]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/cpu/microcode/amd.c
6a31e2691f3aa0ac68620459c371ca42912c4475
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / cpu / microcode / amd.c
1 /*
2 * AMD CPU Microcode Update Driver for Linux
3 *
4 * This driver allows to upgrade microcode on F10h AMD
5 * CPUs and later.
6 *
7 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8 * 2013-2016 Borislav Petkov <bp@alien8.de>
9 *
10 * Author: Peter Oruba <peter.oruba@amd.com>
11 *
12 * Based on work by:
13 * Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
14 *
15 * early loader:
16 * Copyright (C) 2013 Advanced Micro Devices, Inc.
17 *
18 * Author: Jacob Shin <jacob.shin@amd.com>
19 * Fixes: Borislav Petkov <bp@suse.de>
20 *
21 * Licensed under the terms of the GNU General Public
22 * License version 2. See file COPYING for details.
23 */
24 #define pr_fmt(fmt) "microcode: " fmt
25
26 #include <linux/earlycpio.h>
27 #include <linux/firmware.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <linux/initrd.h>
31 #include <linux/kernel.h>
32 #include <linux/pci.h>
33
34 #include <asm/microcode_amd.h>
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/setup.h>
38 #include <asm/cpu.h>
39 #include <asm/msr.h>
40
41 static struct equiv_cpu_entry *equiv_cpu_table;
42
43 /*
44 * This points to the current valid container of microcode patches which we will
45 * save from the initrd/builtin before jettisoning its contents.
46 */
47 struct container {
48 u8 *data;
49 size_t size;
50 } cont;
51
52 static u32 ucode_new_rev;
53 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
54 static u16 this_equiv_id;
55
56 /*
57 * Microcode patch container file is prepended to the initrd in cpio
58 * format. See Documentation/x86/early-microcode.txt
59 */
60 static const char
61 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
62
63 static size_t compute_container_size(u8 *data, u32 total_size)
64 {
65 size_t size = 0;
66 u32 *header = (u32 *)data;
67
68 if (header[0] != UCODE_MAGIC ||
69 header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
70 header[2] == 0) /* size */
71 return size;
72
73 size = header[2] + CONTAINER_HDR_SZ;
74 total_size -= size;
75 data += size;
76
77 while (total_size) {
78 u16 patch_size;
79
80 header = (u32 *)data;
81
82 if (header[0] != UCODE_UCODE_TYPE)
83 break;
84
85 /*
86 * Sanity-check patch size.
87 */
88 patch_size = header[1];
89 if (patch_size > PATCH_MAX_SIZE)
90 break;
91
92 size += patch_size + SECTION_HDR_SIZE;
93 data += patch_size + SECTION_HDR_SIZE;
94 total_size -= patch_size + SECTION_HDR_SIZE;
95 }
96
97 return size;
98 }
99
100 static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
101 unsigned int sig)
102 {
103 int i = 0;
104
105 if (!equiv_cpu_table)
106 return 0;
107
108 while (equiv_cpu_table[i].installed_cpu != 0) {
109 if (sig == equiv_cpu_table[i].installed_cpu)
110 return equiv_cpu_table[i].equiv_cpu;
111
112 i++;
113 }
114 return 0;
115 }
116
117 /*
118 * This scans the ucode blob for the proper container as we can have multiple
119 * containers glued together. Returns the equivalence ID from the equivalence
120 * table or 0 if none found.
121 */
122 static u16
123 find_proper_container(u8 *ucode, size_t size, struct container *ret_cont)
124 {
125 struct container ret = { NULL, 0 };
126 u32 eax, ebx, ecx, edx;
127 struct equiv_cpu_entry *eq;
128 int offset, left;
129 u16 eq_id = 0;
130 u32 *header;
131 u8 *data;
132
133 data = ucode;
134 left = size;
135 header = (u32 *)data;
136
137
138 /* find equiv cpu table */
139 if (header[0] != UCODE_MAGIC ||
140 header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
141 header[2] == 0) /* size */
142 return eq_id;
143
144 eax = 0x00000001;
145 ecx = 0;
146 native_cpuid(&eax, &ebx, &ecx, &edx);
147
148 while (left > 0) {
149 eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
150
151 ret.data = data;
152
153 /* Advance past the container header */
154 offset = header[2] + CONTAINER_HDR_SZ;
155 data += offset;
156 left -= offset;
157
158 eq_id = find_equiv_id(eq, eax);
159 if (eq_id) {
160 ret.size = compute_container_size(ret.data, left + offset);
161
162 /*
163 * truncate how much we need to iterate over in the
164 * ucode update loop below
165 */
166 left = ret.size - offset;
167
168 *ret_cont = ret;
169 return eq_id;
170 }
171
172 /*
173 * support multiple container files appended together. if this
174 * one does not have a matching equivalent cpu entry, we fast
175 * forward to the next container file.
176 */
177 while (left > 0) {
178 header = (u32 *)data;
179
180 if (header[0] == UCODE_MAGIC &&
181 header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
182 break;
183
184 offset = header[1] + SECTION_HDR_SIZE;
185 data += offset;
186 left -= offset;
187 }
188
189 /* mark where the next microcode container file starts */
190 offset = data - (u8 *)ucode;
191 ucode = data;
192 }
193
194 return eq_id;
195 }
196
197 static int __apply_microcode_amd(struct microcode_amd *mc_amd)
198 {
199 u32 rev, dummy;
200
201 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
202
203 /* verify patch application was successful */
204 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
205 if (rev != mc_amd->hdr.patch_id)
206 return -1;
207
208 return 0;
209 }
210
211 /*
212 * Early load occurs before we can vmalloc(). So we look for the microcode
213 * patch container file in initrd, traverse equivalent cpu table, look for a
214 * matching microcode patch, and update, all in initrd memory in place.
215 * When vmalloc() is available for use later -- on 64-bit during first AP load,
216 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
217 * load_microcode_amd() to save equivalent cpu table and microcode patches in
218 * kernel heap memory.
219 *
220 * Returns true if container found (sets @ret_cont), false otherwise.
221 */
222 static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch,
223 struct container *ret_cont)
224 {
225 u8 (*patch)[PATCH_MAX_SIZE];
226 u32 rev, *header, *new_rev;
227 struct container ret;
228 int offset, left;
229 u16 eq_id = 0;
230 u8 *data;
231
232 #ifdef CONFIG_X86_32
233 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
234 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
235 #else
236 new_rev = &ucode_new_rev;
237 patch = &amd_ucode_patch;
238 #endif
239
240 if (check_current_patch_level(&rev, true))
241 return false;
242
243 eq_id = find_proper_container(ucode, size, &ret);
244 if (!eq_id)
245 return false;
246
247 this_equiv_id = eq_id;
248 header = (u32 *)ret.data;
249
250 /* We're pointing to an equiv table, skip over it. */
251 data = ret.data + header[2] + CONTAINER_HDR_SZ;
252 left = ret.size - (header[2] + CONTAINER_HDR_SZ);
253
254 while (left > 0) {
255 struct microcode_amd *mc;
256
257 header = (u32 *)data;
258 if (header[0] != UCODE_UCODE_TYPE || /* type */
259 header[1] == 0) /* size */
260 break;
261
262 mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
263
264 if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
265
266 if (!__apply_microcode_amd(mc)) {
267 rev = mc->hdr.patch_id;
268 *new_rev = rev;
269
270 if (save_patch)
271 memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE));
272 }
273 }
274
275 offset = header[1] + SECTION_HDR_SIZE;
276 data += offset;
277 left -= offset;
278 }
279
280 if (ret_cont)
281 *ret_cont = ret;
282
283 return true;
284 }
285
286 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
287 {
288 #ifdef CONFIG_X86_64
289 char fw_name[36] = "amd-ucode/microcode_amd.bin";
290
291 if (family >= 0x15)
292 snprintf(fw_name, sizeof(fw_name),
293 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
294
295 return get_builtin_firmware(cp, fw_name);
296 #else
297 return false;
298 #endif
299 }
300
301 void __init load_ucode_amd_bsp(unsigned int family)
302 {
303 struct ucode_cpu_info *uci;
304 u32 eax, ebx, ecx, edx;
305 struct cpio_data cp;
306 const char *path;
307 bool use_pa;
308
309 if (IS_ENABLED(CONFIG_X86_32)) {
310 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
311 path = (const char *)__pa_nodebug(ucode_path);
312 use_pa = true;
313 } else {
314 uci = ucode_cpu_info;
315 path = ucode_path;
316 use_pa = false;
317 }
318
319 if (!get_builtin_microcode(&cp, family))
320 cp = find_microcode_in_initrd(path, use_pa);
321
322 if (!(cp.data && cp.size))
323 return;
324
325 /* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
326 eax = 1;
327 ecx = 0;
328 native_cpuid(&eax, &ebx, &ecx, &edx);
329 uci->cpu_sig.sig = eax;
330
331 apply_microcode_early_amd(cp.data, cp.size, true, NULL);
332 }
333
334 #ifdef CONFIG_X86_32
335 /*
336 * On 32-bit, since AP's early load occurs before paging is turned on, we
337 * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
338 * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
339 * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
340 * which is used upon resume from suspend.
341 */
342 void load_ucode_amd_ap(unsigned int family)
343 {
344 struct microcode_amd *mc;
345 struct cpio_data cp;
346
347 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
348 if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
349 __apply_microcode_amd(mc);
350 return;
351 }
352
353 if (!get_builtin_microcode(&cp, family))
354 cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
355
356 if (!(cp.data && cp.size))
357 return;
358
359 /*
360 * This would set amd_ucode_patch above so that the following APs can
361 * use it directly instead of going down this path again.
362 */
363 apply_microcode_early_amd(cp.data, cp.size, true, NULL);
364 }
365 #else
366 void load_ucode_amd_ap(unsigned int family)
367 {
368 struct equiv_cpu_entry *eq;
369 struct microcode_amd *mc;
370 u32 rev, eax;
371 u16 eq_id;
372
373 /* 64-bit runs with paging enabled, thus early==false. */
374 if (check_current_patch_level(&rev, false))
375 return;
376
377 /* First AP hasn't cached it yet, go through the blob. */
378 if (!cont.data) {
379 struct cpio_data cp = { NULL, 0, "" };
380
381 if (cont.size == -1)
382 return;
383
384 reget:
385 if (!get_builtin_microcode(&cp, family)) {
386 #ifdef CONFIG_BLK_DEV_INITRD
387 cp = find_cpio_data(ucode_path, (void *)initrd_start,
388 initrd_end - initrd_start, NULL);
389 #endif
390 if (!(cp.data && cp.size)) {
391 /*
392 * Mark it so that other APs do not scan again
393 * for no real reason and slow down boot
394 * needlessly.
395 */
396 cont.size = -1;
397 return;
398 }
399 }
400
401 if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) {
402 cont.size = -1;
403 return;
404 }
405 }
406
407 eax = cpuid_eax(0x00000001);
408 eq = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ);
409
410 eq_id = find_equiv_id(eq, eax);
411 if (!eq_id)
412 return;
413
414 if (eq_id == this_equiv_id) {
415 mc = (struct microcode_amd *)amd_ucode_patch;
416
417 if (mc && rev < mc->hdr.patch_id) {
418 if (!__apply_microcode_amd(mc))
419 ucode_new_rev = mc->hdr.patch_id;
420 }
421
422 } else {
423
424 /*
425 * AP has a different equivalence ID than BSP, looks like
426 * mixed-steppings silicon so go through the ucode blob anew.
427 */
428 goto reget;
429 }
430 }
431 #endif /* CONFIG_X86_32 */
432
433 static enum ucode_state
434 load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);
435
436 int __init save_microcode_in_initrd_amd(unsigned int fam)
437 {
438 enum ucode_state ret;
439 int retval = 0;
440 u16 eq_id;
441
442 if (!cont.data) {
443 if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
444 struct cpio_data cp = { NULL, 0, "" };
445
446 #ifdef CONFIG_BLK_DEV_INITRD
447 cp = find_cpio_data(ucode_path, (void *)initrd_start,
448 initrd_end - initrd_start, NULL);
449 #endif
450
451 if (!(cp.data && cp.size)) {
452 cont.size = -1;
453 return -EINVAL;
454 }
455
456 eq_id = find_proper_container(cp.data, cp.size, &cont);
457 if (!eq_id) {
458 cont.size = -1;
459 return -EINVAL;
460 }
461
462 } else
463 return -EINVAL;
464 }
465
466 ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size);
467 if (ret != UCODE_OK)
468 retval = -EINVAL;
469
470 /*
471 * This will be freed any msec now, stash patches for the current
472 * family and switch to patch cache for cpu hotplug, etc later.
473 */
474 cont.data = NULL;
475 cont.size = 0;
476
477 return retval;
478 }
479
480 void reload_ucode_amd(void)
481 {
482 struct microcode_amd *mc;
483 u32 rev;
484
485 /*
486 * early==false because this is a syscore ->resume path and by
487 * that time paging is long enabled.
488 */
489 if (check_current_patch_level(&rev, false))
490 return;
491
492 mc = (struct microcode_amd *)amd_ucode_patch;
493 if (!mc)
494 return;
495
496 if (rev < mc->hdr.patch_id) {
497 if (!__apply_microcode_amd(mc)) {
498 ucode_new_rev = mc->hdr.patch_id;
499 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
500 }
501 }
502 }
503 static u16 __find_equiv_id(unsigned int cpu)
504 {
505 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
506 return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
507 }
508
509 static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
510 {
511 int i = 0;
512
513 BUG_ON(!equiv_cpu_table);
514
515 while (equiv_cpu_table[i].equiv_cpu != 0) {
516 if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
517 return equiv_cpu_table[i].installed_cpu;
518 i++;
519 }
520 return 0;
521 }
522
523 /*
524 * a small, trivial cache of per-family ucode patches
525 */
526 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
527 {
528 struct ucode_patch *p;
529
530 list_for_each_entry(p, &microcode_cache, plist)
531 if (p->equiv_cpu == equiv_cpu)
532 return p;
533 return NULL;
534 }
535
536 static void update_cache(struct ucode_patch *new_patch)
537 {
538 struct ucode_patch *p;
539
540 list_for_each_entry(p, &microcode_cache, plist) {
541 if (p->equiv_cpu == new_patch->equiv_cpu) {
542 if (p->patch_id >= new_patch->patch_id)
543 /* we already have the latest patch */
544 return;
545
546 list_replace(&p->plist, &new_patch->plist);
547 kfree(p->data);
548 kfree(p);
549 return;
550 }
551 }
552 /* no patch found, add it */
553 list_add_tail(&new_patch->plist, &microcode_cache);
554 }
555
556 static void free_cache(void)
557 {
558 struct ucode_patch *p, *tmp;
559
560 list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
561 __list_del(p->plist.prev, p->plist.next);
562 kfree(p->data);
563 kfree(p);
564 }
565 }
566
567 static struct ucode_patch *find_patch(unsigned int cpu)
568 {
569 u16 equiv_id;
570
571 equiv_id = __find_equiv_id(cpu);
572 if (!equiv_id)
573 return NULL;
574
575 return cache_find_patch(equiv_id);
576 }
577
578 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
579 {
580 struct cpuinfo_x86 *c = &cpu_data(cpu);
581 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
582 struct ucode_patch *p;
583
584 csig->sig = cpuid_eax(0x00000001);
585 csig->rev = c->microcode;
586
587 /*
588 * a patch could have been loaded early, set uci->mc so that
589 * mc_bp_resume() can call apply_microcode()
590 */
591 p = find_patch(cpu);
592 if (p && (p->patch_id == csig->rev))
593 uci->mc = p->data;
594
595 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
596
597 return 0;
598 }
599
600 static unsigned int verify_patch_size(u8 family, u32 patch_size,
601 unsigned int size)
602 {
603 u32 max_size;
604
605 #define F1XH_MPB_MAX_SIZE 2048
606 #define F14H_MPB_MAX_SIZE 1824
607 #define F15H_MPB_MAX_SIZE 4096
608 #define F16H_MPB_MAX_SIZE 3458
609
610 switch (family) {
611 case 0x14:
612 max_size = F14H_MPB_MAX_SIZE;
613 break;
614 case 0x15:
615 max_size = F15H_MPB_MAX_SIZE;
616 break;
617 case 0x16:
618 max_size = F16H_MPB_MAX_SIZE;
619 break;
620 default:
621 max_size = F1XH_MPB_MAX_SIZE;
622 break;
623 }
624
625 if (patch_size > min_t(u32, size, max_size)) {
626 pr_err("patch size mismatch\n");
627 return 0;
628 }
629
630 return patch_size;
631 }
632
633 /*
634 * Those patch levels cannot be updated to newer ones and thus should be final.
635 */
636 static u32 final_levels[] = {
637 0x01000098,
638 0x0100009f,
639 0x010000af,
640 0, /* T-101 terminator */
641 };
642
643 /*
644 * Check the current patch level on this CPU.
645 *
646 * @rev: Use it to return the patch level. It is set to 0 in the case of
647 * error.
648 *
649 * Returns:
650 * - true: if update should stop
651 * - false: otherwise
652 */
653 bool check_current_patch_level(u32 *rev, bool early)
654 {
655 u32 lvl, dummy, i;
656 bool ret = false;
657 u32 *levels;
658
659 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
660
661 if (IS_ENABLED(CONFIG_X86_32) && early)
662 levels = (u32 *)__pa_nodebug(&final_levels);
663 else
664 levels = final_levels;
665
666 for (i = 0; levels[i]; i++) {
667 if (lvl == levels[i]) {
668 lvl = 0;
669 ret = true;
670 break;
671 }
672 }
673
674 if (rev)
675 *rev = lvl;
676
677 return ret;
678 }
679
680 static int apply_microcode_amd(int cpu)
681 {
682 struct cpuinfo_x86 *c = &cpu_data(cpu);
683 struct microcode_amd *mc_amd;
684 struct ucode_cpu_info *uci;
685 struct ucode_patch *p;
686 u32 rev;
687
688 BUG_ON(raw_smp_processor_id() != cpu);
689
690 uci = ucode_cpu_info + cpu;
691
692 p = find_patch(cpu);
693 if (!p)
694 return 0;
695
696 mc_amd = p->data;
697 uci->mc = p->data;
698
699 if (check_current_patch_level(&rev, false))
700 return -1;
701
702 /* need to apply patch? */
703 if (rev >= mc_amd->hdr.patch_id) {
704 c->microcode = rev;
705 uci->cpu_sig.rev = rev;
706 return 0;
707 }
708
709 if (__apply_microcode_amd(mc_amd)) {
710 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
711 cpu, mc_amd->hdr.patch_id);
712 return -1;
713 }
714 pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
715 mc_amd->hdr.patch_id);
716
717 uci->cpu_sig.rev = mc_amd->hdr.patch_id;
718 c->microcode = mc_amd->hdr.patch_id;
719
720 return 0;
721 }
722
723 static int install_equiv_cpu_table(const u8 *buf)
724 {
725 unsigned int *ibuf = (unsigned int *)buf;
726 unsigned int type = ibuf[1];
727 unsigned int size = ibuf[2];
728
729 if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
730 pr_err("empty section/"
731 "invalid type field in container file section header\n");
732 return -EINVAL;
733 }
734
735 equiv_cpu_table = vmalloc(size);
736 if (!equiv_cpu_table) {
737 pr_err("failed to allocate equivalent CPU table\n");
738 return -ENOMEM;
739 }
740
741 memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
742
743 /* add header length */
744 return size + CONTAINER_HDR_SZ;
745 }
746
747 static void free_equiv_cpu_table(void)
748 {
749 vfree(equiv_cpu_table);
750 equiv_cpu_table = NULL;
751 }
752
753 static void cleanup(void)
754 {
755 free_equiv_cpu_table();
756 free_cache();
757 }
758
759 /*
760 * We return the current size even if some of the checks failed so that
761 * we can skip over the next patch. If we return a negative value, we
762 * signal a grave error like a memory allocation has failed and the
763 * driver cannot continue functioning normally. In such cases, we tear
764 * down everything we've used up so far and exit.
765 */
766 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
767 {
768 struct microcode_header_amd *mc_hdr;
769 struct ucode_patch *patch;
770 unsigned int patch_size, crnt_size, ret;
771 u32 proc_fam;
772 u16 proc_id;
773
774 patch_size = *(u32 *)(fw + 4);
775 crnt_size = patch_size + SECTION_HDR_SIZE;
776 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
777 proc_id = mc_hdr->processor_rev_id;
778
779 proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
780 if (!proc_fam) {
781 pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
782 return crnt_size;
783 }
784
785 /* check if patch is for the current family */
786 proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
787 if (proc_fam != family)
788 return crnt_size;
789
790 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
791 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
792 mc_hdr->patch_id);
793 return crnt_size;
794 }
795
796 ret = verify_patch_size(family, patch_size, leftover);
797 if (!ret) {
798 pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
799 return crnt_size;
800 }
801
802 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
803 if (!patch) {
804 pr_err("Patch allocation failure.\n");
805 return -EINVAL;
806 }
807
808 patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
809 if (!patch->data) {
810 pr_err("Patch data allocation failure.\n");
811 kfree(patch);
812 return -EINVAL;
813 }
814
815 INIT_LIST_HEAD(&patch->plist);
816 patch->patch_id = mc_hdr->patch_id;
817 patch->equiv_cpu = proc_id;
818
819 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
820 __func__, patch->patch_id, proc_id);
821
822 /* ... and add to cache. */
823 update_cache(patch);
824
825 return crnt_size;
826 }
827
828 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
829 size_t size)
830 {
831 enum ucode_state ret = UCODE_ERROR;
832 unsigned int leftover;
833 u8 *fw = (u8 *)data;
834 int crnt_size = 0;
835 int offset;
836
837 offset = install_equiv_cpu_table(data);
838 if (offset < 0) {
839 pr_err("failed to create equivalent cpu table\n");
840 return ret;
841 }
842 fw += offset;
843 leftover = size - offset;
844
845 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
846 pr_err("invalid type field in container file section header\n");
847 free_equiv_cpu_table();
848 return ret;
849 }
850
851 while (leftover) {
852 crnt_size = verify_and_add_patch(family, fw, leftover);
853 if (crnt_size < 0)
854 return ret;
855
856 fw += crnt_size;
857 leftover -= crnt_size;
858 }
859
860 return UCODE_OK;
861 }
862
863 static enum ucode_state
864 load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
865 {
866 enum ucode_state ret;
867
868 /* free old equiv table */
869 free_equiv_cpu_table();
870
871 ret = __load_microcode_amd(family, data, size);
872
873 if (ret != UCODE_OK)
874 cleanup();
875
876 #ifdef CONFIG_X86_32
877 /* save BSP's matching patch for early load */
878 if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
879 struct ucode_patch *p = find_patch(cpu);
880 if (p) {
881 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
882 memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
883 PATCH_MAX_SIZE));
884 }
885 }
886 #endif
887 return ret;
888 }
889
890 /*
891 * AMD microcode firmware naming convention, up to family 15h they are in
892 * the legacy file:
893 *
894 * amd-ucode/microcode_amd.bin
895 *
896 * This legacy file is always smaller than 2K in size.
897 *
898 * Beginning with family 15h, they are in family-specific firmware files:
899 *
900 * amd-ucode/microcode_amd_fam15h.bin
901 * amd-ucode/microcode_amd_fam16h.bin
902 * ...
903 *
904 * These might be larger than 2K.
905 */
906 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
907 bool refresh_fw)
908 {
909 char fw_name[36] = "amd-ucode/microcode_amd.bin";
910 struct cpuinfo_x86 *c = &cpu_data(cpu);
911 enum ucode_state ret = UCODE_NFOUND;
912 const struct firmware *fw;
913
914 /* reload ucode container only on the boot cpu */
915 if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
916 return UCODE_OK;
917
918 if (c->x86 >= 0x15)
919 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
920
921 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
922 pr_debug("failed to load file %s\n", fw_name);
923 goto out;
924 }
925
926 ret = UCODE_ERROR;
927 if (*(u32 *)fw->data != UCODE_MAGIC) {
928 pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
929 goto fw_release;
930 }
931
932 ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
933
934 fw_release:
935 release_firmware(fw);
936
937 out:
938 return ret;
939 }
940
941 static enum ucode_state
942 request_microcode_user(int cpu, const void __user *buf, size_t size)
943 {
944 return UCODE_ERROR;
945 }
946
947 static void microcode_fini_cpu_amd(int cpu)
948 {
949 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
950
951 uci->mc = NULL;
952 }
953
954 static struct microcode_ops microcode_amd_ops = {
955 .request_microcode_user = request_microcode_user,
956 .request_microcode_fw = request_microcode_amd,
957 .collect_cpu_info = collect_cpu_info_amd,
958 .apply_microcode = apply_microcode_amd,
959 .microcode_fini_cpu = microcode_fini_cpu_amd,
960 };
961
962 struct microcode_ops * __init init_amd_microcode(void)
963 {
964 struct cpuinfo_x86 *c = &boot_cpu_data;
965
966 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
967 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
968 return NULL;
969 }
970
971 if (ucode_new_rev)
972 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
973 ucode_new_rev);
974
975 return &microcode_amd_ops;
976 }
977
978 void __exit exit_amd_microcode(void)
979 {
980 cleanup();
981 }