]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/perf_counter.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2 * Performance counter x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 *
10 * For licencing details see kernel-base/COPYING
11 */
12
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
23
24 #include <asm/apic.h>
25 #include <asm/stacktrace.h>
26 #include <asm/nmi.h>
27
28 static u64 perf_counter_mask __read_mostly;
29
30 struct cpu_hw_counters {
31 struct perf_counter *counters[X86_PMC_IDX_MAX];
32 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
34 unsigned long interrupts;
35 int enabled;
36 };
37
38 /*
39 * struct x86_pmu - generic x86 pmu
40 */
41 struct x86_pmu {
42 const char *name;
43 int version;
44 int (*handle_irq)(struct pt_regs *);
45 void (*disable_all)(void);
46 void (*enable_all)(void);
47 void (*enable)(struct hw_perf_counter *, int);
48 void (*disable)(struct hw_perf_counter *, int);
49 unsigned eventsel;
50 unsigned perfctr;
51 u64 (*event_map)(int);
52 u64 (*raw_event)(u64);
53 int max_events;
54 int num_counters;
55 int num_counters_fixed;
56 int counter_bits;
57 u64 counter_mask;
58 u64 max_period;
59 u64 intel_ctrl;
60 };
61
62 static struct x86_pmu x86_pmu __read_mostly;
63
64 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
65 .enabled = 1,
66 };
67
68 /*
69 * Intel PerfMon v3. Used on Core2 and later.
70 */
71 static const u64 intel_perfmon_event_map[] =
72 {
73 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
74 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
75 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
76 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
77 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
78 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
79 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
80 };
81
82 static u64 intel_pmu_event_map(int event)
83 {
84 return intel_perfmon_event_map[event];
85 }
86
87 /*
88 * Generalized hw caching related event table, filled
89 * in on a per model basis. A value of 0 means
90 * 'not supported', -1 means 'event makes no sense on
91 * this CPU', any other value means the raw event
92 * ID.
93 */
94
95 #define C(x) PERF_COUNT_HW_CACHE_##x
96
97 static u64 __read_mostly hw_cache_event_ids
98 [PERF_COUNT_HW_CACHE_MAX]
99 [PERF_COUNT_HW_CACHE_OP_MAX]
100 [PERF_COUNT_HW_CACHE_RESULT_MAX];
101
102 static const u64 nehalem_hw_cache_event_ids
103 [PERF_COUNT_HW_CACHE_MAX]
104 [PERF_COUNT_HW_CACHE_OP_MAX]
105 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
106 {
107 [ C(L1D) ] = {
108 [ C(OP_READ) ] = {
109 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
110 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
111 },
112 [ C(OP_WRITE) ] = {
113 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
114 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
115 },
116 [ C(OP_PREFETCH) ] = {
117 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
118 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
119 },
120 },
121 [ C(L1I ) ] = {
122 [ C(OP_READ) ] = {
123 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
124 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
125 },
126 [ C(OP_WRITE) ] = {
127 [ C(RESULT_ACCESS) ] = -1,
128 [ C(RESULT_MISS) ] = -1,
129 },
130 [ C(OP_PREFETCH) ] = {
131 [ C(RESULT_ACCESS) ] = 0x0,
132 [ C(RESULT_MISS) ] = 0x0,
133 },
134 },
135 [ C(LL ) ] = {
136 [ C(OP_READ) ] = {
137 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
138 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
139 },
140 [ C(OP_WRITE) ] = {
141 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
142 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
143 },
144 [ C(OP_PREFETCH) ] = {
145 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
146 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
147 },
148 },
149 [ C(DTLB) ] = {
150 [ C(OP_READ) ] = {
151 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
152 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
153 },
154 [ C(OP_WRITE) ] = {
155 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
156 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
157 },
158 [ C(OP_PREFETCH) ] = {
159 [ C(RESULT_ACCESS) ] = 0x0,
160 [ C(RESULT_MISS) ] = 0x0,
161 },
162 },
163 [ C(ITLB) ] = {
164 [ C(OP_READ) ] = {
165 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
166 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
167 },
168 [ C(OP_WRITE) ] = {
169 [ C(RESULT_ACCESS) ] = -1,
170 [ C(RESULT_MISS) ] = -1,
171 },
172 [ C(OP_PREFETCH) ] = {
173 [ C(RESULT_ACCESS) ] = -1,
174 [ C(RESULT_MISS) ] = -1,
175 },
176 },
177 [ C(BPU ) ] = {
178 [ C(OP_READ) ] = {
179 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
180 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
181 },
182 [ C(OP_WRITE) ] = {
183 [ C(RESULT_ACCESS) ] = -1,
184 [ C(RESULT_MISS) ] = -1,
185 },
186 [ C(OP_PREFETCH) ] = {
187 [ C(RESULT_ACCESS) ] = -1,
188 [ C(RESULT_MISS) ] = -1,
189 },
190 },
191 };
192
193 static const u64 core2_hw_cache_event_ids
194 [PERF_COUNT_HW_CACHE_MAX]
195 [PERF_COUNT_HW_CACHE_OP_MAX]
196 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
197 {
198 [ C(L1D) ] = {
199 [ C(OP_READ) ] = {
200 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
201 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
202 },
203 [ C(OP_WRITE) ] = {
204 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
205 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
206 },
207 [ C(OP_PREFETCH) ] = {
208 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
209 [ C(RESULT_MISS) ] = 0,
210 },
211 },
212 [ C(L1I ) ] = {
213 [ C(OP_READ) ] = {
214 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
215 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
216 },
217 [ C(OP_WRITE) ] = {
218 [ C(RESULT_ACCESS) ] = -1,
219 [ C(RESULT_MISS) ] = -1,
220 },
221 [ C(OP_PREFETCH) ] = {
222 [ C(RESULT_ACCESS) ] = 0,
223 [ C(RESULT_MISS) ] = 0,
224 },
225 },
226 [ C(LL ) ] = {
227 [ C(OP_READ) ] = {
228 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
229 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
230 },
231 [ C(OP_WRITE) ] = {
232 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
233 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
234 },
235 [ C(OP_PREFETCH) ] = {
236 [ C(RESULT_ACCESS) ] = 0,
237 [ C(RESULT_MISS) ] = 0,
238 },
239 },
240 [ C(DTLB) ] = {
241 [ C(OP_READ) ] = {
242 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
243 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
244 },
245 [ C(OP_WRITE) ] = {
246 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
247 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
248 },
249 [ C(OP_PREFETCH) ] = {
250 [ C(RESULT_ACCESS) ] = 0,
251 [ C(RESULT_MISS) ] = 0,
252 },
253 },
254 [ C(ITLB) ] = {
255 [ C(OP_READ) ] = {
256 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
257 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
258 },
259 [ C(OP_WRITE) ] = {
260 [ C(RESULT_ACCESS) ] = -1,
261 [ C(RESULT_MISS) ] = -1,
262 },
263 [ C(OP_PREFETCH) ] = {
264 [ C(RESULT_ACCESS) ] = -1,
265 [ C(RESULT_MISS) ] = -1,
266 },
267 },
268 [ C(BPU ) ] = {
269 [ C(OP_READ) ] = {
270 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
271 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
272 },
273 [ C(OP_WRITE) ] = {
274 [ C(RESULT_ACCESS) ] = -1,
275 [ C(RESULT_MISS) ] = -1,
276 },
277 [ C(OP_PREFETCH) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
280 },
281 },
282 };
283
284 static const u64 atom_hw_cache_event_ids
285 [PERF_COUNT_HW_CACHE_MAX]
286 [PERF_COUNT_HW_CACHE_OP_MAX]
287 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
288 {
289 [ C(L1D) ] = {
290 [ C(OP_READ) ] = {
291 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
292 [ C(RESULT_MISS) ] = 0,
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
296 [ C(RESULT_MISS) ] = 0,
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = 0x0,
300 [ C(RESULT_MISS) ] = 0,
301 },
302 },
303 [ C(L1I ) ] = {
304 [ C(OP_READ) ] = {
305 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
306 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = -1,
310 [ C(RESULT_MISS) ] = -1,
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = 0,
314 [ C(RESULT_MISS) ] = 0,
315 },
316 },
317 [ C(LL ) ] = {
318 [ C(OP_READ) ] = {
319 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
320 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
321 },
322 [ C(OP_WRITE) ] = {
323 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
324 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
325 },
326 [ C(OP_PREFETCH) ] = {
327 [ C(RESULT_ACCESS) ] = 0,
328 [ C(RESULT_MISS) ] = 0,
329 },
330 },
331 [ C(DTLB) ] = {
332 [ C(OP_READ) ] = {
333 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
334 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
335 },
336 [ C(OP_WRITE) ] = {
337 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
338 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
339 },
340 [ C(OP_PREFETCH) ] = {
341 [ C(RESULT_ACCESS) ] = 0,
342 [ C(RESULT_MISS) ] = 0,
343 },
344 },
345 [ C(ITLB) ] = {
346 [ C(OP_READ) ] = {
347 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
348 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
349 },
350 [ C(OP_WRITE) ] = {
351 [ C(RESULT_ACCESS) ] = -1,
352 [ C(RESULT_MISS) ] = -1,
353 },
354 [ C(OP_PREFETCH) ] = {
355 [ C(RESULT_ACCESS) ] = -1,
356 [ C(RESULT_MISS) ] = -1,
357 },
358 },
359 [ C(BPU ) ] = {
360 [ C(OP_READ) ] = {
361 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
362 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
363 },
364 [ C(OP_WRITE) ] = {
365 [ C(RESULT_ACCESS) ] = -1,
366 [ C(RESULT_MISS) ] = -1,
367 },
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = -1,
370 [ C(RESULT_MISS) ] = -1,
371 },
372 },
373 };
374
375 static u64 intel_pmu_raw_event(u64 event)
376 {
377 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
378 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
379 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
380 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
381 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
382
383 #define CORE_EVNTSEL_MASK \
384 (CORE_EVNTSEL_EVENT_MASK | \
385 CORE_EVNTSEL_UNIT_MASK | \
386 CORE_EVNTSEL_EDGE_MASK | \
387 CORE_EVNTSEL_INV_MASK | \
388 CORE_EVNTSEL_COUNTER_MASK)
389
390 return event & CORE_EVNTSEL_MASK;
391 }
392
393 static const u64 amd_hw_cache_event_ids
394 [PERF_COUNT_HW_CACHE_MAX]
395 [PERF_COUNT_HW_CACHE_OP_MAX]
396 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
397 {
398 [ C(L1D) ] = {
399 [ C(OP_READ) ] = {
400 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
401 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
402 },
403 [ C(OP_WRITE) ] = {
404 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
405 [ C(RESULT_MISS) ] = 0,
406 },
407 [ C(OP_PREFETCH) ] = {
408 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
409 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
410 },
411 },
412 [ C(L1I ) ] = {
413 [ C(OP_READ) ] = {
414 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
415 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
416 },
417 [ C(OP_WRITE) ] = {
418 [ C(RESULT_ACCESS) ] = -1,
419 [ C(RESULT_MISS) ] = -1,
420 },
421 [ C(OP_PREFETCH) ] = {
422 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
423 [ C(RESULT_MISS) ] = 0,
424 },
425 },
426 [ C(LL ) ] = {
427 [ C(OP_READ) ] = {
428 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
429 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
430 },
431 [ C(OP_WRITE) ] = {
432 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
433 [ C(RESULT_MISS) ] = 0,
434 },
435 [ C(OP_PREFETCH) ] = {
436 [ C(RESULT_ACCESS) ] = 0,
437 [ C(RESULT_MISS) ] = 0,
438 },
439 },
440 [ C(DTLB) ] = {
441 [ C(OP_READ) ] = {
442 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
443 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
444 },
445 [ C(OP_WRITE) ] = {
446 [ C(RESULT_ACCESS) ] = 0,
447 [ C(RESULT_MISS) ] = 0,
448 },
449 [ C(OP_PREFETCH) ] = {
450 [ C(RESULT_ACCESS) ] = 0,
451 [ C(RESULT_MISS) ] = 0,
452 },
453 },
454 [ C(ITLB) ] = {
455 [ C(OP_READ) ] = {
456 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
457 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
458 },
459 [ C(OP_WRITE) ] = {
460 [ C(RESULT_ACCESS) ] = -1,
461 [ C(RESULT_MISS) ] = -1,
462 },
463 [ C(OP_PREFETCH) ] = {
464 [ C(RESULT_ACCESS) ] = -1,
465 [ C(RESULT_MISS) ] = -1,
466 },
467 },
468 [ C(BPU ) ] = {
469 [ C(OP_READ) ] = {
470 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
471 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
472 },
473 [ C(OP_WRITE) ] = {
474 [ C(RESULT_ACCESS) ] = -1,
475 [ C(RESULT_MISS) ] = -1,
476 },
477 [ C(OP_PREFETCH) ] = {
478 [ C(RESULT_ACCESS) ] = -1,
479 [ C(RESULT_MISS) ] = -1,
480 },
481 },
482 };
483
484 /*
485 * AMD Performance Monitor K7 and later.
486 */
487 static const u64 amd_perfmon_event_map[] =
488 {
489 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
490 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
491 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
492 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
493 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
494 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
495 };
496
497 static u64 amd_pmu_event_map(int event)
498 {
499 return amd_perfmon_event_map[event];
500 }
501
502 static u64 amd_pmu_raw_event(u64 event)
503 {
504 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
505 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
506 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
507 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
508 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
509
510 #define K7_EVNTSEL_MASK \
511 (K7_EVNTSEL_EVENT_MASK | \
512 K7_EVNTSEL_UNIT_MASK | \
513 K7_EVNTSEL_EDGE_MASK | \
514 K7_EVNTSEL_INV_MASK | \
515 K7_EVNTSEL_COUNTER_MASK)
516
517 return event & K7_EVNTSEL_MASK;
518 }
519
520 /*
521 * Propagate counter elapsed time into the generic counter.
522 * Can only be executed on the CPU where the counter is active.
523 * Returns the delta events processed.
524 */
525 static u64
526 x86_perf_counter_update(struct perf_counter *counter,
527 struct hw_perf_counter *hwc, int idx)
528 {
529 int shift = 64 - x86_pmu.counter_bits;
530 u64 prev_raw_count, new_raw_count;
531 s64 delta;
532
533 /*
534 * Careful: an NMI might modify the previous counter value.
535 *
536 * Our tactic to handle this is to first atomically read and
537 * exchange a new raw count - then add that new-prev delta
538 * count to the generic counter atomically:
539 */
540 again:
541 prev_raw_count = atomic64_read(&hwc->prev_count);
542 rdmsrl(hwc->counter_base + idx, new_raw_count);
543
544 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
545 new_raw_count) != prev_raw_count)
546 goto again;
547
548 /*
549 * Now we have the new raw value and have updated the prev
550 * timestamp already. We can now calculate the elapsed delta
551 * (counter-)time and add that to the generic counter.
552 *
553 * Careful, not all hw sign-extends above the physical width
554 * of the count.
555 */
556 delta = (new_raw_count << shift) - (prev_raw_count << shift);
557 delta >>= shift;
558
559 atomic64_add(delta, &counter->count);
560 atomic64_sub(delta, &hwc->period_left);
561
562 return new_raw_count;
563 }
564
565 static atomic_t active_counters;
566 static DEFINE_MUTEX(pmc_reserve_mutex);
567
568 static bool reserve_pmc_hardware(void)
569 {
570 int i;
571
572 if (nmi_watchdog == NMI_LOCAL_APIC)
573 disable_lapic_nmi_watchdog();
574
575 for (i = 0; i < x86_pmu.num_counters; i++) {
576 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
577 goto perfctr_fail;
578 }
579
580 for (i = 0; i < x86_pmu.num_counters; i++) {
581 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
582 goto eventsel_fail;
583 }
584
585 return true;
586
587 eventsel_fail:
588 for (i--; i >= 0; i--)
589 release_evntsel_nmi(x86_pmu.eventsel + i);
590
591 i = x86_pmu.num_counters;
592
593 perfctr_fail:
594 for (i--; i >= 0; i--)
595 release_perfctr_nmi(x86_pmu.perfctr + i);
596
597 if (nmi_watchdog == NMI_LOCAL_APIC)
598 enable_lapic_nmi_watchdog();
599
600 return false;
601 }
602
603 static void release_pmc_hardware(void)
604 {
605 int i;
606
607 for (i = 0; i < x86_pmu.num_counters; i++) {
608 release_perfctr_nmi(x86_pmu.perfctr + i);
609 release_evntsel_nmi(x86_pmu.eventsel + i);
610 }
611
612 if (nmi_watchdog == NMI_LOCAL_APIC)
613 enable_lapic_nmi_watchdog();
614 }
615
616 static void hw_perf_counter_destroy(struct perf_counter *counter)
617 {
618 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
619 release_pmc_hardware();
620 mutex_unlock(&pmc_reserve_mutex);
621 }
622 }
623
624 static inline int x86_pmu_initialized(void)
625 {
626 return x86_pmu.handle_irq != NULL;
627 }
628
629 static inline int
630 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
631 {
632 unsigned int cache_type, cache_op, cache_result;
633 u64 config, val;
634
635 config = attr->config;
636
637 cache_type = (config >> 0) & 0xff;
638 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
639 return -EINVAL;
640
641 cache_op = (config >> 8) & 0xff;
642 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
643 return -EINVAL;
644
645 cache_result = (config >> 16) & 0xff;
646 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
647 return -EINVAL;
648
649 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
650
651 if (val == 0)
652 return -ENOENT;
653
654 if (val == -1)
655 return -EINVAL;
656
657 hwc->config |= val;
658
659 return 0;
660 }
661
662 /*
663 * Setup the hardware configuration for a given attr_type
664 */
665 static int __hw_perf_counter_init(struct perf_counter *counter)
666 {
667 struct perf_counter_attr *attr = &counter->attr;
668 struct hw_perf_counter *hwc = &counter->hw;
669 int err;
670
671 if (!x86_pmu_initialized())
672 return -ENODEV;
673
674 err = 0;
675 if (!atomic_inc_not_zero(&active_counters)) {
676 mutex_lock(&pmc_reserve_mutex);
677 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
678 err = -EBUSY;
679 else
680 atomic_inc(&active_counters);
681 mutex_unlock(&pmc_reserve_mutex);
682 }
683 if (err)
684 return err;
685
686 /*
687 * Generate PMC IRQs:
688 * (keep 'enabled' bit clear for now)
689 */
690 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
691
692 /*
693 * Count user and OS events unless requested not to.
694 */
695 if (!attr->exclude_user)
696 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
697 if (!attr->exclude_kernel)
698 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
699
700 if (!hwc->sample_period) {
701 hwc->sample_period = x86_pmu.max_period;
702 hwc->last_period = hwc->sample_period;
703 atomic64_set(&hwc->period_left, hwc->sample_period);
704 }
705
706 counter->destroy = hw_perf_counter_destroy;
707
708 /*
709 * Raw event type provide the config in the event structure
710 */
711 if (attr->type == PERF_TYPE_RAW) {
712 hwc->config |= x86_pmu.raw_event(attr->config);
713 return 0;
714 }
715
716 if (attr->type == PERF_TYPE_HW_CACHE)
717 return set_ext_hw_attr(hwc, attr);
718
719 if (attr->config >= x86_pmu.max_events)
720 return -EINVAL;
721 /*
722 * The generic map:
723 */
724 hwc->config |= x86_pmu.event_map(attr->config);
725
726 return 0;
727 }
728
729 static void intel_pmu_disable_all(void)
730 {
731 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
732 }
733
734 static void amd_pmu_disable_all(void)
735 {
736 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
737 int idx;
738
739 if (!cpuc->enabled)
740 return;
741
742 cpuc->enabled = 0;
743 /*
744 * ensure we write the disable before we start disabling the
745 * counters proper, so that amd_pmu_enable_counter() does the
746 * right thing.
747 */
748 barrier();
749
750 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
751 u64 val;
752
753 if (!test_bit(idx, cpuc->active_mask))
754 continue;
755 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
756 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
757 continue;
758 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
759 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
760 }
761 }
762
763 void hw_perf_disable(void)
764 {
765 if (!x86_pmu_initialized())
766 return;
767 return x86_pmu.disable_all();
768 }
769
770 static void intel_pmu_enable_all(void)
771 {
772 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
773 }
774
775 static void amd_pmu_enable_all(void)
776 {
777 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
778 int idx;
779
780 if (cpuc->enabled)
781 return;
782
783 cpuc->enabled = 1;
784 barrier();
785
786 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
787 u64 val;
788
789 if (!test_bit(idx, cpuc->active_mask))
790 continue;
791 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
792 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
793 continue;
794 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
795 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
796 }
797 }
798
799 void hw_perf_enable(void)
800 {
801 if (!x86_pmu_initialized())
802 return;
803 x86_pmu.enable_all();
804 }
805
806 static inline u64 intel_pmu_get_status(void)
807 {
808 u64 status;
809
810 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
811
812 return status;
813 }
814
815 static inline void intel_pmu_ack_status(u64 ack)
816 {
817 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
818 }
819
820 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
821 {
822 int err;
823 err = checking_wrmsrl(hwc->config_base + idx,
824 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
825 }
826
827 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
828 {
829 int err;
830 err = checking_wrmsrl(hwc->config_base + idx,
831 hwc->config);
832 }
833
834 static inline void
835 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
836 {
837 int idx = __idx - X86_PMC_IDX_FIXED;
838 u64 ctrl_val, mask;
839 int err;
840
841 mask = 0xfULL << (idx * 4);
842
843 rdmsrl(hwc->config_base, ctrl_val);
844 ctrl_val &= ~mask;
845 err = checking_wrmsrl(hwc->config_base, ctrl_val);
846 }
847
848 static inline void
849 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
850 {
851 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
852 intel_pmu_disable_fixed(hwc, idx);
853 return;
854 }
855
856 x86_pmu_disable_counter(hwc, idx);
857 }
858
859 static inline void
860 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
861 {
862 x86_pmu_disable_counter(hwc, idx);
863 }
864
865 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
866
867 /*
868 * Set the next IRQ period, based on the hwc->period_left value.
869 * To be called with the counter disabled in hw:
870 */
871 static int
872 x86_perf_counter_set_period(struct perf_counter *counter,
873 struct hw_perf_counter *hwc, int idx)
874 {
875 s64 left = atomic64_read(&hwc->period_left);
876 s64 period = hwc->sample_period;
877 int err, ret = 0;
878
879 /*
880 * If we are way outside a reasoable range then just skip forward:
881 */
882 if (unlikely(left <= -period)) {
883 left = period;
884 atomic64_set(&hwc->period_left, left);
885 hwc->last_period = period;
886 ret = 1;
887 }
888
889 if (unlikely(left <= 0)) {
890 left += period;
891 atomic64_set(&hwc->period_left, left);
892 hwc->last_period = period;
893 ret = 1;
894 }
895 /*
896 * Quirk: certain CPUs dont like it if just 1 event is left:
897 */
898 if (unlikely(left < 2))
899 left = 2;
900
901 if (left > x86_pmu.max_period)
902 left = x86_pmu.max_period;
903
904 per_cpu(prev_left[idx], smp_processor_id()) = left;
905
906 /*
907 * The hw counter starts counting from this counter offset,
908 * mark it to be able to extra future deltas:
909 */
910 atomic64_set(&hwc->prev_count, (u64)-left);
911
912 err = checking_wrmsrl(hwc->counter_base + idx,
913 (u64)(-left) & x86_pmu.counter_mask);
914
915 perf_counter_update_userpage(counter);
916
917 return ret;
918 }
919
920 static inline void
921 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
922 {
923 int idx = __idx - X86_PMC_IDX_FIXED;
924 u64 ctrl_val, bits, mask;
925 int err;
926
927 /*
928 * Enable IRQ generation (0x8),
929 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
930 * if requested:
931 */
932 bits = 0x8ULL;
933 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
934 bits |= 0x2;
935 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
936 bits |= 0x1;
937 bits <<= (idx * 4);
938 mask = 0xfULL << (idx * 4);
939
940 rdmsrl(hwc->config_base, ctrl_val);
941 ctrl_val &= ~mask;
942 ctrl_val |= bits;
943 err = checking_wrmsrl(hwc->config_base, ctrl_val);
944 }
945
946 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
947 {
948 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
949 intel_pmu_enable_fixed(hwc, idx);
950 return;
951 }
952
953 x86_pmu_enable_counter(hwc, idx);
954 }
955
956 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
957 {
958 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
959
960 if (cpuc->enabled)
961 x86_pmu_enable_counter(hwc, idx);
962 else
963 x86_pmu_disable_counter(hwc, idx);
964 }
965
966 static int
967 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
968 {
969 unsigned int event;
970
971 if (!x86_pmu.num_counters_fixed)
972 return -1;
973
974 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
975
976 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
977 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
978 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
979 return X86_PMC_IDX_FIXED_CPU_CYCLES;
980 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
981 return X86_PMC_IDX_FIXED_BUS_CYCLES;
982
983 return -1;
984 }
985
986 /*
987 * Find a PMC slot for the freshly enabled / scheduled in counter:
988 */
989 static int x86_pmu_enable(struct perf_counter *counter)
990 {
991 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
992 struct hw_perf_counter *hwc = &counter->hw;
993 int idx;
994
995 idx = fixed_mode_idx(counter, hwc);
996 if (idx >= 0) {
997 /*
998 * Try to get the fixed counter, if that is already taken
999 * then try to get a generic counter:
1000 */
1001 if (test_and_set_bit(idx, cpuc->used_mask))
1002 goto try_generic;
1003
1004 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1005 /*
1006 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1007 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1008 */
1009 hwc->counter_base =
1010 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1011 hwc->idx = idx;
1012 } else {
1013 idx = hwc->idx;
1014 /* Try to get the previous generic counter again */
1015 if (test_and_set_bit(idx, cpuc->used_mask)) {
1016 try_generic:
1017 idx = find_first_zero_bit(cpuc->used_mask,
1018 x86_pmu.num_counters);
1019 if (idx == x86_pmu.num_counters)
1020 return -EAGAIN;
1021
1022 set_bit(idx, cpuc->used_mask);
1023 hwc->idx = idx;
1024 }
1025 hwc->config_base = x86_pmu.eventsel;
1026 hwc->counter_base = x86_pmu.perfctr;
1027 }
1028
1029 perf_counters_lapic_init();
1030
1031 x86_pmu.disable(hwc, idx);
1032
1033 cpuc->counters[idx] = counter;
1034 set_bit(idx, cpuc->active_mask);
1035
1036 x86_perf_counter_set_period(counter, hwc, idx);
1037 x86_pmu.enable(hwc, idx);
1038
1039 perf_counter_update_userpage(counter);
1040
1041 return 0;
1042 }
1043
1044 static void x86_pmu_unthrottle(struct perf_counter *counter)
1045 {
1046 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1047 struct hw_perf_counter *hwc = &counter->hw;
1048
1049 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1050 cpuc->counters[hwc->idx] != counter))
1051 return;
1052
1053 x86_pmu.enable(hwc, hwc->idx);
1054 }
1055
1056 void perf_counter_print_debug(void)
1057 {
1058 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1059 struct cpu_hw_counters *cpuc;
1060 unsigned long flags;
1061 int cpu, idx;
1062
1063 if (!x86_pmu.num_counters)
1064 return;
1065
1066 local_irq_save(flags);
1067
1068 cpu = smp_processor_id();
1069 cpuc = &per_cpu(cpu_hw_counters, cpu);
1070
1071 if (x86_pmu.version >= 2) {
1072 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1073 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1074 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1075 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1076
1077 pr_info("\n");
1078 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1079 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1080 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1081 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1082 }
1083 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1084
1085 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1086 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1087 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1088
1089 prev_left = per_cpu(prev_left[idx], cpu);
1090
1091 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1092 cpu, idx, pmc_ctrl);
1093 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1094 cpu, idx, pmc_count);
1095 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1096 cpu, idx, prev_left);
1097 }
1098 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1099 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1100
1101 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1102 cpu, idx, pmc_count);
1103 }
1104 local_irq_restore(flags);
1105 }
1106
1107 static void x86_pmu_disable(struct perf_counter *counter)
1108 {
1109 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1110 struct hw_perf_counter *hwc = &counter->hw;
1111 int idx = hwc->idx;
1112
1113 /*
1114 * Must be done before we disable, otherwise the nmi handler
1115 * could reenable again:
1116 */
1117 clear_bit(idx, cpuc->active_mask);
1118 x86_pmu.disable(hwc, idx);
1119
1120 /*
1121 * Make sure the cleared pointer becomes visible before we
1122 * (potentially) free the counter:
1123 */
1124 barrier();
1125
1126 /*
1127 * Drain the remaining delta count out of a counter
1128 * that we are disabling:
1129 */
1130 x86_perf_counter_update(counter, hwc, idx);
1131 cpuc->counters[idx] = NULL;
1132 clear_bit(idx, cpuc->used_mask);
1133
1134 perf_counter_update_userpage(counter);
1135 }
1136
1137 /*
1138 * Save and restart an expired counter. Called by NMI contexts,
1139 * so it has to be careful about preempting normal counter ops:
1140 */
1141 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1142 {
1143 struct hw_perf_counter *hwc = &counter->hw;
1144 int idx = hwc->idx;
1145 int ret;
1146
1147 x86_perf_counter_update(counter, hwc, idx);
1148 ret = x86_perf_counter_set_period(counter, hwc, idx);
1149
1150 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1151 intel_pmu_enable_counter(hwc, idx);
1152
1153 return ret;
1154 }
1155
1156 static void intel_pmu_reset(void)
1157 {
1158 unsigned long flags;
1159 int idx;
1160
1161 if (!x86_pmu.num_counters)
1162 return;
1163
1164 local_irq_save(flags);
1165
1166 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1167
1168 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1169 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1170 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1171 }
1172 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1173 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1174 }
1175
1176 local_irq_restore(flags);
1177 }
1178
1179
1180 /*
1181 * This handler is triggered by the local APIC, so the APIC IRQ handling
1182 * rules apply:
1183 */
1184 static int intel_pmu_handle_irq(struct pt_regs *regs)
1185 {
1186 struct perf_sample_data data;
1187 struct cpu_hw_counters *cpuc;
1188 int bit, cpu, loops;
1189 u64 ack, status;
1190
1191 data.regs = regs;
1192 data.addr = 0;
1193
1194 cpu = smp_processor_id();
1195 cpuc = &per_cpu(cpu_hw_counters, cpu);
1196
1197 perf_disable();
1198 status = intel_pmu_get_status();
1199 if (!status) {
1200 perf_enable();
1201 return 0;
1202 }
1203
1204 loops = 0;
1205 again:
1206 if (++loops > 100) {
1207 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1208 perf_counter_print_debug();
1209 intel_pmu_reset();
1210 perf_enable();
1211 return 1;
1212 }
1213
1214 inc_irq_stat(apic_perf_irqs);
1215 ack = status;
1216 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1217 struct perf_counter *counter = cpuc->counters[bit];
1218
1219 clear_bit(bit, (unsigned long *) &status);
1220 if (!test_bit(bit, cpuc->active_mask))
1221 continue;
1222
1223 if (!intel_pmu_save_and_restart(counter))
1224 continue;
1225
1226 data.period = counter->hw.last_period;
1227
1228 if (perf_counter_overflow(counter, 1, &data))
1229 intel_pmu_disable_counter(&counter->hw, bit);
1230 }
1231
1232 intel_pmu_ack_status(ack);
1233
1234 /*
1235 * Repeat if there is more work to be done:
1236 */
1237 status = intel_pmu_get_status();
1238 if (status)
1239 goto again;
1240
1241 perf_enable();
1242
1243 return 1;
1244 }
1245
1246 static int amd_pmu_handle_irq(struct pt_regs *regs)
1247 {
1248 struct perf_sample_data data;
1249 struct cpu_hw_counters *cpuc;
1250 struct perf_counter *counter;
1251 struct hw_perf_counter *hwc;
1252 int cpu, idx, handled = 0;
1253 u64 val;
1254
1255 data.regs = regs;
1256 data.addr = 0;
1257
1258 cpu = smp_processor_id();
1259 cpuc = &per_cpu(cpu_hw_counters, cpu);
1260
1261 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1262 if (!test_bit(idx, cpuc->active_mask))
1263 continue;
1264
1265 counter = cpuc->counters[idx];
1266 hwc = &counter->hw;
1267
1268 val = x86_perf_counter_update(counter, hwc, idx);
1269 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1270 continue;
1271
1272 /*
1273 * counter overflow
1274 */
1275 handled = 1;
1276 data.period = counter->hw.last_period;
1277
1278 if (!x86_perf_counter_set_period(counter, hwc, idx))
1279 continue;
1280
1281 if (perf_counter_overflow(counter, 1, &data))
1282 amd_pmu_disable_counter(hwc, idx);
1283 }
1284
1285 if (handled)
1286 inc_irq_stat(apic_perf_irqs);
1287
1288 return handled;
1289 }
1290
1291 void smp_perf_pending_interrupt(struct pt_regs *regs)
1292 {
1293 irq_enter();
1294 ack_APIC_irq();
1295 inc_irq_stat(apic_pending_irqs);
1296 perf_counter_do_pending();
1297 irq_exit();
1298 }
1299
1300 void set_perf_counter_pending(void)
1301 {
1302 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1303 }
1304
1305 void perf_counters_lapic_init(void)
1306 {
1307 if (!x86_pmu_initialized())
1308 return;
1309
1310 /*
1311 * Always use NMI for PMU
1312 */
1313 apic_write(APIC_LVTPC, APIC_DM_NMI);
1314 }
1315
1316 static int __kprobes
1317 perf_counter_nmi_handler(struct notifier_block *self,
1318 unsigned long cmd, void *__args)
1319 {
1320 struct die_args *args = __args;
1321 struct pt_regs *regs;
1322
1323 if (!atomic_read(&active_counters))
1324 return NOTIFY_DONE;
1325
1326 switch (cmd) {
1327 case DIE_NMI:
1328 case DIE_NMI_IPI:
1329 break;
1330
1331 default:
1332 return NOTIFY_DONE;
1333 }
1334
1335 regs = args->regs;
1336
1337 apic_write(APIC_LVTPC, APIC_DM_NMI);
1338 /*
1339 * Can't rely on the handled return value to say it was our NMI, two
1340 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1341 *
1342 * If the first NMI handles both, the latter will be empty and daze
1343 * the CPU.
1344 */
1345 x86_pmu.handle_irq(regs);
1346
1347 return NOTIFY_STOP;
1348 }
1349
1350 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1351 .notifier_call = perf_counter_nmi_handler,
1352 .next = NULL,
1353 .priority = 1
1354 };
1355
1356 static struct x86_pmu intel_pmu = {
1357 .name = "Intel",
1358 .handle_irq = intel_pmu_handle_irq,
1359 .disable_all = intel_pmu_disable_all,
1360 .enable_all = intel_pmu_enable_all,
1361 .enable = intel_pmu_enable_counter,
1362 .disable = intel_pmu_disable_counter,
1363 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1364 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1365 .event_map = intel_pmu_event_map,
1366 .raw_event = intel_pmu_raw_event,
1367 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1368 /*
1369 * Intel PMCs cannot be accessed sanely above 32 bit width,
1370 * so we install an artificial 1<<31 period regardless of
1371 * the generic counter period:
1372 */
1373 .max_period = (1ULL << 31) - 1,
1374 };
1375
1376 static struct x86_pmu amd_pmu = {
1377 .name = "AMD",
1378 .handle_irq = amd_pmu_handle_irq,
1379 .disable_all = amd_pmu_disable_all,
1380 .enable_all = amd_pmu_enable_all,
1381 .enable = amd_pmu_enable_counter,
1382 .disable = amd_pmu_disable_counter,
1383 .eventsel = MSR_K7_EVNTSEL0,
1384 .perfctr = MSR_K7_PERFCTR0,
1385 .event_map = amd_pmu_event_map,
1386 .raw_event = amd_pmu_raw_event,
1387 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1388 .num_counters = 4,
1389 .counter_bits = 48,
1390 .counter_mask = (1ULL << 48) - 1,
1391 /* use highest bit to detect overflow */
1392 .max_period = (1ULL << 47) - 1,
1393 };
1394
1395 static int intel_pmu_init(void)
1396 {
1397 union cpuid10_edx edx;
1398 union cpuid10_eax eax;
1399 unsigned int unused;
1400 unsigned int ebx;
1401 int version;
1402
1403 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1404 return -ENODEV;
1405
1406 /*
1407 * Check whether the Architectural PerfMon supports
1408 * Branch Misses Retired Event or not.
1409 */
1410 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1411 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1412 return -ENODEV;
1413
1414 version = eax.split.version_id;
1415 if (version < 2)
1416 return -ENODEV;
1417
1418 x86_pmu = intel_pmu;
1419 x86_pmu.version = version;
1420 x86_pmu.num_counters = eax.split.num_counters;
1421 x86_pmu.counter_bits = eax.split.bit_width;
1422 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1423
1424 /*
1425 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1426 * assume at least 3 counters:
1427 */
1428 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1429
1430 /*
1431 * Install the hw-cache-events table:
1432 */
1433 switch (boot_cpu_data.x86_model) {
1434 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1435 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1436 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1437 case 29: /* six-core 45 nm xeon "Dunnington" */
1438 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1439 sizeof(hw_cache_event_ids));
1440
1441 pr_cont("Core2 events, ");
1442 break;
1443 default:
1444 case 26:
1445 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1446 sizeof(hw_cache_event_ids));
1447
1448 pr_cont("Nehalem/Corei7 events, ");
1449 break;
1450 case 28:
1451 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1452 sizeof(hw_cache_event_ids));
1453
1454 pr_cont("Atom events, ");
1455 break;
1456 }
1457 return 0;
1458 }
1459
1460 static int amd_pmu_init(void)
1461 {
1462 /* Performance-monitoring supported from K7 and later: */
1463 if (boot_cpu_data.x86 < 6)
1464 return -ENODEV;
1465
1466 x86_pmu = amd_pmu;
1467
1468 /* Events are common for all AMDs */
1469 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
1470 sizeof(hw_cache_event_ids));
1471
1472 return 0;
1473 }
1474
1475 void __init init_hw_perf_counters(void)
1476 {
1477 int err;
1478
1479 pr_info("Performance Counters: ");
1480
1481 switch (boot_cpu_data.x86_vendor) {
1482 case X86_VENDOR_INTEL:
1483 err = intel_pmu_init();
1484 break;
1485 case X86_VENDOR_AMD:
1486 err = amd_pmu_init();
1487 break;
1488 default:
1489 return;
1490 }
1491 if (err != 0) {
1492 pr_cont("no PMU driver, software counters only.\n");
1493 return;
1494 }
1495
1496 pr_cont("%s PMU driver.\n", x86_pmu.name);
1497
1498 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1499 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1500 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1501 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1502 }
1503 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1504 perf_max_counters = x86_pmu.num_counters;
1505
1506 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1507 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1508 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1509 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1510 }
1511
1512 perf_counter_mask |=
1513 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1514 x86_pmu.intel_ctrl = perf_counter_mask;
1515
1516 perf_counters_lapic_init();
1517 register_die_notifier(&perf_counter_nmi_notifier);
1518
1519 pr_info("... version: %d\n", x86_pmu.version);
1520 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
1521 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
1522 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
1523 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1524 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
1525 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
1526 }
1527
1528 static inline void x86_pmu_read(struct perf_counter *counter)
1529 {
1530 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1531 }
1532
1533 static const struct pmu pmu = {
1534 .enable = x86_pmu_enable,
1535 .disable = x86_pmu_disable,
1536 .read = x86_pmu_read,
1537 .unthrottle = x86_pmu_unthrottle,
1538 };
1539
1540 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1541 {
1542 int err;
1543
1544 err = __hw_perf_counter_init(counter);
1545 if (err)
1546 return ERR_PTR(err);
1547
1548 return &pmu;
1549 }
1550
1551 /*
1552 * callchain support
1553 */
1554
1555 static inline
1556 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1557 {
1558 if (entry->nr < PERF_MAX_STACK_DEPTH)
1559 entry->ip[entry->nr++] = ip;
1560 }
1561
1562 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1563 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1564
1565
1566 static void
1567 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1568 {
1569 /* Ignore warnings */
1570 }
1571
1572 static void backtrace_warning(void *data, char *msg)
1573 {
1574 /* Ignore warnings */
1575 }
1576
1577 static int backtrace_stack(void *data, char *name)
1578 {
1579 /* Process all stacks: */
1580 return 0;
1581 }
1582
1583 static void backtrace_address(void *data, unsigned long addr, int reliable)
1584 {
1585 struct perf_callchain_entry *entry = data;
1586
1587 if (reliable)
1588 callchain_store(entry, addr);
1589 }
1590
1591 static const struct stacktrace_ops backtrace_ops = {
1592 .warning = backtrace_warning,
1593 .warning_symbol = backtrace_warning_symbol,
1594 .stack = backtrace_stack,
1595 .address = backtrace_address,
1596 };
1597
1598 #include "../dumpstack.h"
1599
1600 static void
1601 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1602 {
1603 callchain_store(entry, PERF_CONTEXT_KERNEL);
1604 callchain_store(entry, regs->ip);
1605
1606 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1607 }
1608
1609 /*
1610 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1611 */
1612 static unsigned long
1613 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1614 {
1615 unsigned long offset, addr = (unsigned long)from;
1616 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1617 unsigned long size, len = 0;
1618 struct page *page;
1619 void *map;
1620 int ret;
1621
1622 do {
1623 ret = __get_user_pages_fast(addr, 1, 0, &page);
1624 if (!ret)
1625 break;
1626
1627 offset = addr & (PAGE_SIZE - 1);
1628 size = min(PAGE_SIZE - offset, n - len);
1629
1630 map = kmap_atomic(page, type);
1631 memcpy(to, map+offset, size);
1632 kunmap_atomic(map, type);
1633 put_page(page);
1634
1635 len += size;
1636 to += size;
1637 addr += size;
1638
1639 } while (len < n);
1640
1641 return len;
1642 }
1643
1644 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1645 {
1646 unsigned long bytes;
1647
1648 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1649
1650 return bytes == sizeof(*frame);
1651 }
1652
1653 static void
1654 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1655 {
1656 struct stack_frame frame;
1657 const void __user *fp;
1658
1659 if (!user_mode(regs))
1660 regs = task_pt_regs(current);
1661
1662 fp = (void __user *)regs->bp;
1663
1664 callchain_store(entry, PERF_CONTEXT_USER);
1665 callchain_store(entry, regs->ip);
1666
1667 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1668 frame.next_frame = NULL;
1669 frame.return_address = 0;
1670
1671 if (!copy_stack_frame(fp, &frame))
1672 break;
1673
1674 if ((unsigned long)fp < regs->sp)
1675 break;
1676
1677 callchain_store(entry, frame.return_address);
1678 fp = frame.next_frame;
1679 }
1680 }
1681
1682 static void
1683 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1684 {
1685 int is_user;
1686
1687 if (!regs)
1688 return;
1689
1690 is_user = user_mode(regs);
1691
1692 if (!current || current->pid == 0)
1693 return;
1694
1695 if (is_user && current->state != TASK_RUNNING)
1696 return;
1697
1698 if (!is_user)
1699 perf_callchain_kernel(regs, entry);
1700
1701 if (current->mm)
1702 perf_callchain_user(regs, entry);
1703 }
1704
1705 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1706 {
1707 struct perf_callchain_entry *entry;
1708
1709 if (in_nmi())
1710 entry = &__get_cpu_var(nmi_entry);
1711 else
1712 entry = &__get_cpu_var(irq_entry);
1713
1714 entry->nr = 0;
1715
1716 perf_do_callchain(regs, entry);
1717
1718 return entry;
1719 }