_chrdev_open_exclu; /* already open exclusive? */
1620
1621 static int mce_chrdev_open(struct inode *inode, struct file *file)
1622 {
1623 spin_lock(&mce_chrdev_state_lock);
1624
1625 if (mce_chrdev_open_exclu ||
1626 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1627 spin_unlock(&mce_chrdev_state_lock);
1628
1629 return -EBUSY;
1630 }
1631
1632 if (file->f_flags & O_EXCL)
1633 mce_chrdev_open_exclu = 1;
1634 mce_chrdev_open_count++;
1635
1636 spin_unlock(&mce_chrdev_state_lock);
1637
1638 return nonseekable_open(inode, file);
1639 }
1640
1641 static int mce_chrdev_release(struct inode *inode, struct file *file)
1642 {
1643 spin_lock(&mce_chrdev_state_lock);
1644
1645 mce_chrdev_open_count--;
1646 mce_chrdev_open_exclu = 0;
1647
1648 spin_unlock(&mce_chrdev_state_lock);
1649
1650 return 0;
1651 }
1652
1653 static void collect_tscs(void *data)
1654 {
1655 unsigned long *cpu_tsc = (unsigned long *)data;
1656
1657 rdtscll(cpu_tsc[smp_processor_id()]);
1658 }
1659
1660 static int mce_apei_read_done;
1661
1662 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1663 static int __mce_read_apei(char __user **ubuf, size_t usize)
1664 {
1665 int rc;
1666 u64 record_id;
1667 struct mce m;
1668
1669 if (usize < sizeof(struct mce))
1670 return -EINVAL;
1671
1672 rc = apei_read_mce(&m, &record_id);
1673 /* Error or no more MCE record */
1674 if (rc <= 0) {
1675 mce_apei_read_done = 1;
1676 /*
1677 * When ERST is disabled, mce_chrdev_read() should return
1678 * "no record" instead of "no device."
1679 */
1680 if (rc == -ENODEV)
1681 return 0;
1682 return rc;
1683 }
1684 rc = -EFAULT;
1685 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1686 return rc;
1687 /*
1688 * In fact, we should have cleared the record after that has
1689 * been flushed to the disk or sent to network in
1690 * /sbin/mcelog, but we have no interface to support that now,
1691 * so just clear it to avoid duplication.
1692 */
1693 rc = apei_clear_mce(record_id);
1694 if (rc) {
1695 mce_apei_read_done = 1;
1696 return rc;
1697 }
1698 *ubuf += sizeof(struct mce);
1699
1700 return 0;
1701 }
1702
1703 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1704 size_t usize, loff_t *off)
1705 {
1706 char __user *buf = ubuf;
1707 unsigned long *cpu_tsc;
1708 unsigned prev, next;
1709 int i, err;
1710
1711 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1712 if (!cpu_tsc)
1713 return -ENOMEM;
1714
1715 mutex_lock(&mce_chrdev_read_mutex);
1716
1717 if (!mce_apei_read_done) {
1718 err = __mce_read_apei(&buf, usize);
1719 if (err || buf != ubuf)
1720 goto out;
1721 }
1722
1723 next = rcu_dereference_check_mce(mcelog.next);
1724
1725 /* Only supports full reads right now */
1726 err = -EINVAL;
1727 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1728 goto out;
1729
1730 err = 0;
1731 prev = 0;
1732 do {
1733 for (i = prev; i < next; i++) {
1734 unsigned long start = jiffies;
1735 struct mce *m = &mcelog.entry[i];
1736
1737 while (!m->finished) {
1738 if (time_after_eq(jiffies, start + 2)) {
1739 memset(m, 0, sizeof(*m));
1740 goto timeout;
1741 }
1742 cpu_relax();
1743 }
1744 smp_rmb();
1745 err |= copy_to_user(buf, m, sizeof(*m));
1746 buf += sizeof(*m);
1747 timeout:
1748 ;
1749 }
1750
1751 memset(mcelog.entry + prev, 0,
1752 (next - prev) * sizeof(struct mce));
1753 prev = next;
1754 next = cmpxchg(&mcelog.next, prev, 0);
1755 } while (next != prev);
1756
1757 synchronize_sched();
1758
1759 /*
1760 * Collect entries that were still getting written before the
1761 * synchronize.
1762 */
1763 on_each_cpu(collect_tscs, cpu_tsc, 1);
1764
1765 for (i = next; i < MCE_LOG_LEN; i++) {
1766 struct mce *m = &mcelog.entry[i];
1767
1768 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1769 err |= copy_to_user(buf, m, sizeof(*m));
1770 smp_rmb();
1771 buf += sizeof(*m);
1772 memset(m, 0, sizeof(*m));
1773 }
1774 }
1775
1776 if (err)
1777 err = -EFAULT;
1778
1779 out:
1780 mutex_unlock(&mce_chrdev_read_mutex);
1781 kfree(cpu_tsc);
1782
1783 return err ? err : buf - ubuf;
1784 }
1785
1786 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1787 {
1788 poll_wait(file, &mce_chrdev_wait, wait);
1789 if (rcu_access_index(mcelog.next))
1790 return POLLIN | POLLRDNORM;
1791 if (!mce_apei_read_done && apei_check_mce())
1792 return POLLIN | POLLRDNORM;
1793 return 0;
1794 }
1795
1796 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1797 unsigned long arg)
1798 {
1799 int __user *p = (int __user *)arg;
1800
1801 if (!capable(CAP_SYS_ADMIN))
1802 return -EPERM;
1803
1804 switch (cmd) {
1805 case MCE_GET_RECORD_LEN:
1806 return put_user(sizeof(struct mce), p);
1807 case MCE_GET_LOG_LEN:
1808 return put_user(MCE_LOG_LEN, p);
1809 case MCE_GETCLEAR_FLAGS: {
1810 unsigned flags;
1811
1812 do {
1813 flags = mcelog.flags;
1814 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1815
1816 return put_user(flags, p);
1817 }
1818 default:
1819 return -ENOTTY;
1820 }
1821 }
1822
1823 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1824 size_t usize, loff_t *off);
1825
1826 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1827 const char __user *ubuf,
1828 size_t usize, loff_t *off))
1829 {
1830 mce_write = fn;
1831 }
1832 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1833
1834 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1835 size_t usize, loff_t *off)
1836 {
1837 if (mce_write)
1838 return mce_write(filp, ubuf, usize, off);
1839 else
1840 return -EINVAL;
1841 }
1842
1843 static const struct file_operations mce_chrdev_ops = {
1844 .open = mce_chrdev_open,
1845 .release = mce_chrdev_release,
1846 .read = mce_chrdev_read,
1847 .write = mce_chrdev_write,
1848 .poll = mce_chrdev_poll,
1849 .unlocked_ioctl = mce_chrdev_ioctl,
1850 .llseek = no_llseek,
1851 };
1852
1853 static struct miscdevice mce_chrdev_device = {
1854 MISC_MCELOG_MINOR,
1855 "mcelog",
1856 &mce_chrdev_ops,
1857 };
1858
1859 /*
1860 * mce=off Disables machine check
1861 * mce=no_cmci Disables CMCI
1862 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1863 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1864 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1865 * monarchtimeout is how long to wait for other CPUs on machine
1866 * check, or 0 to not wait
1867 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1868 * mce=nobootlog Don't log MCEs from before booting.
1869 */
1870 static int __init mcheck_enable(char *str)
1871 {
1872 if (*str == 0) {
1873 enable_p5_mce();
1874 return 1;
1875 }
1876 if (*str == '=')
1877 str++;
1878 if (!strcmp(str, "off"))
1879 mce_disabled = 1;
1880 else if (!strcmp(str, "no_cmci"))
1881 mce_cmci_disabled = 1;
1882 else if (!strcmp(str, "dont_log_ce"))
1883 mce_dont_log_ce = 1;
1884 else if (!strcmp(str, "ignore_ce"))
1885 mce_ignore_ce = 1;
1886 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1887 mce_bootlog = (str[0] == 'b');
1888 else if (isdigit(str[0])) {
1889 get_option(&str, &tolerant);
1890 if (*str == ',') {
1891 ++str;
1892 get_option(&str, &monarch_timeout);
1893 }
1894 } else {
1895 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1896 str);
1897 return 0;
1898 }
1899 return 1;
1900 }
1901 __setup("mce", mcheck_enable);
1902
1903 int __init mcheck_init(void)
1904 {
1905 mcheck_intel_therm_init();
1906
1907 return 0;
1908 }
1909
1910 /*
1911 * mce_syscore: PM support
1912 */
1913
1914 /*
1915 * Disable machine checks on suspend and shutdown. We can't really handle
1916 * them later.
1917 */
1918 static int mce_disable_error_reporting(void)
1919 {
1920 int i;
1921
1922 for (i = 0; i < banks; i++) {
1923 struct mce_bank *b = &mce_banks[i];
1924
1925 if (b->init)
1926 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1927 }
1928 return 0;
1929 }
1930
1931 static int mce_syscore_suspend(void)
1932 {
1933 return mce_disable_error_reporting();
1934 }
1935
1936 static void mce_syscore_shutdown(void)
1937 {
1938 mce_disable_error_reporting();
1939 }
1940
1941 /*
1942 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1943 * Only one CPU is active at this time, the others get re-added later using
1944 * CPU hotplug:
1945 */
1946 static void mce_syscore_resume(void)
1947 {
1948 __mcheck_cpu_init_generic();
1949 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1950 }
1951
1952 static struct syscore_ops mce_syscore_ops = {
1953 .suspend = mce_syscore_suspend,
1954 .shutdown = mce_syscore_shutdown,
1955 .resume = mce_syscore_resume,
1956 };
1957
1958 /*
1959 * mce_device: Sysfs support
1960 */
1961
1962 static void mce_cpu_restart(void *data)
1963 {
1964 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1965 return;
1966 __mcheck_cpu_init_generic();
1967 __mcheck_cpu_init_timer();
1968 }
1969
1970 /* Reinit MCEs after user configuration changes */
1971 static void mce_restart(void)
1972 {
1973 mce_timer_delete_all();
1974 on_each_cpu(mce_cpu_restart, NULL, 1);
1975 }
1976
1977 /* Toggle features for corrected errors */
1978 static void mce_disable_cmci(void *data)
1979 {
1980 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1981 return;
1982 cmci_clear();
1983 }
1984
1985 static void mce_enable_ce(void *all)
1986 {
1987 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1988 return;
1989 cmci_reenable();
1990 cmci_recheck();
1991 if (all)
1992 __mcheck_cpu_init_timer();
1993 }
1994
1995 static struct bus_type mce_subsys = {
1996 .name = "machinecheck",
1997 .dev_name = "machinecheck",
1998 };
1999
2000 DEFINE_PER_CPU(struct device *, mce_device);
2001
2002 __cpuinitdata
2003 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2004
2005 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2006 {
2007 return container_of(attr, struct mce_bank, attr);
2008 }
2009
2010 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2011 char *buf)
2012 {
2013 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2014 }
2015
2016 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2017 const char *buf, size_t size)
2018 {
2019 u64 new;
2020
2021 if (strict_strtoull(buf, 0, &new) < 0)
2022 return -EINVAL;
2023
2024 attr_to_bank(attr)->ctl = new;
2025 mce_restart();
2026
2027 return size;
2028 }
2029
2030 static ssize_t
2031 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2032 {
2033 strcpy(buf, mce_helper);
2034 strcat(buf, "\n");
2035 return strlen(mce_helper) + 1;
2036 }
2037
2038 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2039 const char *buf, size_t siz)
2040 {
2041 char *p;
2042
2043 strncpy(mce_helper, buf, sizeof(mce_helper));
2044 mce_helper[sizeof(mce_helper)-1] = 0;
2045 p = strchr(mce_helper, '\n');
2046
2047 if (p)
2048 *p = 0;
2049
2050 return strlen(mce_helper) + !!p;
2051 }
2052
2053 static ssize_t set_ignore_ce(struct device *s,
2054 struct device_attribute *attr,
2055 const char *buf, size_t size)
2056 {
2057 u64 new;
2058
2059 if (strict_strtoull(buf, 0, &new) < 0)
2060 return -EINVAL;
2061
2062 if (mce_ignore_ce ^ !!new) {
2063 if (new) {
2064 /* disable ce features */
2065 mce_timer_delete_all();
2066 on_each_cpu(mce_disable_cmci, NULL, 1);
2067 mce_ignore_ce = 1;
2068 } else {
2069 /* enable ce features */
2070 mce_ignore_ce = 0;
2071 on_each_cpu(mce_enable_ce, (void *)1, 1);
2072 }
2073 }
2074 return size;
2075 }
2076
2077 static ssize_t set_cmci_disabled(struct device *s,
2078 struct device_attribute *attr,
2079 const char *buf, size_t size)
2080 {
2081 u64 new;
2082
2083 if (strict_strtoull(buf, 0, &new) < 0)
2084 return -EINVAL;
2085
2086 if (mce_cmci_disabled ^ !!new) {
2087 if (new) {
2088 /* disable cmci */
2089 on_each_cpu(mce_disable_cmci, NULL, 1);
2090 mce_cmci_disabled = 1;
2091 } else {
2092 /* enable cmci */
2093 mce_cmci_disabled = 0;
2094 on_each_cpu(mce_enable_ce, NULL, 1);
2095 }
2096 }
2097 return size;
2098 }
2099
2100 static ssize_t store_int_with_restart(struct device *s,
2101 struct device_attribute *attr,
2102 const char *buf, size_t size)
2103 {
2104 ssize_t ret = device_store_int(s, attr, buf, size);
2105 mce_restart();
2106 return ret;
2107 }
2108
2109 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2110 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2111 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2112 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2113
2114 static struct dev_ext_attribute dev_attr_check_interval = {
2115 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2116 &check_interval
2117 };
2118
2119 static struct dev_ext_attribute dev_attr_ignore_ce = {
2120 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2121 &mce_ignore_ce
2122 };
2123
2124 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2125 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2126 &mce_cmci_disabled
2127 };
2128
2129 static struct device_attribute *mce_device_attrs[] = {
2130 &dev_attr_tolerant.attr,
2131 &dev_attr_check_interval.attr,
2132 &dev_attr_trigger,
2133 &dev_attr_monarch_timeout.attr,
2134 &dev_attr_dont_log_ce.attr,
2135 &dev_attr_ignore_ce.attr,
2136 &dev_attr_cmci_disabled.attr,
2137 NULL
2138 };
2139
2140 static cpumask_var_t mce_device_initialized;
2141
2142 static void mce_device_release(struct device *dev)
2143 {
2144 kfree(dev);
2145 }
2146
2147 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2148 static __cpuinit int mce_device_create(unsigned int cpu)
2149 {
2150 struct device *dev;
2151 int err;
2152 int i, j;
2153
2154 if (!mce_available(&boot_cpu_data))
2155 return -EIO;
2156
2157 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2158 if (!dev)
2159 return -ENOMEM;
2160 dev->id = cpu;
2161 dev->bus = &mce_subsys;
2162 dev->release = &mce_device_release;
2163
2164 err = device_register(dev);
2165 if (err)
2166 return err;
2167
2168 for (i = 0; mce_device_attrs[i]; i++) {
2169 err = device_create_file(dev, mce_device_attrs[i]);
2170 if (err)
2171 goto error;
2172 }
2173 for (j = 0; j < banks; j++) {
2174 err = device_create_file(dev, &mce_banks[j].attr);
2175 if (err)
2176 goto error2;
2177 }
2178 cpumask_set_cpu(cpu, mce_device_initialized);
2179 per_cpu(mce_device, cpu) = dev;
2180
2181 return 0;
2182 error2:
2183 while (--j >= 0)
2184 device_remove_file(dev, &mce_banks[j].attr);
2185 error:
2186 while (--i >= 0)
2187 device_remove_file(dev, mce_device_attrs[i]);
2188
2189 device_unregister(dev);
2190
2191 return err;
2192 }
2193
2194 static __cpuinit void mce_device_remove(unsigned int cpu)
2195 {
2196 struct device *dev = per_cpu(mce_device, cpu);
2197 int i;
2198
2199 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2200 return;
2201
2202 for (i = 0; mce_device_attrs[i]; i++)
2203 device_remove_file(dev, mce_device_attrs[i]);
2204
2205 for (i = 0; i < banks; i++)
2206 device_remove_file(dev, &mce_banks[i].attr);
2207
2208 device_unregister(dev);
2209 cpumask_clear_cpu(cpu, mce_device_initialized);
2210 per_cpu(mce_device, cpu) = NULL;
2211 }
2212
2213 /* Make sure there are no machine checks on offlined CPUs. */
2214 static void __cpuinit mce_disable_cpu(void *h)
2215 {
2216 unsigned long action = *(unsigned long *)h;
2217 int i;
2218
2219 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2220 return;
2221
2222 if (!(action & CPU_TASKS_FROZEN))
2223 cmci_clear();
2224 for (i = 0; i < banks; i++) {
2225 struct mce_bank *b = &mce_banks[i];
2226
2227 if (b->init)
2228 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2229 }
2230 }
2231
2232 static void __cpuinit mce_reenable_cpu(void *h)
2233 {
2234 unsigned long action = *(unsigned long *)h;
2235 int i;
2236
2237 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2238 return;
2239
2240 if (!(action & CPU_TASKS_FROZEN))
2241 cmci_reenable();
2242 for (i = 0; i < banks; i++) {
2243 struct mce_bank *b = &mce_banks[i];
2244
2245 if (b->init)
2246 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2247 }
2248 }
2249
2250 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2251 static int __cpuinit
2252 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2253 {
2254 unsigned int cpu = (unsigned long)hcpu;
2255 struct timer_list *t = &per_cpu(mce_timer, cpu);
2256
2257 switch (action) {
2258 case CPU_ONLINE:
2259 case CPU_ONLINE_FROZEN:
2260 mce_device_create(cpu);
2261 if (threshold_cpu_callback)
2262 threshold_cpu_callback(action, cpu);
2263 break;
2264 case CPU_DEAD:
2265 case CPU_DEAD_FROZEN:
2266 if (threshold_cpu_callback)
2267 threshold_cpu_callback(action, cpu);
2268 mce_device_remove(cpu);
2269 break;
2270 case CPU_DOWN_PREPARE:
2271 case CPU_DOWN_PREPARE_FROZEN:
2272 del_timer_sync(t);
2273 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2274 break;
2275 case CPU_DOWN_FAILED:
2276 case CPU_DOWN_FAILED_FROZEN:
2277 if (!mce_ignore_ce && check_interval) {
2278 t->expires = round_jiffies(jiffies +
2279 __get_cpu_var(mce_next_interval));
2280 add_timer_on(t, cpu);
2281 }
2282 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2283 break;
2284 case CPU_POST_DEAD:
2285 /* intentionally ignoring frozen here */
2286 cmci_rediscover(cpu);
2287 break;
2288 }
2289 return NOTIFY_OK;
2290 }
2291
2292 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2293 .notifier_call = mce_cpu_callback,
2294 };
2295
2296 static __init void mce_init_banks(void)
2297 {
2298 int i;
2299
2300 for (i = 0; i < banks; i++) {
2301 struct mce_bank *b = &mce_banks[i];
2302 struct device_attribute *a = &b->attr;
2303
2304 sysfs_attr_init(&a->attr);
2305 a->attr.name = b->attrname;
2306 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2307
2308 a->attr.mode = 0644;
2309 a->show = show_bank;
2310 a->store = set_bank;
2311 }
2312 }
2313
2314 static __init int mcheck_init_device(void)
2315 {
2316 int err;
2317 int i = 0;
2318
2319 if (!mce_available(&boot_cpu_data))
2320 return -EIO;
2321
2322 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2323
2324 mce_init_banks();
2325
2326 err = subsys_system_register(&mce_subsys, NULL);
2327 if (err)
2328 return err;
2329
2330 for_each_online_cpu(i) {
2331 err = mce_device_create(i);
2332 if (err)
2333 return err;
2334 }
2335
2336 register_syscore_ops(&mce_syscore_ops);
2337 register_hotcpu_notifier(&mce_cpu_notifier);
2338
2339 /* register character device /dev/mcelog */
2340 misc_register(&mce_chrdev_device);
2341
2342 return err;
2343 }
2344 device_initcall(mcheck_init_device);
2345
2346 /*
2347 * Old style boot options parsing. Only for compatibility.
2348 */
2349 static int __init mcheck_disable(char *str)
2350 {
2351 mce_disabled = 1;
2352 return 1;
2353 }
2354 __setup("nomce", mcheck_disable);
2355
2356 #ifdef CONFIG_DEBUG_FS
2357 struct dentry *mce_get_debugfs_dir(void)
2358 {
2359 static struct dentry *dmce;
2360
2361 if (!dmce)
2362 dmce = debugfs_create_dir("mce", NULL);
2363
2364 return dmce;
2365 }
2366
2367 static void mce_reset(void)
2368 {
2369 cpu_missing = 0;
2370 atomic_set(&mce_fake_paniced, 0);
2371 atomic_set(&mce_executing, 0);
2372 atomic_set(&mce_callin, 0);
2373 atomic_set(&global_nwo, 0);
2374 }
2375
2376 static int fake_panic_get(void *data, u64 *val)
2377 {
2378 *val = fake_panic;
2379 return 0;
2380 }
2381
2382 static int fake_panic_set(void *data, u64 val)
2383 {
2384 mce_reset();
2385 fake_panic = val;
2386 return 0;
2387 }
2388
2389 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2390 fake_panic_set, "%llu\n");
2391
2392 static int __init mcheck_debugfs_init(void)
2393 {
2394 struct dentry *dmce, *ffake_panic;
2395
2396 dmce = mce_get_debugfs_dir();
2397 if (!dmce)
2398 return -ENOMEM;
2399 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2400 &fake_panic_fops);
2401 if (!ffake_panic)
2402 return -ENOMEM;
2403
2404 return 0;
2405 }
2406 late_initcall(mcheck_debugfs_init);
2407 #endif