]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mtrr/main.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-soc
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mtrr / main.c
1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #define DEBUG
35
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
49
50 #include <asm/processor.h>
51 #include <asm/e820.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54
55 #include "mtrr.h"
56
57 u32 num_var_ranges;
58
59 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
60 static DEFINE_MUTEX(mtrr_mutex);
61
62 u64 size_or_mask, size_and_mask;
63 static bool mtrr_aps_delayed_init;
64
65 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
66
67 const struct mtrr_ops *mtrr_if;
68
69 static void set_mtrr(unsigned int reg, unsigned long base,
70 unsigned long size, mtrr_type type);
71
72 void set_mtrr_ops(const struct mtrr_ops *ops)
73 {
74 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
75 mtrr_ops[ops->vendor] = ops;
76 }
77
78 /* Returns non-zero if we have the write-combining memory type */
79 static int have_wrcomb(void)
80 {
81 struct pci_dev *dev;
82
83 dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
84 if (dev != NULL) {
85 /*
86 * ServerWorks LE chipsets < rev 6 have problems with
87 * write-combining. Don't allow it and leave room for other
88 * chipsets to be tagged
89 */
90 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
91 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
92 dev->revision <= 5) {
93 pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
94 pci_dev_put(dev);
95 return 0;
96 }
97 /*
98 * Intel 450NX errata # 23. Non ascending cacheline evictions to
99 * write combining memory may resulting in data corruption
100 */
101 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
102 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
103 pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
104 pci_dev_put(dev);
105 return 0;
106 }
107 pci_dev_put(dev);
108 }
109 return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
110 }
111
112 /* This function returns the number of variable MTRRs */
113 static void __init set_num_var_ranges(void)
114 {
115 unsigned long config = 0, dummy;
116
117 if (use_intel())
118 rdmsr(MSR_MTRRcap, config, dummy);
119 else if (is_cpu(AMD))
120 config = 2;
121 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
122 config = 8;
123
124 num_var_ranges = config & 0xff;
125 }
126
127 static void __init init_table(void)
128 {
129 int i, max;
130
131 max = num_var_ranges;
132 for (i = 0; i < max; i++)
133 mtrr_usage_table[i] = 1;
134 }
135
136 struct set_mtrr_data {
137 unsigned long smp_base;
138 unsigned long smp_size;
139 unsigned int smp_reg;
140 mtrr_type smp_type;
141 };
142
143 /**
144 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
145 * by all the CPUs.
146 * @info: pointer to mtrr configuration data
147 *
148 * Returns nothing.
149 */
150 static int mtrr_rendezvous_handler(void *info)
151 {
152 struct set_mtrr_data *data = info;
153
154 /*
155 * We use this same function to initialize the mtrrs during boot,
156 * resume, runtime cpu online and on an explicit request to set a
157 * specific MTRR.
158 *
159 * During boot or suspend, the state of the boot cpu's mtrrs has been
160 * saved, and we want to replicate that across all the cpus that come
161 * online (either at the end of boot or resume or during a runtime cpu
162 * online). If we're doing that, @reg is set to something special and on
163 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
164 * started the boot/resume sequence, this might be a duplicate
165 * set_all()).
166 */
167 if (data->smp_reg != ~0U) {
168 mtrr_if->set(data->smp_reg, data->smp_base,
169 data->smp_size, data->smp_type);
170 } else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
171 mtrr_if->set_all();
172 }
173 return 0;
174 }
175
176 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
177 {
178 return type1 == MTRR_TYPE_UNCACHABLE ||
179 type2 == MTRR_TYPE_UNCACHABLE ||
180 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
181 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
182 }
183
184 /**
185 * set_mtrr - update mtrrs on all processors
186 * @reg: mtrr in question
187 * @base: mtrr base
188 * @size: mtrr size
189 * @type: mtrr type
190 *
191 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
192 *
193 * 1. Queue work to do the following on all processors:
194 * 2. Disable Interrupts
195 * 3. Wait for all procs to do so
196 * 4. Enter no-fill cache mode
197 * 5. Flush caches
198 * 6. Clear PGE bit
199 * 7. Flush all TLBs
200 * 8. Disable all range registers
201 * 9. Update the MTRRs
202 * 10. Enable all range registers
203 * 11. Flush all TLBs and caches again
204 * 12. Enter normal cache mode and reenable caching
205 * 13. Set PGE
206 * 14. Wait for buddies to catch up
207 * 15. Enable interrupts.
208 *
209 * What does that mean for us? Well, stop_machine() will ensure that
210 * the rendezvous handler is started on each CPU. And in lockstep they
211 * do the state transition of disabling interrupts, updating MTRR's
212 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
213 * callback and let them take care of it.) and enabling interrupts.
214 *
215 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
216 * becomes nops.
217 */
218 static void
219 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
220 {
221 struct set_mtrr_data data = { .smp_reg = reg,
222 .smp_base = base,
223 .smp_size = size,
224 .smp_type = type
225 };
226
227 stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
228 }
229
230 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
231 unsigned long size, mtrr_type type)
232 {
233 struct set_mtrr_data data = { .smp_reg = reg,
234 .smp_base = base,
235 .smp_size = size,
236 .smp_type = type
237 };
238
239 stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
240 cpu_callout_mask);
241 }
242
243 /**
244 * mtrr_add_page - Add a memory type region
245 * @base: Physical base address of region in pages (in units of 4 kB!)
246 * @size: Physical size of region in pages (4 kB)
247 * @type: Type of MTRR desired
248 * @increment: If this is true do usage counting on the region
249 *
250 * Memory type region registers control the caching on newer Intel and
251 * non Intel processors. This function allows drivers to request an
252 * MTRR is added. The details and hardware specifics of each processor's
253 * implementation are hidden from the caller, but nevertheless the
254 * caller should expect to need to provide a power of two size on an
255 * equivalent power of two boundary.
256 *
257 * If the region cannot be added either because all regions are in use
258 * or the CPU cannot support it a negative value is returned. On success
259 * the register number for this entry is returned, but should be treated
260 * as a cookie only.
261 *
262 * On a multiprocessor machine the changes are made to all processors.
263 * This is required on x86 by the Intel processors.
264 *
265 * The available types are
266 *
267 * %MTRR_TYPE_UNCACHABLE - No caching
268 *
269 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
270 *
271 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
272 *
273 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
274 *
275 * BUGS: Needs a quiet flag for the cases where drivers do not mind
276 * failures and do not wish system log messages to be sent.
277 */
278 int mtrr_add_page(unsigned long base, unsigned long size,
279 unsigned int type, bool increment)
280 {
281 unsigned long lbase, lsize;
282 int i, replace, error;
283 mtrr_type ltype;
284
285 if (!mtrr_if)
286 return -ENXIO;
287
288 error = mtrr_if->validate_add_page(base, size, type);
289 if (error)
290 return error;
291
292 if (type >= MTRR_NUM_TYPES) {
293 pr_warning("mtrr: type: %u invalid\n", type);
294 return -EINVAL;
295 }
296
297 /* If the type is WC, check that this processor supports it */
298 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
299 pr_warning("mtrr: your processor doesn't support write-combining\n");
300 return -ENOSYS;
301 }
302
303 if (!size) {
304 pr_warning("mtrr: zero sized request\n");
305 return -EINVAL;
306 }
307
308 if (base & size_or_mask || size & size_or_mask) {
309 pr_warning("mtrr: base or size exceeds the MTRR width\n");
310 return -EINVAL;
311 }
312
313 error = -EINVAL;
314 replace = -1;
315
316 /* No CPU hotplug when we change MTRR entries */
317 get_online_cpus();
318
319 /* Search for existing MTRR */
320 mutex_lock(&mtrr_mutex);
321 for (i = 0; i < num_var_ranges; ++i) {
322 mtrr_if->get(i, &lbase, &lsize, &ltype);
323 if (!lsize || base > lbase + lsize - 1 ||
324 base + size - 1 < lbase)
325 continue;
326 /*
327 * At this point we know there is some kind of
328 * overlap/enclosure
329 */
330 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
331 if (base <= lbase &&
332 base + size - 1 >= lbase + lsize - 1) {
333 /* New region encloses an existing region */
334 if (type == ltype) {
335 replace = replace == -1 ? i : -2;
336 continue;
337 } else if (types_compatible(type, ltype))
338 continue;
339 }
340 pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
341 " 0x%lx000,0x%lx000\n", base, size, lbase,
342 lsize);
343 goto out;
344 }
345 /* New region is enclosed by an existing region */
346 if (ltype != type) {
347 if (types_compatible(type, ltype))
348 continue;
349 pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
350 base, size, mtrr_attrib_to_str(ltype),
351 mtrr_attrib_to_str(type));
352 goto out;
353 }
354 if (increment)
355 ++mtrr_usage_table[i];
356 error = i;
357 goto out;
358 }
359 /* Search for an empty MTRR */
360 i = mtrr_if->get_free_region(base, size, replace);
361 if (i >= 0) {
362 set_mtrr(i, base, size, type);
363 if (likely(replace < 0)) {
364 mtrr_usage_table[i] = 1;
365 } else {
366 mtrr_usage_table[i] = mtrr_usage_table[replace];
367 if (increment)
368 mtrr_usage_table[i]++;
369 if (unlikely(replace != i)) {
370 set_mtrr(replace, 0, 0, 0);
371 mtrr_usage_table[replace] = 0;
372 }
373 }
374 } else {
375 pr_info("mtrr: no more MTRRs available\n");
376 }
377 error = i;
378 out:
379 mutex_unlock(&mtrr_mutex);
380 put_online_cpus();
381 return error;
382 }
383
384 static int mtrr_check(unsigned long base, unsigned long size)
385 {
386 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
387 pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
388 pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base);
389 dump_stack();
390 return -1;
391 }
392 return 0;
393 }
394
395 /**
396 * mtrr_add - Add a memory type region
397 * @base: Physical base address of region
398 * @size: Physical size of region
399 * @type: Type of MTRR desired
400 * @increment: If this is true do usage counting on the region
401 *
402 * Memory type region registers control the caching on newer Intel and
403 * non Intel processors. This function allows drivers to request an
404 * MTRR is added. The details and hardware specifics of each processor's
405 * implementation are hidden from the caller, but nevertheless the
406 * caller should expect to need to provide a power of two size on an
407 * equivalent power of two boundary.
408 *
409 * If the region cannot be added either because all regions are in use
410 * or the CPU cannot support it a negative value is returned. On success
411 * the register number for this entry is returned, but should be treated
412 * as a cookie only.
413 *
414 * On a multiprocessor machine the changes are made to all processors.
415 * This is required on x86 by the Intel processors.
416 *
417 * The available types are
418 *
419 * %MTRR_TYPE_UNCACHABLE - No caching
420 *
421 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
422 *
423 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
424 *
425 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
426 *
427 * BUGS: Needs a quiet flag for the cases where drivers do not mind
428 * failures and do not wish system log messages to be sent.
429 */
430 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
431 bool increment)
432 {
433 if (mtrr_check(base, size))
434 return -EINVAL;
435 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
436 increment);
437 }
438 EXPORT_SYMBOL(mtrr_add);
439
440 /**
441 * mtrr_del_page - delete a memory type region
442 * @reg: Register returned by mtrr_add
443 * @base: Physical base address
444 * @size: Size of region
445 *
446 * If register is supplied then base and size are ignored. This is
447 * how drivers should call it.
448 *
449 * Releases an MTRR region. If the usage count drops to zero the
450 * register is freed and the region returns to default state.
451 * On success the register is returned, on failure a negative error
452 * code.
453 */
454 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
455 {
456 int i, max;
457 mtrr_type ltype;
458 unsigned long lbase, lsize;
459 int error = -EINVAL;
460
461 if (!mtrr_if)
462 return -ENXIO;
463
464 max = num_var_ranges;
465 /* No CPU hotplug when we change MTRR entries */
466 get_online_cpus();
467 mutex_lock(&mtrr_mutex);
468 if (reg < 0) {
469 /* Search for existing MTRR */
470 for (i = 0; i < max; ++i) {
471 mtrr_if->get(i, &lbase, &lsize, &ltype);
472 if (lbase == base && lsize == size) {
473 reg = i;
474 break;
475 }
476 }
477 if (reg < 0) {
478 pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
479 base, size);
480 goto out;
481 }
482 }
483 if (reg >= max) {
484 pr_warning("mtrr: register: %d too big\n", reg);
485 goto out;
486 }
487 mtrr_if->get(reg, &lbase, &lsize, &ltype);
488 if (lsize < 1) {
489 pr_warning("mtrr: MTRR %d not used\n", reg);
490 goto out;
491 }
492 if (mtrr_usage_table[reg] < 1) {
493 pr_warning("mtrr: reg: %d has count=0\n", reg);
494 goto out;
495 }
496 if (--mtrr_usage_table[reg] < 1)
497 set_mtrr(reg, 0, 0, 0);
498 error = reg;
499 out:
500 mutex_unlock(&mtrr_mutex);
501 put_online_cpus();
502 return error;
503 }
504
505 /**
506 * mtrr_del - delete a memory type region
507 * @reg: Register returned by mtrr_add
508 * @base: Physical base address
509 * @size: Size of region
510 *
511 * If register is supplied then base and size are ignored. This is
512 * how drivers should call it.
513 *
514 * Releases an MTRR region. If the usage count drops to zero the
515 * register is freed and the region returns to default state.
516 * On success the register is returned, on failure a negative error
517 * code.
518 */
519 int mtrr_del(int reg, unsigned long base, unsigned long size)
520 {
521 if (mtrr_check(base, size))
522 return -EINVAL;
523 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
524 }
525 EXPORT_SYMBOL(mtrr_del);
526
527 /*
528 * HACK ALERT!
529 * These should be called implicitly, but we can't yet until all the initcall
530 * stuff is done...
531 */
532 static void __init init_ifs(void)
533 {
534 #ifndef CONFIG_X86_64
535 amd_init_mtrr();
536 cyrix_init_mtrr();
537 centaur_init_mtrr();
538 #endif
539 }
540
541 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
542 * MTRR driver doesn't require this
543 */
544 struct mtrr_value {
545 mtrr_type ltype;
546 unsigned long lbase;
547 unsigned long lsize;
548 };
549
550 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
551
552 static int mtrr_save(void)
553 {
554 int i;
555
556 for (i = 0; i < num_var_ranges; i++) {
557 mtrr_if->get(i, &mtrr_value[i].lbase,
558 &mtrr_value[i].lsize,
559 &mtrr_value[i].ltype);
560 }
561 return 0;
562 }
563
564 static void mtrr_restore(void)
565 {
566 int i;
567
568 for (i = 0; i < num_var_ranges; i++) {
569 if (mtrr_value[i].lsize) {
570 set_mtrr(i, mtrr_value[i].lbase,
571 mtrr_value[i].lsize,
572 mtrr_value[i].ltype);
573 }
574 }
575 }
576
577
578
579 static struct syscore_ops mtrr_syscore_ops = {
580 .suspend = mtrr_save,
581 .resume = mtrr_restore,
582 };
583
584 int __initdata changed_by_mtrr_cleanup;
585
586 /**
587 * mtrr_bp_init - initialize mtrrs on the boot CPU
588 *
589 * This needs to be called early; before any of the other CPUs are
590 * initialized (i.e. before smp_init()).
591 *
592 */
593 void __init mtrr_bp_init(void)
594 {
595 u32 phys_addr;
596
597 init_ifs();
598
599 phys_addr = 32;
600
601 if (cpu_has_mtrr) {
602 mtrr_if = &generic_mtrr_ops;
603 size_or_mask = 0xff000000; /* 36 bits */
604 size_and_mask = 0x00f00000;
605 phys_addr = 36;
606
607 /*
608 * This is an AMD specific MSR, but we assume(hope?) that
609 * Intel will implement it to when they extend the address
610 * bus of the Xeon.
611 */
612 if (cpuid_eax(0x80000000) >= 0x80000008) {
613 phys_addr = cpuid_eax(0x80000008) & 0xff;
614 /* CPUID workaround for Intel 0F33/0F34 CPU */
615 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
616 boot_cpu_data.x86 == 0xF &&
617 boot_cpu_data.x86_model == 0x3 &&
618 (boot_cpu_data.x86_mask == 0x3 ||
619 boot_cpu_data.x86_mask == 0x4))
620 phys_addr = 36;
621
622 size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
623 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
624 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
625 boot_cpu_data.x86 == 6) {
626 /*
627 * VIA C* family have Intel style MTRRs,
628 * but don't support PAE
629 */
630 size_or_mask = 0xfff00000; /* 32 bits */
631 size_and_mask = 0;
632 phys_addr = 32;
633 }
634 } else {
635 switch (boot_cpu_data.x86_vendor) {
636 case X86_VENDOR_AMD:
637 if (cpu_has_k6_mtrr) {
638 /* Pre-Athlon (K6) AMD CPU MTRRs */
639 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
640 size_or_mask = 0xfff00000; /* 32 bits */
641 size_and_mask = 0;
642 }
643 break;
644 case X86_VENDOR_CENTAUR:
645 if (cpu_has_centaur_mcr) {
646 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
647 size_or_mask = 0xfff00000; /* 32 bits */
648 size_and_mask = 0;
649 }
650 break;
651 case X86_VENDOR_CYRIX:
652 if (cpu_has_cyrix_arr) {
653 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
654 size_or_mask = 0xfff00000; /* 32 bits */
655 size_and_mask = 0;
656 }
657 break;
658 default:
659 break;
660 }
661 }
662
663 if (mtrr_if) {
664 set_num_var_ranges();
665 init_table();
666 if (use_intel()) {
667 get_mtrr_state();
668
669 if (mtrr_cleanup(phys_addr)) {
670 changed_by_mtrr_cleanup = 1;
671 mtrr_if->set_all();
672 }
673 }
674 }
675 }
676
677 void mtrr_ap_init(void)
678 {
679 if (!use_intel() || mtrr_aps_delayed_init)
680 return;
681 /*
682 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
683 * changed, but this routine will be called in cpu boot time,
684 * holding the lock breaks it.
685 *
686 * This routine is called in two cases:
687 *
688 * 1. very earily time of software resume, when there absolutely
689 * isn't mtrr entry changes;
690 *
691 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
692 * lock to prevent mtrr entry changes
693 */
694 set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
695 }
696
697 /**
698 * Save current fixed-range MTRR state of the BSP
699 */
700 void mtrr_save_state(void)
701 {
702 smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
703 }
704
705 void set_mtrr_aps_delayed_init(void)
706 {
707 if (!use_intel())
708 return;
709
710 mtrr_aps_delayed_init = true;
711 }
712
713 /*
714 * Delayed MTRR initialization for all AP's
715 */
716 void mtrr_aps_init(void)
717 {
718 if (!use_intel())
719 return;
720
721 /*
722 * Check if someone has requested the delay of AP MTRR initialization,
723 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
724 * then we are done.
725 */
726 if (!mtrr_aps_delayed_init)
727 return;
728
729 set_mtrr(~0U, 0, 0, 0);
730 mtrr_aps_delayed_init = false;
731 }
732
733 void mtrr_bp_restore(void)
734 {
735 if (!use_intel())
736 return;
737
738 mtrr_if->set_all();
739 }
740
741 static int __init mtrr_init_finialize(void)
742 {
743 if (!mtrr_if)
744 return 0;
745
746 if (use_intel()) {
747 if (!changed_by_mtrr_cleanup)
748 mtrr_state_warn();
749 return 0;
750 }
751
752 /*
753 * The CPU has no MTRR and seems to not support SMP. They have
754 * specific drivers, we use a tricky method to support
755 * suspend/resume for them.
756 *
757 * TBD: is there any system with such CPU which supports
758 * suspend/resume? If no, we should remove the code.
759 */
760 register_syscore_ops(&mtrr_syscore_ops);
761
762 return 0;
763 }
764 subsys_initcall(mtrr_init_finialize);