]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce_amd.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2 * (c) 2005-2016 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Written by Jacob Shin - AMD, Inc.
8 * Maintained by: Borislav Petkov <bp@alien8.de>
9 *
10 * All MC4_MISCi registers are shared between cores on a node.
11 */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/mce.h>
28 #include <asm/msr.h>
29 #include <asm/trace/irq_vectors.h>
30
31 #define NR_BLOCKS 5
32 #define THRESHOLD_MAX 0xFFF
33 #define INT_TYPE_APIC 0x00020000
34 #define MASK_VALID_HI 0x80000000
35 #define MASK_CNTP_HI 0x40000000
36 #define MASK_LOCKED_HI 0x20000000
37 #define MASK_LVTOFF_HI 0x00F00000
38 #define MASK_COUNT_EN_HI 0x00080000
39 #define MASK_INT_TYPE_HI 0x00060000
40 #define MASK_OVERFLOW_HI 0x00010000
41 #define MASK_ERR_COUNT_HI 0x00000FFF
42 #define MASK_BLKPTR_LO 0xFF000000
43 #define MCG_XBLK_ADDR 0xC0000400
44
45 /* Deferred error settings */
46 #define MSR_CU_DEF_ERR 0xC0000410
47 #define MASK_DEF_LVTOFF 0x000000F0
48 #define MASK_DEF_INT_TYPE 0x00000006
49 #define DEF_LVT_OFF 0x2
50 #define DEF_INT_TYPE_APIC 0x2
51
52 /* Scalable MCA: */
53
54 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
55 #define SMCA_THR_LVT_OFF 0xF000
56
57 static bool thresholding_en;
58
59 static const char * const th_names[] = {
60 "load_store",
61 "insn_fetch",
62 "combined_unit",
63 "decode_unit",
64 "northbridge",
65 "execution_unit",
66 };
67
68 static const char * const smca_umc_block_names[] = {
69 "dram_ecc",
70 "misc_umc"
71 };
72
73 struct smca_bank_name {
74 const char *name; /* Short name for sysfs */
75 const char *long_name; /* Long name for pretty-printing */
76 };
77
78 static struct smca_bank_name smca_names[] = {
79 [SMCA_LS] = { "load_store", "Load Store Unit" },
80 [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" },
81 [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" },
82 [SMCA_DE] = { "decode_unit", "Decode Unit" },
83 [SMCA_EX] = { "execution_unit", "Execution Unit" },
84 [SMCA_FP] = { "floating_point", "Floating Point Unit" },
85 [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" },
86 [SMCA_CS] = { "coherent_slave", "Coherent Slave" },
87 [SMCA_PIE] = { "pie", "Power, Interrupts, etc." },
88 [SMCA_UMC] = { "umc", "Unified Memory Controller" },
89 [SMCA_PB] = { "param_block", "Parameter Block" },
90 [SMCA_PSP] = { "psp", "Platform Security Processor" },
91 [SMCA_SMU] = { "smu", "System Management Unit" },
92 };
93
94 const char *smca_get_name(enum smca_bank_types t)
95 {
96 if (t >= N_SMCA_BANK_TYPES)
97 return NULL;
98
99 return smca_names[t].name;
100 }
101
102 const char *smca_get_long_name(enum smca_bank_types t)
103 {
104 if (t >= N_SMCA_BANK_TYPES)
105 return NULL;
106
107 return smca_names[t].long_name;
108 }
109 EXPORT_SYMBOL_GPL(smca_get_long_name);
110
111 static struct smca_hwid smca_hwid_mcatypes[] = {
112 /* { bank_type, hwid_mcatype, xec_bitmap } */
113
114 /* ZN Core (HWID=0xB0) MCA types */
115 { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
116 { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
117 { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
118 { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF },
119 /* HWID 0xB0 MCATYPE 0x4 is Reserved */
120 { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0x7FF },
121 { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F },
122 { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
123
124 /* Data Fabric MCA types */
125 { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF },
126 { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0xF },
127
128 /* Unified Memory Controller MCA type */
129 { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0x3F },
130
131 /* Parameter Block MCA type */
132 { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 },
133
134 /* Platform Security Processor MCA type */
135 { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 },
136
137 /* System Management Unit MCA type */
138 { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 },
139 };
140
141 struct smca_bank smca_banks[MAX_NR_BANKS];
142 EXPORT_SYMBOL_GPL(smca_banks);
143
144 /*
145 * In SMCA enabled processors, we can have multiple banks for a given IP type.
146 * So to define a unique name for each bank, we use a temp c-string to append
147 * the MCA_IPID[InstanceId] to type's name in get_name().
148 *
149 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
150 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
151 */
152 #define MAX_MCATYPE_NAME_LEN 30
153 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
154
155 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
156 static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */
157
158 static void amd_threshold_interrupt(void);
159 static void amd_deferred_error_interrupt(void);
160
161 static void default_deferred_error_interrupt(void)
162 {
163 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
164 }
165 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
166
167 static void smca_configure(unsigned int bank, unsigned int cpu)
168 {
169 unsigned int i, hwid_mcatype;
170 struct smca_hwid *s_hwid;
171 u32 high, low;
172 u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
173
174 /* Set appropriate bits in MCA_CONFIG */
175 if (!rdmsr_safe(smca_config, &low, &high)) {
176 /*
177 * OS is required to set the MCAX bit to acknowledge that it is
178 * now using the new MSR ranges and new registers under each
179 * bank. It also means that the OS will configure deferred
180 * errors in the new MCx_CONFIG register. If the bit is not set,
181 * uncorrectable errors will cause a system panic.
182 *
183 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
184 */
185 high |= BIT(0);
186
187 /*
188 * SMCA sets the Deferred Error Interrupt type per bank.
189 *
190 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
191 * if the DeferredIntType bit field is available.
192 *
193 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
194 * high portion of the MSR). OS should set this to 0x1 to enable
195 * APIC based interrupt. First, check that no interrupt has been
196 * set.
197 */
198 if ((low & BIT(5)) && !((high >> 5) & 0x3))
199 high |= BIT(5);
200
201 wrmsr(smca_config, low, high);
202 }
203
204 /* Return early if this bank was already initialized. */
205 if (smca_banks[bank].hwid)
206 return;
207
208 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
209 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
210 return;
211 }
212
213 hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
214 (high & MCI_IPID_MCATYPE) >> 16);
215
216 for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
217 s_hwid = &smca_hwid_mcatypes[i];
218 if (hwid_mcatype == s_hwid->hwid_mcatype) {
219 smca_banks[bank].hwid = s_hwid;
220 smca_banks[bank].id = low;
221 smca_banks[bank].sysfs_id = s_hwid->count++;
222 break;
223 }
224 }
225 }
226
227 struct thresh_restart {
228 struct threshold_block *b;
229 int reset;
230 int set_lvt_off;
231 int lvt_off;
232 u16 old_limit;
233 };
234
235 static inline bool is_shared_bank(int bank)
236 {
237 /*
238 * Scalable MCA provides for only one core to have access to the MSRs of
239 * a shared bank.
240 */
241 if (mce_flags.smca)
242 return false;
243
244 /* Bank 4 is for northbridge reporting and is thus shared */
245 return (bank == 4);
246 }
247
248 static const char *bank4_names(const struct threshold_block *b)
249 {
250 switch (b->address) {
251 /* MSR4_MISC0 */
252 case 0x00000413:
253 return "dram";
254
255 case 0xc0000408:
256 return "ht_links";
257
258 case 0xc0000409:
259 return "l3_cache";
260
261 default:
262 WARN(1, "Funny MSR: 0x%08x\n", b->address);
263 return "";
264 }
265 };
266
267
268 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
269 {
270 /*
271 * bank 4 supports APIC LVT interrupts implicitly since forever.
272 */
273 if (bank == 4)
274 return true;
275
276 /*
277 * IntP: interrupt present; if this bit is set, the thresholding
278 * bank can generate APIC LVT interrupts
279 */
280 return msr_high_bits & BIT(28);
281 }
282
283 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
284 {
285 int msr = (hi & MASK_LVTOFF_HI) >> 20;
286
287 if (apic < 0) {
288 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
289 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
290 b->bank, b->block, b->address, hi, lo);
291 return 0;
292 }
293
294 if (apic != msr) {
295 /*
296 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
297 * the BIOS provides the value. The original field where LVT offset
298 * was set is reserved. Return early here:
299 */
300 if (mce_flags.smca)
301 return 0;
302
303 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
304 "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
305 b->cpu, apic, b->bank, b->block, b->address, hi, lo);
306 return 0;
307 }
308
309 return 1;
310 };
311
312 /* Reprogram MCx_MISC MSR behind this threshold bank. */
313 static void threshold_restart_bank(void *_tr)
314 {
315 struct thresh_restart *tr = _tr;
316 u32 hi, lo;
317
318 rdmsr(tr->b->address, lo, hi);
319
320 if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
321 tr->reset = 1; /* limit cannot be lower than err count */
322
323 if (tr->reset) { /* reset err count and overflow bit */
324 hi =
325 (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
326 (THRESHOLD_MAX - tr->b->threshold_limit);
327 } else if (tr->old_limit) { /* change limit w/o reset */
328 int new_count = (hi & THRESHOLD_MAX) +
329 (tr->old_limit - tr->b->threshold_limit);
330
331 hi = (hi & ~MASK_ERR_COUNT_HI) |
332 (new_count & THRESHOLD_MAX);
333 }
334
335 /* clear IntType */
336 hi &= ~MASK_INT_TYPE_HI;
337
338 if (!tr->b->interrupt_capable)
339 goto done;
340
341 if (tr->set_lvt_off) {
342 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
343 /* set new lvt offset */
344 hi &= ~MASK_LVTOFF_HI;
345 hi |= tr->lvt_off << 20;
346 }
347 }
348
349 if (tr->b->interrupt_enable)
350 hi |= INT_TYPE_APIC;
351
352 done:
353
354 hi |= MASK_COUNT_EN_HI;
355 wrmsr(tr->b->address, lo, hi);
356 }
357
358 static void mce_threshold_block_init(struct threshold_block *b, int offset)
359 {
360 struct thresh_restart tr = {
361 .b = b,
362 .set_lvt_off = 1,
363 .lvt_off = offset,
364 };
365
366 b->threshold_limit = THRESHOLD_MAX;
367 threshold_restart_bank(&tr);
368 };
369
370 static int setup_APIC_mce_threshold(int reserved, int new)
371 {
372 if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
373 APIC_EILVT_MSG_FIX, 0))
374 return new;
375
376 return reserved;
377 }
378
379 static int setup_APIC_deferred_error(int reserved, int new)
380 {
381 if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
382 APIC_EILVT_MSG_FIX, 0))
383 return new;
384
385 return reserved;
386 }
387
388 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
389 {
390 u32 low = 0, high = 0;
391 int def_offset = -1, def_new;
392
393 if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
394 return;
395
396 def_new = (low & MASK_DEF_LVTOFF) >> 4;
397 if (!(low & MASK_DEF_LVTOFF)) {
398 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
399 def_new = DEF_LVT_OFF;
400 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
401 }
402
403 def_offset = setup_APIC_deferred_error(def_offset, def_new);
404 if ((def_offset == def_new) &&
405 (deferred_error_int_vector != amd_deferred_error_interrupt))
406 deferred_error_int_vector = amd_deferred_error_interrupt;
407
408 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
409 wrmsr(MSR_CU_DEF_ERR, low, high);
410 }
411
412 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
413 unsigned int bank, unsigned int block)
414 {
415 u32 addr = 0, offset = 0;
416
417 if (mce_flags.smca) {
418 if (!block) {
419 addr = MSR_AMD64_SMCA_MCx_MISC(bank);
420 } else {
421 /*
422 * For SMCA enabled processors, BLKPTR field of the
423 * first MISC register (MCx_MISC0) indicates presence of
424 * additional MISC register set (MISC1-4).
425 */
426 u32 low, high;
427
428 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
429 return addr;
430
431 if (!(low & MCI_CONFIG_MCAX))
432 return addr;
433
434 if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
435 (low & MASK_BLKPTR_LO))
436 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
437 }
438 return addr;
439 }
440
441 /* Fall back to method we used for older processors: */
442 switch (block) {
443 case 0:
444 addr = msr_ops.misc(bank);
445 break;
446 case 1:
447 offset = ((low & MASK_BLKPTR_LO) >> 21);
448 if (offset)
449 addr = MCG_XBLK_ADDR + offset;
450 break;
451 default:
452 addr = ++current_addr;
453 }
454 return addr;
455 }
456
457 static int
458 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
459 int offset, u32 misc_high)
460 {
461 unsigned int cpu = smp_processor_id();
462 u32 smca_low, smca_high;
463 struct threshold_block b;
464 int new;
465
466 if (!block)
467 per_cpu(bank_map, cpu) |= (1 << bank);
468
469 memset(&b, 0, sizeof(b));
470 b.cpu = cpu;
471 b.bank = bank;
472 b.block = block;
473 b.address = addr;
474 b.interrupt_capable = lvt_interrupt_supported(bank, misc_high);
475
476 if (!b.interrupt_capable)
477 goto done;
478
479 b.interrupt_enable = 1;
480
481 if (!mce_flags.smca) {
482 new = (misc_high & MASK_LVTOFF_HI) >> 20;
483 goto set_offset;
484 }
485
486 /* Gather LVT offset for thresholding: */
487 if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
488 goto out;
489
490 new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
491
492 set_offset:
493 offset = setup_APIC_mce_threshold(offset, new);
494
495 if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
496 mce_threshold_vector = amd_threshold_interrupt;
497
498 done:
499 mce_threshold_block_init(&b, offset);
500
501 out:
502 return offset;
503 }
504
505 /* cpu init entry point, called from mce.c with preempt off */
506 void mce_amd_feature_init(struct cpuinfo_x86 *c)
507 {
508 u32 low = 0, high = 0, address = 0;
509 unsigned int bank, block, cpu = smp_processor_id();
510 int offset = -1;
511
512 for (bank = 0; bank < mca_cfg.banks; ++bank) {
513 if (mce_flags.smca)
514 smca_configure(bank, cpu);
515
516 for (block = 0; block < NR_BLOCKS; ++block) {
517 address = get_block_address(cpu, address, low, high, bank, block);
518 if (!address)
519 break;
520
521 if (rdmsr_safe(address, &low, &high))
522 break;
523
524 if (!(high & MASK_VALID_HI))
525 continue;
526
527 if (!(high & MASK_CNTP_HI) ||
528 (high & MASK_LOCKED_HI))
529 continue;
530
531 offset = prepare_threshold_block(bank, block, address, offset, high);
532 }
533 }
534
535 if (mce_flags.succor)
536 deferred_error_interrupt_enable(c);
537 }
538
539 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
540 {
541 u64 dram_base_addr, dram_limit_addr, dram_hole_base;
542 /* We start from the normalized address */
543 u64 ret_addr = norm_addr;
544
545 u32 tmp;
546
547 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
548 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
549 u8 intlv_addr_sel, intlv_addr_bit;
550 u8 num_intlv_bits, hashed_bit;
551 u8 lgcy_mmio_hole_en, base = 0;
552 u8 cs_mask, cs_id = 0;
553 bool hash_enabled = false;
554
555 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
556 if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
557 goto out_err;
558
559 /* Remove HiAddrOffset from normalized address, if enabled: */
560 if (tmp & BIT(0)) {
561 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
562
563 if (norm_addr >= hi_addr_offset) {
564 ret_addr -= hi_addr_offset;
565 base = 1;
566 }
567 }
568
569 /* Read D18F0x110 (DramBaseAddress). */
570 if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
571 goto out_err;
572
573 /* Check if address range is valid. */
574 if (!(tmp & BIT(0))) {
575 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
576 __func__, tmp);
577 goto out_err;
578 }
579
580 lgcy_mmio_hole_en = tmp & BIT(1);
581 intlv_num_chan = (tmp >> 4) & 0xF;
582 intlv_addr_sel = (tmp >> 8) & 0x7;
583 dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
584
585 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
586 if (intlv_addr_sel > 3) {
587 pr_err("%s: Invalid interleave address select %d.\n",
588 __func__, intlv_addr_sel);
589 goto out_err;
590 }
591
592 /* Read D18F0x114 (DramLimitAddress). */
593 if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
594 goto out_err;
595
596 intlv_num_sockets = (tmp >> 8) & 0x1;
597 intlv_num_dies = (tmp >> 10) & 0x3;
598 dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
599
600 intlv_addr_bit = intlv_addr_sel + 8;
601
602 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
603 switch (intlv_num_chan) {
604 case 0: intlv_num_chan = 0; break;
605 case 1: intlv_num_chan = 1; break;
606 case 3: intlv_num_chan = 2; break;
607 case 5: intlv_num_chan = 3; break;
608 case 7: intlv_num_chan = 4; break;
609
610 case 8: intlv_num_chan = 1;
611 hash_enabled = true;
612 break;
613 default:
614 pr_err("%s: Invalid number of interleaved channels %d.\n",
615 __func__, intlv_num_chan);
616 goto out_err;
617 }
618
619 num_intlv_bits = intlv_num_chan;
620
621 if (intlv_num_dies > 2) {
622 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
623 __func__, intlv_num_dies);
624 goto out_err;
625 }
626
627 num_intlv_bits += intlv_num_dies;
628
629 /* Add a bit if sockets are interleaved. */
630 num_intlv_bits += intlv_num_sockets;
631
632 /* Assert num_intlv_bits <= 4 */
633 if (num_intlv_bits > 4) {
634 pr_err("%s: Invalid interleave bits %d.\n",
635 __func__, num_intlv_bits);
636 goto out_err;
637 }
638
639 if (num_intlv_bits > 0) {
640 u64 temp_addr_x, temp_addr_i, temp_addr_y;
641 u8 die_id_bit, sock_id_bit, cs_fabric_id;
642
643 /*
644 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
645 * This is the fabric id for this coherent slave. Use
646 * umc/channel# as instance id of the coherent slave
647 * for FICAA.
648 */
649 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
650 goto out_err;
651
652 cs_fabric_id = (tmp >> 8) & 0xFF;
653 die_id_bit = 0;
654
655 /* If interleaved over more than 1 channel: */
656 if (intlv_num_chan) {
657 die_id_bit = intlv_num_chan;
658 cs_mask = (1 << die_id_bit) - 1;
659 cs_id = cs_fabric_id & cs_mask;
660 }
661
662 sock_id_bit = die_id_bit;
663
664 /* Read D18F1x208 (SystemFabricIdMask). */
665 if (intlv_num_dies || intlv_num_sockets)
666 if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
667 goto out_err;
668
669 /* If interleaved over more than 1 die. */
670 if (intlv_num_dies) {
671 sock_id_bit = die_id_bit + intlv_num_dies;
672 die_id_shift = (tmp >> 24) & 0xF;
673 die_id_mask = (tmp >> 8) & 0xFF;
674
675 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
676 }
677
678 /* If interleaved over more than 1 socket. */
679 if (intlv_num_sockets) {
680 socket_id_shift = (tmp >> 28) & 0xF;
681 socket_id_mask = (tmp >> 16) & 0xFF;
682
683 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
684 }
685
686 /*
687 * The pre-interleaved address consists of XXXXXXIIIYYYYY
688 * where III is the ID for this CS, and XXXXXXYYYYY are the
689 * address bits from the post-interleaved address.
690 * "num_intlv_bits" has been calculated to tell us how many "I"
691 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
692 * there are (where "I" starts).
693 */
694 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
695 temp_addr_i = (cs_id << intlv_addr_bit);
696 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
697 ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
698 }
699
700 /* Add dram base address */
701 ret_addr += dram_base_addr;
702
703 /* If legacy MMIO hole enabled */
704 if (lgcy_mmio_hole_en) {
705 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
706 goto out_err;
707
708 dram_hole_base = tmp & GENMASK(31, 24);
709 if (ret_addr >= dram_hole_base)
710 ret_addr += (BIT_ULL(32) - dram_hole_base);
711 }
712
713 if (hash_enabled) {
714 /* Save some parentheses and grab ls-bit at the end. */
715 hashed_bit = (ret_addr >> 12) ^
716 (ret_addr >> 18) ^
717 (ret_addr >> 21) ^
718 (ret_addr >> 30) ^
719 cs_id;
720
721 hashed_bit &= BIT(0);
722
723 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
724 ret_addr ^= BIT(intlv_addr_bit);
725 }
726
727 /* Is calculated system address is above DRAM limit address? */
728 if (ret_addr > dram_limit_addr)
729 goto out_err;
730
731 *sys_addr = ret_addr;
732 return 0;
733
734 out_err:
735 return -EINVAL;
736 }
737 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
738
739 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
740 {
741 struct mce m;
742
743 mce_setup(&m);
744
745 m.status = status;
746 m.misc = misc;
747 m.bank = bank;
748 m.tsc = rdtsc();
749
750 if (m.status & MCI_STATUS_ADDRV) {
751 m.addr = addr;
752
753 /*
754 * Extract [55:<lsb>] where lsb is the least significant
755 * *valid* bit of the address bits.
756 */
757 if (mce_flags.smca) {
758 u8 lsb = (m.addr >> 56) & 0x3f;
759
760 m.addr &= GENMASK_ULL(55, lsb);
761 }
762 }
763
764 if (mce_flags.smca) {
765 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
766
767 if (m.status & MCI_STATUS_SYNDV)
768 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
769 }
770
771 mce_log(&m);
772 }
773
774 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void)
775 {
776 entering_irq();
777 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
778 inc_irq_stat(irq_deferred_error_count);
779 deferred_error_int_vector();
780 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
781 exiting_ack_irq();
782 }
783
784 /*
785 * Returns true if the logged error is deferred. False, otherwise.
786 */
787 static inline bool
788 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
789 {
790 u64 status, addr = 0;
791
792 rdmsrl(msr_stat, status);
793 if (!(status & MCI_STATUS_VAL))
794 return false;
795
796 if (status & MCI_STATUS_ADDRV)
797 rdmsrl(msr_addr, addr);
798
799 __log_error(bank, status, addr, misc);
800
801 wrmsrl(msr_stat, 0);
802
803 return status & MCI_STATUS_DEFERRED;
804 }
805
806 /*
807 * We have three scenarios for checking for Deferred errors:
808 *
809 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
810 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
811 * clear MCA_DESTAT.
812 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
813 * log it.
814 */
815 static void log_error_deferred(unsigned int bank)
816 {
817 bool defrd;
818
819 defrd = _log_error_bank(bank, msr_ops.status(bank),
820 msr_ops.addr(bank), 0);
821
822 if (!mce_flags.smca)
823 return;
824
825 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
826 if (defrd) {
827 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
828 return;
829 }
830
831 /*
832 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
833 * for a valid error.
834 */
835 _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
836 MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
837 }
838
839 /* APIC interrupt handler for deferred errors */
840 static void amd_deferred_error_interrupt(void)
841 {
842 unsigned int bank;
843
844 for (bank = 0; bank < mca_cfg.banks; ++bank)
845 log_error_deferred(bank);
846 }
847
848 static void log_error_thresholding(unsigned int bank, u64 misc)
849 {
850 _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
851 }
852
853 static void log_and_reset_block(struct threshold_block *block)
854 {
855 struct thresh_restart tr;
856 u32 low = 0, high = 0;
857
858 if (!block)
859 return;
860
861 if (rdmsr_safe(block->address, &low, &high))
862 return;
863
864 if (!(high & MASK_OVERFLOW_HI))
865 return;
866
867 /* Log the MCE which caused the threshold event. */
868 log_error_thresholding(block->bank, ((u64)high << 32) | low);
869
870 /* Reset threshold block after logging error. */
871 memset(&tr, 0, sizeof(tr));
872 tr.b = block;
873 threshold_restart_bank(&tr);
874 }
875
876 /*
877 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
878 * goes off when error_count reaches threshold_limit.
879 */
880 static void amd_threshold_interrupt(void)
881 {
882 struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
883 unsigned int bank, cpu = smp_processor_id();
884
885 for (bank = 0; bank < mca_cfg.banks; ++bank) {
886 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
887 continue;
888
889 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
890 if (!first_block)
891 continue;
892
893 /*
894 * The first block is also the head of the list. Check it first
895 * before iterating over the rest.
896 */
897 log_and_reset_block(first_block);
898 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
899 log_and_reset_block(block);
900 }
901 }
902
903 /*
904 * Sysfs Interface
905 */
906
907 struct threshold_attr {
908 struct attribute attr;
909 ssize_t (*show) (struct threshold_block *, char *);
910 ssize_t (*store) (struct threshold_block *, const char *, size_t count);
911 };
912
913 #define SHOW_FIELDS(name) \
914 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
915 { \
916 return sprintf(buf, "%lu\n", (unsigned long) b->name); \
917 }
918 SHOW_FIELDS(interrupt_enable)
919 SHOW_FIELDS(threshold_limit)
920
921 static ssize_t
922 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
923 {
924 struct thresh_restart tr;
925 unsigned long new;
926
927 if (!b->interrupt_capable)
928 return -EINVAL;
929
930 if (kstrtoul(buf, 0, &new) < 0)
931 return -EINVAL;
932
933 b->interrupt_enable = !!new;
934
935 memset(&tr, 0, sizeof(tr));
936 tr.b = b;
937
938 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
939
940 return size;
941 }
942
943 static ssize_t
944 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
945 {
946 struct thresh_restart tr;
947 unsigned long new;
948
949 if (kstrtoul(buf, 0, &new) < 0)
950 return -EINVAL;
951
952 if (new > THRESHOLD_MAX)
953 new = THRESHOLD_MAX;
954 if (new < 1)
955 new = 1;
956
957 memset(&tr, 0, sizeof(tr));
958 tr.old_limit = b->threshold_limit;
959 b->threshold_limit = new;
960 tr.b = b;
961
962 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
963
964 return size;
965 }
966
967 static ssize_t show_error_count(struct threshold_block *b, char *buf)
968 {
969 u32 lo, hi;
970
971 rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
972
973 return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
974 (THRESHOLD_MAX - b->threshold_limit)));
975 }
976
977 static struct threshold_attr error_count = {
978 .attr = {.name = __stringify(error_count), .mode = 0444 },
979 .show = show_error_count,
980 };
981
982 #define RW_ATTR(val) \
983 static struct threshold_attr val = { \
984 .attr = {.name = __stringify(val), .mode = 0644 }, \
985 .show = show_## val, \
986 .store = store_## val, \
987 };
988
989 RW_ATTR(interrupt_enable);
990 RW_ATTR(threshold_limit);
991
992 static struct attribute *default_attrs[] = {
993 &threshold_limit.attr,
994 &error_count.attr,
995 NULL, /* possibly interrupt_enable if supported, see below */
996 NULL,
997 };
998
999 #define to_block(k) container_of(k, struct threshold_block, kobj)
1000 #define to_attr(a) container_of(a, struct threshold_attr, attr)
1001
1002 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1003 {
1004 struct threshold_block *b = to_block(kobj);
1005 struct threshold_attr *a = to_attr(attr);
1006 ssize_t ret;
1007
1008 ret = a->show ? a->show(b, buf) : -EIO;
1009
1010 return ret;
1011 }
1012
1013 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1014 const char *buf, size_t count)
1015 {
1016 struct threshold_block *b = to_block(kobj);
1017 struct threshold_attr *a = to_attr(attr);
1018 ssize_t ret;
1019
1020 ret = a->store ? a->store(b, buf, count) : -EIO;
1021
1022 return ret;
1023 }
1024
1025 static const struct sysfs_ops threshold_ops = {
1026 .show = show,
1027 .store = store,
1028 };
1029
1030 static struct kobj_type threshold_ktype = {
1031 .sysfs_ops = &threshold_ops,
1032 .default_attrs = default_attrs,
1033 };
1034
1035 static const char *get_name(unsigned int bank, struct threshold_block *b)
1036 {
1037 unsigned int bank_type;
1038
1039 if (!mce_flags.smca) {
1040 if (b && bank == 4)
1041 return bank4_names(b);
1042
1043 return th_names[bank];
1044 }
1045
1046 if (!smca_banks[bank].hwid)
1047 return NULL;
1048
1049 bank_type = smca_banks[bank].hwid->bank_type;
1050
1051 if (b && bank_type == SMCA_UMC) {
1052 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1053 return smca_umc_block_names[b->block];
1054 return NULL;
1055 }
1056
1057 if (smca_banks[bank].hwid->count == 1)
1058 return smca_get_name(bank_type);
1059
1060 snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1061 "%s_%x", smca_get_name(bank_type),
1062 smca_banks[bank].sysfs_id);
1063 return buf_mcatype;
1064 }
1065
1066 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1067 unsigned int block, u32 address)
1068 {
1069 struct threshold_block *b = NULL;
1070 u32 low, high;
1071 int err;
1072
1073 if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1074 return 0;
1075
1076 if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1077 return 0;
1078
1079 if (!(high & MASK_VALID_HI)) {
1080 if (block)
1081 goto recurse;
1082 else
1083 return 0;
1084 }
1085
1086 if (!(high & MASK_CNTP_HI) ||
1087 (high & MASK_LOCKED_HI))
1088 goto recurse;
1089
1090 b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1091 if (!b)
1092 return -ENOMEM;
1093
1094 b->block = block;
1095 b->bank = bank;
1096 b->cpu = cpu;
1097 b->address = address;
1098 b->interrupt_enable = 0;
1099 b->interrupt_capable = lvt_interrupt_supported(bank, high);
1100 b->threshold_limit = THRESHOLD_MAX;
1101
1102 if (b->interrupt_capable) {
1103 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1104 b->interrupt_enable = 1;
1105 } else {
1106 threshold_ktype.default_attrs[2] = NULL;
1107 }
1108
1109 INIT_LIST_HEAD(&b->miscj);
1110
1111 if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1112 list_add(&b->miscj,
1113 &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1114 } else {
1115 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1116 }
1117
1118 err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1119 per_cpu(threshold_banks, cpu)[bank]->kobj,
1120 get_name(bank, b));
1121 if (err)
1122 goto out_free;
1123 recurse:
1124 address = get_block_address(cpu, address, low, high, bank, ++block);
1125 if (!address)
1126 return 0;
1127
1128 err = allocate_threshold_blocks(cpu, bank, block, address);
1129 if (err)
1130 goto out_free;
1131
1132 if (b)
1133 kobject_uevent(&b->kobj, KOBJ_ADD);
1134
1135 return err;
1136
1137 out_free:
1138 if (b) {
1139 kobject_put(&b->kobj);
1140 list_del(&b->miscj);
1141 kfree(b);
1142 }
1143 return err;
1144 }
1145
1146 static int __threshold_add_blocks(struct threshold_bank *b)
1147 {
1148 struct list_head *head = &b->blocks->miscj;
1149 struct threshold_block *pos = NULL;
1150 struct threshold_block *tmp = NULL;
1151 int err = 0;
1152
1153 err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1154 if (err)
1155 return err;
1156
1157 list_for_each_entry_safe(pos, tmp, head, miscj) {
1158
1159 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1160 if (err) {
1161 list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1162 kobject_del(&pos->kobj);
1163
1164 return err;
1165 }
1166 }
1167 return err;
1168 }
1169
1170 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1171 {
1172 struct device *dev = per_cpu(mce_device, cpu);
1173 struct amd_northbridge *nb = NULL;
1174 struct threshold_bank *b = NULL;
1175 const char *name = get_name(bank, NULL);
1176 int err = 0;
1177
1178 if (!dev)
1179 return -ENODEV;
1180
1181 if (is_shared_bank(bank)) {
1182 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1183
1184 /* threshold descriptor already initialized on this node? */
1185 if (nb && nb->bank4) {
1186 /* yes, use it */
1187 b = nb->bank4;
1188 err = kobject_add(b->kobj, &dev->kobj, name);
1189 if (err)
1190 goto out;
1191
1192 per_cpu(threshold_banks, cpu)[bank] = b;
1193 refcount_inc(&b->cpus);
1194
1195 err = __threshold_add_blocks(b);
1196
1197 goto out;
1198 }
1199 }
1200
1201 b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1202 if (!b) {
1203 err = -ENOMEM;
1204 goto out;
1205 }
1206
1207 b->kobj = kobject_create_and_add(name, &dev->kobj);
1208 if (!b->kobj) {
1209 err = -EINVAL;
1210 goto out_free;
1211 }
1212
1213 per_cpu(threshold_banks, cpu)[bank] = b;
1214
1215 if (is_shared_bank(bank)) {
1216 refcount_set(&b->cpus, 1);
1217
1218 /* nb is already initialized, see above */
1219 if (nb) {
1220 WARN_ON(nb->bank4);
1221 nb->bank4 = b;
1222 }
1223 }
1224
1225 err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1226 if (!err)
1227 goto out;
1228
1229 out_free:
1230 kfree(b);
1231
1232 out:
1233 return err;
1234 }
1235
1236 static void deallocate_threshold_block(unsigned int cpu,
1237 unsigned int bank)
1238 {
1239 struct threshold_block *pos = NULL;
1240 struct threshold_block *tmp = NULL;
1241 struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1242
1243 if (!head)
1244 return;
1245
1246 list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1247 kobject_put(&pos->kobj);
1248 list_del(&pos->miscj);
1249 kfree(pos);
1250 }
1251
1252 kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1253 per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1254 }
1255
1256 static void __threshold_remove_blocks(struct threshold_bank *b)
1257 {
1258 struct threshold_block *pos = NULL;
1259 struct threshold_block *tmp = NULL;
1260
1261 kobject_del(b->kobj);
1262
1263 list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1264 kobject_del(&pos->kobj);
1265 }
1266
1267 static void threshold_remove_bank(unsigned int cpu, int bank)
1268 {
1269 struct amd_northbridge *nb;
1270 struct threshold_bank *b;
1271
1272 b = per_cpu(threshold_banks, cpu)[bank];
1273 if (!b)
1274 return;
1275
1276 if (!b->blocks)
1277 goto free_out;
1278
1279 if (is_shared_bank(bank)) {
1280 if (!refcount_dec_and_test(&b->cpus)) {
1281 __threshold_remove_blocks(b);
1282 per_cpu(threshold_banks, cpu)[bank] = NULL;
1283 return;
1284 } else {
1285 /*
1286 * the last CPU on this node using the shared bank is
1287 * going away, remove that bank now.
1288 */
1289 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1290 nb->bank4 = NULL;
1291 }
1292 }
1293
1294 deallocate_threshold_block(cpu, bank);
1295
1296 free_out:
1297 kobject_del(b->kobj);
1298 kobject_put(b->kobj);
1299 kfree(b);
1300 per_cpu(threshold_banks, cpu)[bank] = NULL;
1301 }
1302
1303 int mce_threshold_remove_device(unsigned int cpu)
1304 {
1305 unsigned int bank;
1306
1307 if (!thresholding_en)
1308 return 0;
1309
1310 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1311 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1312 continue;
1313 threshold_remove_bank(cpu, bank);
1314 }
1315 kfree(per_cpu(threshold_banks, cpu));
1316 per_cpu(threshold_banks, cpu) = NULL;
1317 return 0;
1318 }
1319
1320 /* create dir/files for all valid threshold banks */
1321 int mce_threshold_create_device(unsigned int cpu)
1322 {
1323 unsigned int bank;
1324 struct threshold_bank **bp;
1325 int err = 0;
1326
1327 if (!thresholding_en)
1328 return 0;
1329
1330 bp = per_cpu(threshold_banks, cpu);
1331 if (bp)
1332 return 0;
1333
1334 bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1335 GFP_KERNEL);
1336 if (!bp)
1337 return -ENOMEM;
1338
1339 per_cpu(threshold_banks, cpu) = bp;
1340
1341 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1342 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1343 continue;
1344 err = threshold_create_bank(cpu, bank);
1345 if (err)
1346 goto err;
1347 }
1348 return err;
1349 err:
1350 mce_threshold_remove_device(cpu);
1351 return err;
1352 }
1353
1354 static __init int threshold_init_device(void)
1355 {
1356 unsigned lcpu = 0;
1357
1358 if (mce_threshold_vector == amd_threshold_interrupt)
1359 thresholding_en = true;
1360
1361 /* to hit CPUs online before the notifier is up */
1362 for_each_online_cpu(lcpu) {
1363 int err = mce_threshold_create_device(lcpu);
1364
1365 if (err)
1366 return err;
1367 }
1368
1369 return 0;
1370 }
1371 /*
1372 * there are 3 funcs which need to be _initcalled in a logic sequence:
1373 * 1. xen_late_init_mcelog
1374 * 2. mcheck_init_device
1375 * 3. threshold_init_device
1376 *
1377 * xen_late_init_mcelog must register xen_mce_chrdev_device before
1378 * native mce_chrdev_device registration if running under xen platform;
1379 *
1380 * mcheck_init_device should be inited before threshold_init_device to
1381 * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1382 *
1383 * so we use following _initcalls
1384 * 1. device_initcall(xen_late_init_mcelog);
1385 * 2. device_initcall_sync(mcheck_init_device);
1386 * 3. late_initcall(threshold_init_device);
1387 *
1388 * when running under xen, the initcall order is 1,2,3;
1389 * on baremetal, we skip 1 and we do only 2 and 3.
1390 */
1391 late_initcall(threshold_init_device);