]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/x86/kernel/cpu/microcode/amd.c
Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / arch / x86 / kernel / cpu / microcode / amd.c
1 /*
2 * AMD CPU Microcode Update Driver for Linux
3 *
4 * This driver allows to upgrade microcode on F10h AMD
5 * CPUs and later.
6 *
7 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8 * 2013-2018 Borislav Petkov <bp@alien8.de>
9 *
10 * Author: Peter Oruba <peter.oruba@amd.com>
11 *
12 * Based on work by:
13 * Tigran Aivazian <aivazian.tigran@gmail.com>
14 *
15 * early loader:
16 * Copyright (C) 2013 Advanced Micro Devices, Inc.
17 *
18 * Author: Jacob Shin <jacob.shin@amd.com>
19 * Fixes: Borislav Petkov <bp@suse.de>
20 *
21 * Licensed under the terms of the GNU General Public
22 * License version 2. See file COPYING for details.
23 */
24 #define pr_fmt(fmt) "microcode: " fmt
25
26 #include <linux/earlycpio.h>
27 #include <linux/firmware.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <linux/initrd.h>
31 #include <linux/kernel.h>
32 #include <linux/pci.h>
33
34 #include <asm/microcode_amd.h>
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/setup.h>
38 #include <asm/cpu.h>
39 #include <asm/msr.h>
40
41 static struct equiv_cpu_table {
42 unsigned int num_entries;
43 struct equiv_cpu_entry *entry;
44 } equiv_table;
45
46 /*
47 * This points to the current valid container of microcode patches which we will
48 * save from the initrd/builtin before jettisoning its contents. @mc is the
49 * microcode patch we found to match.
50 */
51 struct cont_desc {
52 struct microcode_amd *mc;
53 u32 cpuid_1_eax;
54 u32 psize;
55 u8 *data;
56 size_t size;
57 };
58
59 static u32 ucode_new_rev;
60 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
61
62 /*
63 * Microcode patch container file is prepended to the initrd in cpio
64 * format. See Documentation/x86/microcode.txt
65 */
66 static const char
67 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
68
69 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
70 {
71 unsigned int i;
72
73 if (!et || !et->num_entries)
74 return 0;
75
76 for (i = 0; i < et->num_entries; i++) {
77 struct equiv_cpu_entry *e = &et->entry[i];
78
79 if (sig == e->installed_cpu)
80 return e->equiv_cpu;
81
82 e++;
83 }
84 return 0;
85 }
86
87 /*
88 * Check whether there is a valid microcode container file at the beginning
89 * of @buf of size @buf_size. Set @early to use this function in the early path.
90 */
91 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
92 {
93 u32 cont_magic;
94
95 if (buf_size <= CONTAINER_HDR_SZ) {
96 if (!early)
97 pr_debug("Truncated microcode container header.\n");
98
99 return false;
100 }
101
102 cont_magic = *(const u32 *)buf;
103 if (cont_magic != UCODE_MAGIC) {
104 if (!early)
105 pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
106
107 return false;
108 }
109
110 return true;
111 }
112
113 /*
114 * Check whether there is a valid, non-truncated CPU equivalence table at the
115 * beginning of @buf of size @buf_size. Set @early to use this function in the
116 * early path.
117 */
118 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
119 {
120 const u32 *hdr = (const u32 *)buf;
121 u32 cont_type, equiv_tbl_len;
122
123 if (!verify_container(buf, buf_size, early))
124 return false;
125
126 cont_type = hdr[1];
127 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
128 if (!early)
129 pr_debug("Wrong microcode container equivalence table type: %u.\n",
130 cont_type);
131
132 return false;
133 }
134
135 buf_size -= CONTAINER_HDR_SZ;
136
137 equiv_tbl_len = hdr[2];
138 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
139 buf_size < equiv_tbl_len) {
140 if (!early)
141 pr_debug("Truncated equivalence table.\n");
142
143 return false;
144 }
145
146 return true;
147 }
148
149 /*
150 * Check whether there is a valid, non-truncated microcode patch section at the
151 * beginning of @buf of size @buf_size. Set @early to use this function in the
152 * early path.
153 *
154 * On success, @sh_psize returns the patch size according to the section header,
155 * to the caller.
156 */
157 static bool
158 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
159 {
160 u32 p_type, p_size;
161 const u32 *hdr;
162
163 if (buf_size < SECTION_HDR_SIZE) {
164 if (!early)
165 pr_debug("Truncated patch section.\n");
166
167 return false;
168 }
169
170 hdr = (const u32 *)buf;
171 p_type = hdr[0];
172 p_size = hdr[1];
173
174 if (p_type != UCODE_UCODE_TYPE) {
175 if (!early)
176 pr_debug("Invalid type field (0x%x) in container file section header.\n",
177 p_type);
178
179 return false;
180 }
181
182 if (p_size < sizeof(struct microcode_header_amd)) {
183 if (!early)
184 pr_debug("Patch of size %u too short.\n", p_size);
185
186 return false;
187 }
188
189 *sh_psize = p_size;
190
191 return true;
192 }
193
194 /*
195 * Check whether the passed remaining file @buf_size is large enough to contain
196 * a patch of the indicated @sh_psize (and also whether this size does not
197 * exceed the per-family maximum). @sh_psize is the size read from the section
198 * header.
199 */
200 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
201 {
202 u32 max_size;
203
204 if (family >= 0x15)
205 return min_t(u32, sh_psize, buf_size);
206
207 #define F1XH_MPB_MAX_SIZE 2048
208 #define F14H_MPB_MAX_SIZE 1824
209
210 switch (family) {
211 case 0x10 ... 0x12:
212 max_size = F1XH_MPB_MAX_SIZE;
213 break;
214 case 0x14:
215 max_size = F14H_MPB_MAX_SIZE;
216 break;
217 default:
218 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
219 return 0;
220 break;
221 }
222
223 if (sh_psize > min_t(u32, buf_size, max_size))
224 return 0;
225
226 return sh_psize;
227 }
228
229 /*
230 * Verify the patch in @buf.
231 *
232 * Returns:
233 * negative: on error
234 * positive: patch is not for this family, skip it
235 * 0: success
236 */
237 static int
238 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
239 {
240 struct microcode_header_amd *mc_hdr;
241 unsigned int ret;
242 u32 sh_psize;
243 u16 proc_id;
244 u8 patch_fam;
245
246 if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
247 return -1;
248
249 /*
250 * The section header length is not included in this indicated size
251 * but is present in the leftover file length so we need to subtract
252 * it before passing this value to the function below.
253 */
254 buf_size -= SECTION_HDR_SIZE;
255
256 /*
257 * Check if the remaining buffer is big enough to contain a patch of
258 * size sh_psize, as the section claims.
259 */
260 if (buf_size < sh_psize) {
261 if (!early)
262 pr_debug("Patch of size %u truncated.\n", sh_psize);
263
264 return -1;
265 }
266
267 ret = __verify_patch_size(family, sh_psize, buf_size);
268 if (!ret) {
269 if (!early)
270 pr_debug("Per-family patch size mismatch.\n");
271 return -1;
272 }
273
274 *patch_size = sh_psize;
275
276 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
277 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
278 if (!early)
279 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
280 return -1;
281 }
282
283 proc_id = mc_hdr->processor_rev_id;
284 patch_fam = 0xf + (proc_id >> 12);
285 if (patch_fam != family)
286 return 1;
287
288 return 0;
289 }
290
291 /*
292 * This scans the ucode blob for the proper container as we can have multiple
293 * containers glued together. Returns the equivalence ID from the equivalence
294 * table or 0 if none found.
295 * Returns the amount of bytes consumed while scanning. @desc contains all the
296 * data we're going to use in later stages of the application.
297 */
298 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
299 {
300 struct equiv_cpu_table table;
301 size_t orig_size = size;
302 u32 *hdr = (u32 *)ucode;
303 u16 eq_id;
304 u8 *buf;
305
306 if (!verify_equivalence_table(ucode, size, true))
307 return 0;
308
309 buf = ucode;
310
311 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
312 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
313
314 /*
315 * Find the equivalence ID of our CPU in this table. Even if this table
316 * doesn't contain a patch for the CPU, scan through the whole container
317 * so that it can be skipped in case there are other containers appended.
318 */
319 eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
320
321 buf += hdr[2] + CONTAINER_HDR_SZ;
322 size -= hdr[2] + CONTAINER_HDR_SZ;
323
324 /*
325 * Scan through the rest of the container to find where it ends. We do
326 * some basic sanity-checking too.
327 */
328 while (size > 0) {
329 struct microcode_amd *mc;
330 u32 patch_size;
331 int ret;
332
333 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
334 if (ret < 0) {
335 /*
336 * Patch verification failed, skip to the next
337 * container, if there's one:
338 */
339 goto out;
340 } else if (ret > 0) {
341 goto skip;
342 }
343
344 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
345 if (eq_id == mc->hdr.processor_rev_id) {
346 desc->psize = patch_size;
347 desc->mc = mc;
348 }
349
350 skip:
351 /* Skip patch section header too: */
352 buf += patch_size + SECTION_HDR_SIZE;
353 size -= patch_size + SECTION_HDR_SIZE;
354 }
355
356 /*
357 * If we have found a patch (desc->mc), it means we're looking at the
358 * container which has a patch for this CPU so return 0 to mean, @ucode
359 * already points to the proper container. Otherwise, we return the size
360 * we scanned so that we can advance to the next container in the
361 * buffer.
362 */
363 if (desc->mc) {
364 desc->data = ucode;
365 desc->size = orig_size - size;
366
367 return 0;
368 }
369
370 out:
371 return orig_size - size;
372 }
373
374 /*
375 * Scan the ucode blob for the proper container as we can have multiple
376 * containers glued together.
377 */
378 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
379 {
380 while (size) {
381 size_t s = parse_container(ucode, size, desc);
382 if (!s)
383 return;
384
385 /* catch wraparound */
386 if (size >= s) {
387 ucode += s;
388 size -= s;
389 } else {
390 return;
391 }
392 }
393 }
394
395 static int __apply_microcode_amd(struct microcode_amd *mc)
396 {
397 u32 rev, dummy;
398
399 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
400
401 /* verify patch application was successful */
402 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
403 if (rev != mc->hdr.patch_id)
404 return -1;
405
406 return 0;
407 }
408
409 /*
410 * Early load occurs before we can vmalloc(). So we look for the microcode
411 * patch container file in initrd, traverse equivalent cpu table, look for a
412 * matching microcode patch, and update, all in initrd memory in place.
413 * When vmalloc() is available for use later -- on 64-bit during first AP load,
414 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
415 * load_microcode_amd() to save equivalent cpu table and microcode patches in
416 * kernel heap memory.
417 *
418 * Returns true if container found (sets @desc), false otherwise.
419 */
420 static bool
421 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
422 {
423 struct cont_desc desc = { 0 };
424 u8 (*patch)[PATCH_MAX_SIZE];
425 struct microcode_amd *mc;
426 u32 rev, dummy, *new_rev;
427 bool ret = false;
428
429 #ifdef CONFIG_X86_32
430 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
431 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
432 #else
433 new_rev = &ucode_new_rev;
434 patch = &amd_ucode_patch;
435 #endif
436
437 desc.cpuid_1_eax = cpuid_1_eax;
438
439 scan_containers(ucode, size, &desc);
440
441 mc = desc.mc;
442 if (!mc)
443 return ret;
444
445 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
446 if (rev >= mc->hdr.patch_id)
447 return ret;
448
449 if (!__apply_microcode_amd(mc)) {
450 *new_rev = mc->hdr.patch_id;
451 ret = true;
452
453 if (save_patch)
454 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
455 }
456
457 return ret;
458 }
459
460 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
461 {
462 #ifdef CONFIG_X86_64
463 char fw_name[36] = "amd-ucode/microcode_amd.bin";
464
465 if (family >= 0x15)
466 snprintf(fw_name, sizeof(fw_name),
467 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
468
469 return get_builtin_firmware(cp, fw_name);
470 #else
471 return false;
472 #endif
473 }
474
475 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
476 {
477 struct ucode_cpu_info *uci;
478 struct cpio_data cp;
479 const char *path;
480 bool use_pa;
481
482 if (IS_ENABLED(CONFIG_X86_32)) {
483 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
484 path = (const char *)__pa_nodebug(ucode_path);
485 use_pa = true;
486 } else {
487 uci = ucode_cpu_info;
488 path = ucode_path;
489 use_pa = false;
490 }
491
492 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
493 cp = find_microcode_in_initrd(path, use_pa);
494
495 /* Needed in load_microcode_amd() */
496 uci->cpu_sig.sig = cpuid_1_eax;
497
498 *ret = cp;
499 }
500
501 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
502 {
503 struct cpio_data cp = { };
504
505 __load_ucode_amd(cpuid_1_eax, &cp);
506 if (!(cp.data && cp.size))
507 return;
508
509 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
510 }
511
512 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
513 {
514 struct microcode_amd *mc;
515 struct cpio_data cp;
516 u32 *new_rev, rev, dummy;
517
518 if (IS_ENABLED(CONFIG_X86_32)) {
519 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
520 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
521 } else {
522 mc = (struct microcode_amd *)amd_ucode_patch;
523 new_rev = &ucode_new_rev;
524 }
525
526 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
527
528 /* Check whether we have saved a new patch already: */
529 if (*new_rev && rev < mc->hdr.patch_id) {
530 if (!__apply_microcode_amd(mc)) {
531 *new_rev = mc->hdr.patch_id;
532 return;
533 }
534 }
535
536 __load_ucode_amd(cpuid_1_eax, &cp);
537 if (!(cp.data && cp.size))
538 return;
539
540 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
541 }
542
543 static enum ucode_state
544 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
545
546 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
547 {
548 struct cont_desc desc = { 0 };
549 enum ucode_state ret;
550 struct cpio_data cp;
551
552 cp = find_microcode_in_initrd(ucode_path, false);
553 if (!(cp.data && cp.size))
554 return -EINVAL;
555
556 desc.cpuid_1_eax = cpuid_1_eax;
557
558 scan_containers(cp.data, cp.size, &desc);
559 if (!desc.mc)
560 return -EINVAL;
561
562 ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
563 if (ret > UCODE_UPDATED)
564 return -EINVAL;
565
566 return 0;
567 }
568
569 void reload_ucode_amd(void)
570 {
571 struct microcode_amd *mc;
572 u32 rev, dummy;
573
574 mc = (struct microcode_amd *)amd_ucode_patch;
575
576 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
577
578 if (rev < mc->hdr.patch_id) {
579 if (!__apply_microcode_amd(mc)) {
580 ucode_new_rev = mc->hdr.patch_id;
581 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
582 }
583 }
584 }
585 static u16 __find_equiv_id(unsigned int cpu)
586 {
587 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
588 return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
589 }
590
591 /*
592 * a small, trivial cache of per-family ucode patches
593 */
594 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
595 {
596 struct ucode_patch *p;
597
598 list_for_each_entry(p, &microcode_cache, plist)
599 if (p->equiv_cpu == equiv_cpu)
600 return p;
601 return NULL;
602 }
603
604 static void update_cache(struct ucode_patch *new_patch)
605 {
606 struct ucode_patch *p;
607
608 list_for_each_entry(p, &microcode_cache, plist) {
609 if (p->equiv_cpu == new_patch->equiv_cpu) {
610 if (p->patch_id >= new_patch->patch_id) {
611 /* we already have the latest patch */
612 kfree(new_patch->data);
613 kfree(new_patch);
614 return;
615 }
616
617 list_replace(&p->plist, &new_patch->plist);
618 kfree(p->data);
619 kfree(p);
620 return;
621 }
622 }
623 /* no patch found, add it */
624 list_add_tail(&new_patch->plist, &microcode_cache);
625 }
626
627 static void free_cache(void)
628 {
629 struct ucode_patch *p, *tmp;
630
631 list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
632 __list_del(p->plist.prev, p->plist.next);
633 kfree(p->data);
634 kfree(p);
635 }
636 }
637
638 static struct ucode_patch *find_patch(unsigned int cpu)
639 {
640 u16 equiv_id;
641
642 equiv_id = __find_equiv_id(cpu);
643 if (!equiv_id)
644 return NULL;
645
646 return cache_find_patch(equiv_id);
647 }
648
649 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
650 {
651 struct cpuinfo_x86 *c = &cpu_data(cpu);
652 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
653 struct ucode_patch *p;
654
655 csig->sig = cpuid_eax(0x00000001);
656 csig->rev = c->microcode;
657
658 /*
659 * a patch could have been loaded early, set uci->mc so that
660 * mc_bp_resume() can call apply_microcode()
661 */
662 p = find_patch(cpu);
663 if (p && (p->patch_id == csig->rev))
664 uci->mc = p->data;
665
666 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
667
668 return 0;
669 }
670
671 static enum ucode_state apply_microcode_amd(int cpu)
672 {
673 struct cpuinfo_x86 *c = &cpu_data(cpu);
674 struct microcode_amd *mc_amd;
675 struct ucode_cpu_info *uci;
676 struct ucode_patch *p;
677 enum ucode_state ret;
678 u32 rev, dummy;
679
680 BUG_ON(raw_smp_processor_id() != cpu);
681
682 uci = ucode_cpu_info + cpu;
683
684 p = find_patch(cpu);
685 if (!p)
686 return UCODE_NFOUND;
687
688 mc_amd = p->data;
689 uci->mc = p->data;
690
691 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
692
693 /* need to apply patch? */
694 if (rev >= mc_amd->hdr.patch_id) {
695 ret = UCODE_OK;
696 goto out;
697 }
698
699 if (__apply_microcode_amd(mc_amd)) {
700 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
701 cpu, mc_amd->hdr.patch_id);
702 return UCODE_ERROR;
703 }
704
705 rev = mc_amd->hdr.patch_id;
706 ret = UCODE_UPDATED;
707
708 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
709
710 out:
711 uci->cpu_sig.rev = rev;
712 c->microcode = rev;
713
714 /* Update boot_cpu_data's revision too, if we're on the BSP: */
715 if (c->cpu_index == boot_cpu_data.cpu_index)
716 boot_cpu_data.microcode = rev;
717
718 return ret;
719 }
720
721 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
722 {
723 u32 equiv_tbl_len;
724 const u32 *hdr;
725
726 if (!verify_equivalence_table(buf, buf_size, false))
727 return 0;
728
729 hdr = (const u32 *)buf;
730 equiv_tbl_len = hdr[2];
731
732 equiv_table.entry = vmalloc(equiv_tbl_len);
733 if (!equiv_table.entry) {
734 pr_err("failed to allocate equivalent CPU table\n");
735 return 0;
736 }
737
738 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
739 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
740
741 /* add header length */
742 return equiv_tbl_len + CONTAINER_HDR_SZ;
743 }
744
745 static void free_equiv_cpu_table(void)
746 {
747 vfree(equiv_table.entry);
748 memset(&equiv_table, 0, sizeof(equiv_table));
749 }
750
751 static void cleanup(void)
752 {
753 free_equiv_cpu_table();
754 free_cache();
755 }
756
757 /*
758 * Return a non-negative value even if some of the checks failed so that
759 * we can skip over the next patch. If we return a negative value, we
760 * signal a grave error like a memory allocation has failed and the
761 * driver cannot continue functioning normally. In such cases, we tear
762 * down everything we've used up so far and exit.
763 */
764 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
765 unsigned int *patch_size)
766 {
767 struct microcode_header_amd *mc_hdr;
768 struct ucode_patch *patch;
769 u16 proc_id;
770 int ret;
771
772 ret = verify_patch(family, fw, leftover, patch_size, false);
773 if (ret)
774 return ret;
775
776 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
777 if (!patch) {
778 pr_err("Patch allocation failure.\n");
779 return -EINVAL;
780 }
781
782 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
783 if (!patch->data) {
784 pr_err("Patch data allocation failure.\n");
785 kfree(patch);
786 return -EINVAL;
787 }
788
789 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
790 proc_id = mc_hdr->processor_rev_id;
791
792 INIT_LIST_HEAD(&patch->plist);
793 patch->patch_id = mc_hdr->patch_id;
794 patch->equiv_cpu = proc_id;
795
796 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
797 __func__, patch->patch_id, proc_id);
798
799 /* ... and add to cache. */
800 update_cache(patch);
801
802 return 0;
803 }
804
805 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
806 size_t size)
807 {
808 u8 *fw = (u8 *)data;
809 size_t offset;
810
811 offset = install_equiv_cpu_table(data, size);
812 if (!offset)
813 return UCODE_ERROR;
814
815 fw += offset;
816 size -= offset;
817
818 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
819 pr_err("invalid type field in container file section header\n");
820 free_equiv_cpu_table();
821 return UCODE_ERROR;
822 }
823
824 while (size > 0) {
825 unsigned int crnt_size = 0;
826 int ret;
827
828 ret = verify_and_add_patch(family, fw, size, &crnt_size);
829 if (ret < 0)
830 return UCODE_ERROR;
831
832 fw += crnt_size + SECTION_HDR_SIZE;
833 size -= (crnt_size + SECTION_HDR_SIZE);
834 }
835
836 return UCODE_OK;
837 }
838
839 static enum ucode_state
840 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
841 {
842 struct ucode_patch *p;
843 enum ucode_state ret;
844
845 /* free old equiv table */
846 free_equiv_cpu_table();
847
848 ret = __load_microcode_amd(family, data, size);
849 if (ret != UCODE_OK) {
850 cleanup();
851 return ret;
852 }
853
854 p = find_patch(0);
855 if (!p) {
856 return ret;
857 } else {
858 if (boot_cpu_data.microcode >= p->patch_id)
859 return ret;
860
861 ret = UCODE_NEW;
862 }
863
864 /* save BSP's matching patch for early load */
865 if (!save)
866 return ret;
867
868 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
869 memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE));
870
871 return ret;
872 }
873
874 /*
875 * AMD microcode firmware naming convention, up to family 15h they are in
876 * the legacy file:
877 *
878 * amd-ucode/microcode_amd.bin
879 *
880 * This legacy file is always smaller than 2K in size.
881 *
882 * Beginning with family 15h, they are in family-specific firmware files:
883 *
884 * amd-ucode/microcode_amd_fam15h.bin
885 * amd-ucode/microcode_amd_fam16h.bin
886 * ...
887 *
888 * These might be larger than 2K.
889 */
890 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
891 bool refresh_fw)
892 {
893 char fw_name[36] = "amd-ucode/microcode_amd.bin";
894 struct cpuinfo_x86 *c = &cpu_data(cpu);
895 bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
896 enum ucode_state ret = UCODE_NFOUND;
897 const struct firmware *fw;
898
899 /* reload ucode container only on the boot cpu */
900 if (!refresh_fw || !bsp)
901 return UCODE_OK;
902
903 if (c->x86 >= 0x15)
904 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
905
906 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
907 pr_debug("failed to load file %s\n", fw_name);
908 goto out;
909 }
910
911 ret = UCODE_ERROR;
912 if (!verify_container(fw->data, fw->size, false))
913 goto fw_release;
914
915 ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
916
917 fw_release:
918 release_firmware(fw);
919
920 out:
921 return ret;
922 }
923
924 static enum ucode_state
925 request_microcode_user(int cpu, const void __user *buf, size_t size)
926 {
927 return UCODE_ERROR;
928 }
929
930 static void microcode_fini_cpu_amd(int cpu)
931 {
932 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
933
934 uci->mc = NULL;
935 }
936
937 static struct microcode_ops microcode_amd_ops = {
938 .request_microcode_user = request_microcode_user,
939 .request_microcode_fw = request_microcode_amd,
940 .collect_cpu_info = collect_cpu_info_amd,
941 .apply_microcode = apply_microcode_amd,
942 .microcode_fini_cpu = microcode_fini_cpu_amd,
943 };
944
945 struct microcode_ops * __init init_amd_microcode(void)
946 {
947 struct cpuinfo_x86 *c = &boot_cpu_data;
948
949 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
950 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
951 return NULL;
952 }
953
954 if (ucode_new_rev)
955 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
956 ucode_new_rev);
957
958 return &microcode_amd_ops;
959 }
960
961 void __exit exit_amd_microcode(void)
962 {
963 cleanup();
964 }