]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/perf_event.c
26604188aa49f3679a232fea72babb7855577928
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33 #include <asm/smp.h>
34
35 #if 0
36 #undef wrmsrl
37 #define wrmsrl(msr, val) \
38 do { \
39 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
40 (unsigned long)(val)); \
41 native_write_msr((msr), (u32)((u64)(val)), \
42 (u32)((u64)(val) >> 32)); \
43 } while (0)
44 #endif
45
46 /*
47 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
48 */
49 static unsigned long
50 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
51 {
52 unsigned long offset, addr = (unsigned long)from;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
57
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
62
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
65
66 map = kmap_atomic(page);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map);
69 put_page(page);
70
71 len += size;
72 to += size;
73 addr += size;
74
75 } while (len < n);
76
77 return len;
78 }
79
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
84 };
85 u64 code;
86 u64 cmask;
87 int weight;
88 };
89
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 struct intel_percore;
98
99 #define MAX_LBR_ENTRIES 16
100
101 struct cpu_hw_events {
102 /*
103 * Generic x86 PMC bits
104 */
105 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
106 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
107 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
108 int enabled;
109
110 int n_events;
111 int n_added;
112 int n_txn;
113 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
114 u64 tags[X86_PMC_IDX_MAX];
115 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
116
117 unsigned int group_flag;
118
119 /*
120 * Intel DebugStore bits
121 */
122 struct debug_store *ds;
123 u64 pebs_enabled;
124
125 /*
126 * Intel LBR bits
127 */
128 int lbr_users;
129 void *lbr_context;
130 struct perf_branch_stack lbr_stack;
131 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
132
133 /*
134 * Intel percore register state.
135 * Coordinate shared resources between HT threads.
136 */
137 int percore_used; /* Used by this CPU? */
138 struct intel_percore *per_core;
139
140 /*
141 * AMD specific bits
142 */
143 struct amd_nb *amd_nb;
144 };
145
146 #define __EVENT_CONSTRAINT(c, n, m, w) {\
147 { .idxmsk64 = (n) }, \
148 .code = (c), \
149 .cmask = (m), \
150 .weight = (w), \
151 }
152
153 #define EVENT_CONSTRAINT(c, n, m) \
154 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
155
156 /*
157 * Constraint on the Event code.
158 */
159 #define INTEL_EVENT_CONSTRAINT(c, n) \
160 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
161
162 /*
163 * Constraint on the Event code + UMask + fixed-mask
164 *
165 * filter mask to validate fixed counter events.
166 * the following filters disqualify for fixed counters:
167 * - inv
168 * - edge
169 * - cnt-mask
170 * The other filters are supported by fixed counters.
171 * The any-thread option is supported starting with v3.
172 */
173 #define FIXED_EVENT_CONSTRAINT(c, n) \
174 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
175
176 /*
177 * Constraint on the Event code + UMask
178 */
179 #define INTEL_UEVENT_CONSTRAINT(c, n) \
180 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
181 #define PEBS_EVENT_CONSTRAINT(c, n) \
182 INTEL_UEVENT_CONSTRAINT(c, n)
183
184 #define EVENT_CONSTRAINT_END \
185 EVENT_CONSTRAINT(0, 0, 0)
186
187 #define for_each_event_constraint(e, c) \
188 for ((e) = (c); (e)->weight; (e)++)
189
190 /*
191 * Extra registers for specific events.
192 * Some events need large masks and require external MSRs.
193 * Define a mapping to these extra registers.
194 */
195 struct extra_reg {
196 unsigned int event;
197 unsigned int msr;
198 u64 config_mask;
199 u64 valid_mask;
200 };
201
202 #define EVENT_EXTRA_REG(e, ms, m, vm) { \
203 .event = (e), \
204 .msr = (ms), \
205 .config_mask = (m), \
206 .valid_mask = (vm), \
207 }
208 #define INTEL_EVENT_EXTRA_REG(event, msr, vm) \
209 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm)
210 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0)
211
212 union perf_capabilities {
213 struct {
214 u64 lbr_format : 6;
215 u64 pebs_trap : 1;
216 u64 pebs_arch_reg : 1;
217 u64 pebs_format : 4;
218 u64 smm_freeze : 1;
219 };
220 u64 capabilities;
221 };
222
223 /*
224 * struct x86_pmu - generic x86 pmu
225 */
226 struct x86_pmu {
227 /*
228 * Generic x86 PMC bits
229 */
230 const char *name;
231 int version;
232 int (*handle_irq)(struct pt_regs *);
233 void (*disable_all)(void);
234 void (*enable_all)(int added);
235 void (*enable)(struct perf_event *);
236 void (*disable)(struct perf_event *);
237 int (*hw_config)(struct perf_event *event);
238 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
239 unsigned eventsel;
240 unsigned perfctr;
241 u64 (*event_map)(int);
242 int max_events;
243 int num_counters;
244 int num_counters_fixed;
245 int cntval_bits;
246 u64 cntval_mask;
247 int apic;
248 u64 max_period;
249 struct event_constraint *
250 (*get_event_constraints)(struct cpu_hw_events *cpuc,
251 struct perf_event *event);
252
253 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
254 struct perf_event *event);
255 struct event_constraint *event_constraints;
256 struct event_constraint *percore_constraints;
257 void (*quirks)(void);
258 int perfctr_second_write;
259
260 int (*cpu_prepare)(int cpu);
261 void (*cpu_starting)(int cpu);
262 void (*cpu_dying)(int cpu);
263 void (*cpu_dead)(int cpu);
264
265 /*
266 * Intel Arch Perfmon v2+
267 */
268 u64 intel_ctrl;
269 union perf_capabilities intel_cap;
270
271 /*
272 * Intel DebugStore bits
273 */
274 int bts, pebs;
275 int bts_active, pebs_active;
276 int pebs_record_size;
277 void (*drain_pebs)(struct pt_regs *regs);
278 struct event_constraint *pebs_constraints;
279
280 /*
281 * Intel LBR
282 */
283 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
284 int lbr_nr; /* hardware stack size */
285
286 /*
287 * Extra registers for events
288 */
289 struct extra_reg *extra_regs;
290 };
291
292 static struct x86_pmu x86_pmu __read_mostly;
293
294 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
295 .enabled = 1,
296 };
297
298 static int x86_perf_event_set_period(struct perf_event *event);
299
300 /*
301 * Generalized hw caching related hw_event table, filled
302 * in on a per model basis. A value of 0 means
303 * 'not supported', -1 means 'hw_event makes no sense on
304 * this CPU', any other value means the raw hw_event
305 * ID.
306 */
307
308 #define C(x) PERF_COUNT_HW_CACHE_##x
309
310 static u64 __read_mostly hw_cache_event_ids
311 [PERF_COUNT_HW_CACHE_MAX]
312 [PERF_COUNT_HW_CACHE_OP_MAX]
313 [PERF_COUNT_HW_CACHE_RESULT_MAX];
314 static u64 __read_mostly hw_cache_extra_regs
315 [PERF_COUNT_HW_CACHE_MAX]
316 [PERF_COUNT_HW_CACHE_OP_MAX]
317 [PERF_COUNT_HW_CACHE_RESULT_MAX];
318
319 /*
320 * Propagate event elapsed time into the generic event.
321 * Can only be executed on the CPU where the event is active.
322 * Returns the delta events processed.
323 */
324 static u64
325 x86_perf_event_update(struct perf_event *event)
326 {
327 struct hw_perf_event *hwc = &event->hw;
328 int shift = 64 - x86_pmu.cntval_bits;
329 u64 prev_raw_count, new_raw_count;
330 int idx = hwc->idx;
331 s64 delta;
332
333 if (idx == X86_PMC_IDX_FIXED_BTS)
334 return 0;
335
336 /*
337 * Careful: an NMI might modify the previous event value.
338 *
339 * Our tactic to handle this is to first atomically read and
340 * exchange a new raw count - then add that new-prev delta
341 * count to the generic event atomically:
342 */
343 again:
344 prev_raw_count = local64_read(&hwc->prev_count);
345 rdmsrl(hwc->event_base, new_raw_count);
346
347 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
348 new_raw_count) != prev_raw_count)
349 goto again;
350
351 /*
352 * Now we have the new raw value and have updated the prev
353 * timestamp already. We can now calculate the elapsed delta
354 * (event-)time and add that to the generic event.
355 *
356 * Careful, not all hw sign-extends above the physical width
357 * of the count.
358 */
359 delta = (new_raw_count << shift) - (prev_raw_count << shift);
360 delta >>= shift;
361
362 local64_add(delta, &event->count);
363 local64_sub(delta, &hwc->period_left);
364
365 return new_raw_count;
366 }
367
368 /* using X86_FEATURE_PERFCTR_CORE to later implement ALTERNATIVE() here */
369 static inline int x86_pmu_addr_offset(int index)
370 {
371 if (boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
372 return index << 1;
373 return index;
374 }
375
376 static inline unsigned int x86_pmu_config_addr(int index)
377 {
378 return x86_pmu.eventsel + x86_pmu_addr_offset(index);
379 }
380
381 static inline unsigned int x86_pmu_event_addr(int index)
382 {
383 return x86_pmu.perfctr + x86_pmu_addr_offset(index);
384 }
385
386 /*
387 * Find and validate any extra registers to set up.
388 */
389 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
390 {
391 struct extra_reg *er;
392
393 event->hw.extra_reg = 0;
394 event->hw.extra_config = 0;
395
396 if (!x86_pmu.extra_regs)
397 return 0;
398
399 for (er = x86_pmu.extra_regs; er->msr; er++) {
400 if (er->event != (config & er->config_mask))
401 continue;
402 if (event->attr.config1 & ~er->valid_mask)
403 return -EINVAL;
404 event->hw.extra_reg = er->msr;
405 event->hw.extra_config = event->attr.config1;
406 break;
407 }
408 return 0;
409 }
410
411 static atomic_t active_events;
412 static DEFINE_MUTEX(pmc_reserve_mutex);
413
414 #ifdef CONFIG_X86_LOCAL_APIC
415
416 static bool reserve_pmc_hardware(void)
417 {
418 int i;
419
420 for (i = 0; i < x86_pmu.num_counters; i++) {
421 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
422 goto perfctr_fail;
423 }
424
425 for (i = 0; i < x86_pmu.num_counters; i++) {
426 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
427 goto eventsel_fail;
428 }
429
430 return true;
431
432 eventsel_fail:
433 for (i--; i >= 0; i--)
434 release_evntsel_nmi(x86_pmu_config_addr(i));
435
436 i = x86_pmu.num_counters;
437
438 perfctr_fail:
439 for (i--; i >= 0; i--)
440 release_perfctr_nmi(x86_pmu_event_addr(i));
441
442 return false;
443 }
444
445 static void release_pmc_hardware(void)
446 {
447 int i;
448
449 for (i = 0; i < x86_pmu.num_counters; i++) {
450 release_perfctr_nmi(x86_pmu_event_addr(i));
451 release_evntsel_nmi(x86_pmu_config_addr(i));
452 }
453 }
454
455 #else
456
457 static bool reserve_pmc_hardware(void) { return true; }
458 static void release_pmc_hardware(void) {}
459
460 #endif
461
462 static bool check_hw_exists(void)
463 {
464 u64 val, val_new = 0;
465 int i, reg, ret = 0;
466
467 /*
468 * Check to see if the BIOS enabled any of the counters, if so
469 * complain and bail.
470 */
471 for (i = 0; i < x86_pmu.num_counters; i++) {
472 reg = x86_pmu_config_addr(i);
473 ret = rdmsrl_safe(reg, &val);
474 if (ret)
475 goto msr_fail;
476 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
477 goto bios_fail;
478 }
479
480 if (x86_pmu.num_counters_fixed) {
481 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
482 ret = rdmsrl_safe(reg, &val);
483 if (ret)
484 goto msr_fail;
485 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
486 if (val & (0x03 << i*4))
487 goto bios_fail;
488 }
489 }
490
491 /*
492 * Now write a value and read it back to see if it matches,
493 * this is needed to detect certain hardware emulators (qemu/kvm)
494 * that don't trap on the MSR access and always return 0s.
495 */
496 val = 0xabcdUL;
497 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
498 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
499 if (ret || val != val_new)
500 goto msr_fail;
501
502 return true;
503
504 bios_fail:
505 printk(KERN_CONT "Broken BIOS detected, using software events only.\n");
506 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
507 return false;
508
509 msr_fail:
510 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
511 return false;
512 }
513
514 static void reserve_ds_buffers(void);
515 static void release_ds_buffers(void);
516
517 static void hw_perf_event_destroy(struct perf_event *event)
518 {
519 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
520 release_pmc_hardware();
521 release_ds_buffers();
522 mutex_unlock(&pmc_reserve_mutex);
523 }
524 }
525
526 static inline int x86_pmu_initialized(void)
527 {
528 return x86_pmu.handle_irq != NULL;
529 }
530
531 static inline int
532 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
533 {
534 struct perf_event_attr *attr = &event->attr;
535 unsigned int cache_type, cache_op, cache_result;
536 u64 config, val;
537
538 config = attr->config;
539
540 cache_type = (config >> 0) & 0xff;
541 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
542 return -EINVAL;
543
544 cache_op = (config >> 8) & 0xff;
545 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
546 return -EINVAL;
547
548 cache_result = (config >> 16) & 0xff;
549 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
550 return -EINVAL;
551
552 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
553
554 if (val == 0)
555 return -ENOENT;
556
557 if (val == -1)
558 return -EINVAL;
559
560 hwc->config |= val;
561 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
562 return x86_pmu_extra_regs(val, event);
563 }
564
565 static int x86_setup_perfctr(struct perf_event *event)
566 {
567 struct perf_event_attr *attr = &event->attr;
568 struct hw_perf_event *hwc = &event->hw;
569 u64 config;
570
571 if (!is_sampling_event(event)) {
572 hwc->sample_period = x86_pmu.max_period;
573 hwc->last_period = hwc->sample_period;
574 local64_set(&hwc->period_left, hwc->sample_period);
575 } else {
576 /*
577 * If we have a PMU initialized but no APIC
578 * interrupts, we cannot sample hardware
579 * events (user-space has to fall back and
580 * sample via a hrtimer based software event):
581 */
582 if (!x86_pmu.apic)
583 return -EOPNOTSUPP;
584 }
585
586 if (attr->type == PERF_TYPE_RAW)
587 return x86_pmu_extra_regs(event->attr.config, event);
588
589 if (attr->type == PERF_TYPE_HW_CACHE)
590 return set_ext_hw_attr(hwc, event);
591
592 if (attr->config >= x86_pmu.max_events)
593 return -EINVAL;
594
595 /*
596 * The generic map:
597 */
598 config = x86_pmu.event_map(attr->config);
599
600 if (config == 0)
601 return -ENOENT;
602
603 if (config == -1LL)
604 return -EINVAL;
605
606 /*
607 * Branch tracing:
608 */
609 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
610 (hwc->sample_period == 1)) {
611 /* BTS is not supported by this architecture. */
612 if (!x86_pmu.bts_active)
613 return -EOPNOTSUPP;
614
615 /* BTS is currently only allowed for user-mode. */
616 if (!attr->exclude_kernel)
617 return -EOPNOTSUPP;
618 }
619
620 hwc->config |= config;
621
622 return 0;
623 }
624
625 static int x86_pmu_hw_config(struct perf_event *event)
626 {
627 if (event->attr.precise_ip) {
628 int precise = 0;
629
630 /* Support for constant skid */
631 if (x86_pmu.pebs_active) {
632 precise++;
633
634 /* Support for IP fixup */
635 if (x86_pmu.lbr_nr)
636 precise++;
637 }
638
639 if (event->attr.precise_ip > precise)
640 return -EOPNOTSUPP;
641 }
642
643 /*
644 * Generate PMC IRQs:
645 * (keep 'enabled' bit clear for now)
646 */
647 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
648
649 /*
650 * Count user and OS events unless requested not to
651 */
652 if (!event->attr.exclude_user)
653 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
654 if (!event->attr.exclude_kernel)
655 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
656
657 if (event->attr.type == PERF_TYPE_RAW)
658 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
659
660 return x86_setup_perfctr(event);
661 }
662
663 /*
664 * Setup the hardware configuration for a given attr_type
665 */
666 static int __x86_pmu_event_init(struct perf_event *event)
667 {
668 int err;
669
670 if (!x86_pmu_initialized())
671 return -ENODEV;
672
673 err = 0;
674 if (!atomic_inc_not_zero(&active_events)) {
675 mutex_lock(&pmc_reserve_mutex);
676 if (atomic_read(&active_events) == 0) {
677 if (!reserve_pmc_hardware())
678 err = -EBUSY;
679 else
680 reserve_ds_buffers();
681 }
682 if (!err)
683 atomic_inc(&active_events);
684 mutex_unlock(&pmc_reserve_mutex);
685 }
686 if (err)
687 return err;
688
689 event->destroy = hw_perf_event_destroy;
690
691 event->hw.idx = -1;
692 event->hw.last_cpu = -1;
693 event->hw.last_tag = ~0ULL;
694
695 return x86_pmu.hw_config(event);
696 }
697
698 static void x86_pmu_disable_all(void)
699 {
700 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
701 int idx;
702
703 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
704 u64 val;
705
706 if (!test_bit(idx, cpuc->active_mask))
707 continue;
708 rdmsrl(x86_pmu_config_addr(idx), val);
709 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
710 continue;
711 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
712 wrmsrl(x86_pmu_config_addr(idx), val);
713 }
714 }
715
716 static void x86_pmu_disable(struct pmu *pmu)
717 {
718 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
719
720 if (!x86_pmu_initialized())
721 return;
722
723 if (!cpuc->enabled)
724 return;
725
726 cpuc->n_added = 0;
727 cpuc->enabled = 0;
728 barrier();
729
730 x86_pmu.disable_all();
731 }
732
733 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
734 u64 enable_mask)
735 {
736 if (hwc->extra_reg)
737 wrmsrl(hwc->extra_reg, hwc->extra_config);
738 wrmsrl(hwc->config_base, hwc->config | enable_mask);
739 }
740
741 static void x86_pmu_enable_all(int added)
742 {
743 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
744 int idx;
745
746 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
747 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
748
749 if (!test_bit(idx, cpuc->active_mask))
750 continue;
751
752 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
753 }
754 }
755
756 static struct pmu pmu;
757
758 static inline int is_x86_event(struct perf_event *event)
759 {
760 return event->pmu == &pmu;
761 }
762
763 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
764 {
765 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
766 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
767 int i, j, w, wmax, num = 0;
768 struct hw_perf_event *hwc;
769
770 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
771
772 for (i = 0; i < n; i++) {
773 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
774 constraints[i] = c;
775 }
776
777 /*
778 * fastpath, try to reuse previous register
779 */
780 for (i = 0; i < n; i++) {
781 hwc = &cpuc->event_list[i]->hw;
782 c = constraints[i];
783
784 /* never assigned */
785 if (hwc->idx == -1)
786 break;
787
788 /* constraint still honored */
789 if (!test_bit(hwc->idx, c->idxmsk))
790 break;
791
792 /* not already used */
793 if (test_bit(hwc->idx, used_mask))
794 break;
795
796 __set_bit(hwc->idx, used_mask);
797 if (assign)
798 assign[i] = hwc->idx;
799 }
800 if (i == n)
801 goto done;
802
803 /*
804 * begin slow path
805 */
806
807 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
808
809 /*
810 * weight = number of possible counters
811 *
812 * 1 = most constrained, only works on one counter
813 * wmax = least constrained, works on any counter
814 *
815 * assign events to counters starting with most
816 * constrained events.
817 */
818 wmax = x86_pmu.num_counters;
819
820 /*
821 * when fixed event counters are present,
822 * wmax is incremented by 1 to account
823 * for one more choice
824 */
825 if (x86_pmu.num_counters_fixed)
826 wmax++;
827
828 for (w = 1, num = n; num && w <= wmax; w++) {
829 /* for each event */
830 for (i = 0; num && i < n; i++) {
831 c = constraints[i];
832 hwc = &cpuc->event_list[i]->hw;
833
834 if (c->weight != w)
835 continue;
836
837 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
838 if (!test_bit(j, used_mask))
839 break;
840 }
841
842 if (j == X86_PMC_IDX_MAX)
843 break;
844
845 __set_bit(j, used_mask);
846
847 if (assign)
848 assign[i] = j;
849 num--;
850 }
851 }
852 done:
853 /*
854 * scheduling failed or is just a simulation,
855 * free resources if necessary
856 */
857 if (!assign || num) {
858 for (i = 0; i < n; i++) {
859 if (x86_pmu.put_event_constraints)
860 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
861 }
862 }
863 return num ? -ENOSPC : 0;
864 }
865
866 /*
867 * dogrp: true if must collect siblings events (group)
868 * returns total number of events and error code
869 */
870 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
871 {
872 struct perf_event *event;
873 int n, max_count;
874
875 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
876
877 /* current number of events already accepted */
878 n = cpuc->n_events;
879
880 if (is_x86_event(leader)) {
881 if (n >= max_count)
882 return -ENOSPC;
883 cpuc->event_list[n] = leader;
884 n++;
885 }
886 if (!dogrp)
887 return n;
888
889 list_for_each_entry(event, &leader->sibling_list, group_entry) {
890 if (!is_x86_event(event) ||
891 event->state <= PERF_EVENT_STATE_OFF)
892 continue;
893
894 if (n >= max_count)
895 return -ENOSPC;
896
897 cpuc->event_list[n] = event;
898 n++;
899 }
900 return n;
901 }
902
903 static inline void x86_assign_hw_event(struct perf_event *event,
904 struct cpu_hw_events *cpuc, int i)
905 {
906 struct hw_perf_event *hwc = &event->hw;
907
908 hwc->idx = cpuc->assign[i];
909 hwc->last_cpu = smp_processor_id();
910 hwc->last_tag = ++cpuc->tags[i];
911
912 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
913 hwc->config_base = 0;
914 hwc->event_base = 0;
915 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
916 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
917 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0;
918 } else {
919 hwc->config_base = x86_pmu_config_addr(hwc->idx);
920 hwc->event_base = x86_pmu_event_addr(hwc->idx);
921 }
922 }
923
924 static inline int match_prev_assignment(struct hw_perf_event *hwc,
925 struct cpu_hw_events *cpuc,
926 int i)
927 {
928 return hwc->idx == cpuc->assign[i] &&
929 hwc->last_cpu == smp_processor_id() &&
930 hwc->last_tag == cpuc->tags[i];
931 }
932
933 static void x86_pmu_start(struct perf_event *event, int flags);
934 static void x86_pmu_stop(struct perf_event *event, int flags);
935
936 static void x86_pmu_enable(struct pmu *pmu)
937 {
938 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
939 struct perf_event *event;
940 struct hw_perf_event *hwc;
941 int i, added = cpuc->n_added;
942
943 if (!x86_pmu_initialized())
944 return;
945
946 if (cpuc->enabled)
947 return;
948
949 if (cpuc->n_added) {
950 int n_running = cpuc->n_events - cpuc->n_added;
951 /*
952 * apply assignment obtained either from
953 * hw_perf_group_sched_in() or x86_pmu_enable()
954 *
955 * step1: save events moving to new counters
956 * step2: reprogram moved events into new counters
957 */
958 for (i = 0; i < n_running; i++) {
959 event = cpuc->event_list[i];
960 hwc = &event->hw;
961
962 /*
963 * we can avoid reprogramming counter if:
964 * - assigned same counter as last time
965 * - running on same CPU as last time
966 * - no other event has used the counter since
967 */
968 if (hwc->idx == -1 ||
969 match_prev_assignment(hwc, cpuc, i))
970 continue;
971
972 /*
973 * Ensure we don't accidentally enable a stopped
974 * counter simply because we rescheduled.
975 */
976 if (hwc->state & PERF_HES_STOPPED)
977 hwc->state |= PERF_HES_ARCH;
978
979 x86_pmu_stop(event, PERF_EF_UPDATE);
980 }
981
982 for (i = 0; i < cpuc->n_events; i++) {
983 event = cpuc->event_list[i];
984 hwc = &event->hw;
985
986 if (!match_prev_assignment(hwc, cpuc, i))
987 x86_assign_hw_event(event, cpuc, i);
988 else if (i < n_running)
989 continue;
990
991 if (hwc->state & PERF_HES_ARCH)
992 continue;
993
994 x86_pmu_start(event, PERF_EF_RELOAD);
995 }
996 cpuc->n_added = 0;
997 perf_events_lapic_init();
998 }
999
1000 cpuc->enabled = 1;
1001 barrier();
1002
1003 x86_pmu.enable_all(added);
1004 }
1005
1006 static inline void x86_pmu_disable_event(struct perf_event *event)
1007 {
1008 struct hw_perf_event *hwc = &event->hw;
1009
1010 wrmsrl(hwc->config_base, hwc->config);
1011 }
1012
1013 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1014
1015 /*
1016 * Set the next IRQ period, based on the hwc->period_left value.
1017 * To be called with the event disabled in hw:
1018 */
1019 static int
1020 x86_perf_event_set_period(struct perf_event *event)
1021 {
1022 struct hw_perf_event *hwc = &event->hw;
1023 s64 left = local64_read(&hwc->period_left);
1024 s64 period = hwc->sample_period;
1025 int ret = 0, idx = hwc->idx;
1026
1027 if (idx == X86_PMC_IDX_FIXED_BTS)
1028 return 0;
1029
1030 /*
1031 * If we are way outside a reasonable range then just skip forward:
1032 */
1033 if (unlikely(left <= -period)) {
1034 left = period;
1035 local64_set(&hwc->period_left, left);
1036 hwc->last_period = period;
1037 ret = 1;
1038 }
1039
1040 if (unlikely(left <= 0)) {
1041 left += period;
1042 local64_set(&hwc->period_left, left);
1043 hwc->last_period = period;
1044 ret = 1;
1045 }
1046 /*
1047 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1048 */
1049 if (unlikely(left < 2))
1050 left = 2;
1051
1052 if (left > x86_pmu.max_period)
1053 left = x86_pmu.max_period;
1054
1055 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1056
1057 /*
1058 * The hw event starts counting from this event offset,
1059 * mark it to be able to extra future deltas:
1060 */
1061 local64_set(&hwc->prev_count, (u64)-left);
1062
1063 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1064
1065 /*
1066 * Due to erratum on certan cpu we need
1067 * a second write to be sure the register
1068 * is updated properly
1069 */
1070 if (x86_pmu.perfctr_second_write) {
1071 wrmsrl(hwc->event_base,
1072 (u64)(-left) & x86_pmu.cntval_mask);
1073 }
1074
1075 perf_event_update_userpage(event);
1076
1077 return ret;
1078 }
1079
1080 static void x86_pmu_enable_event(struct perf_event *event)
1081 {
1082 if (__this_cpu_read(cpu_hw_events.enabled))
1083 __x86_pmu_enable_event(&event->hw,
1084 ARCH_PERFMON_EVENTSEL_ENABLE);
1085 }
1086
1087 /*
1088 * Add a single event to the PMU.
1089 *
1090 * The event is added to the group of enabled events
1091 * but only if it can be scehduled with existing events.
1092 */
1093 static int x86_pmu_add(struct perf_event *event, int flags)
1094 {
1095 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1096 struct hw_perf_event *hwc;
1097 int assign[X86_PMC_IDX_MAX];
1098 int n, n0, ret;
1099
1100 hwc = &event->hw;
1101
1102 perf_pmu_disable(event->pmu);
1103 n0 = cpuc->n_events;
1104 ret = n = collect_events(cpuc, event, false);
1105 if (ret < 0)
1106 goto out;
1107
1108 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1109 if (!(flags & PERF_EF_START))
1110 hwc->state |= PERF_HES_ARCH;
1111
1112 /*
1113 * If group events scheduling transaction was started,
1114 * skip the schedulability test here, it will be peformed
1115 * at commit time (->commit_txn) as a whole
1116 */
1117 if (cpuc->group_flag & PERF_EVENT_TXN)
1118 goto done_collect;
1119
1120 ret = x86_pmu.schedule_events(cpuc, n, assign);
1121 if (ret)
1122 goto out;
1123 /*
1124 * copy new assignment, now we know it is possible
1125 * will be used by hw_perf_enable()
1126 */
1127 memcpy(cpuc->assign, assign, n*sizeof(int));
1128
1129 done_collect:
1130 cpuc->n_events = n;
1131 cpuc->n_added += n - n0;
1132 cpuc->n_txn += n - n0;
1133
1134 ret = 0;
1135 out:
1136 perf_pmu_enable(event->pmu);
1137 return ret;
1138 }
1139
1140 static void x86_pmu_start(struct perf_event *event, int flags)
1141 {
1142 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1143 int idx = event->hw.idx;
1144
1145 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1146 return;
1147
1148 if (WARN_ON_ONCE(idx == -1))
1149 return;
1150
1151 if (flags & PERF_EF_RELOAD) {
1152 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1153 x86_perf_event_set_period(event);
1154 }
1155
1156 event->hw.state = 0;
1157
1158 cpuc->events[idx] = event;
1159 __set_bit(idx, cpuc->active_mask);
1160 __set_bit(idx, cpuc->running);
1161 x86_pmu.enable(event);
1162 perf_event_update_userpage(event);
1163 }
1164
1165 void perf_event_print_debug(void)
1166 {
1167 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1168 u64 pebs;
1169 struct cpu_hw_events *cpuc;
1170 unsigned long flags;
1171 int cpu, idx;
1172
1173 if (!x86_pmu.num_counters)
1174 return;
1175
1176 local_irq_save(flags);
1177
1178 cpu = smp_processor_id();
1179 cpuc = &per_cpu(cpu_hw_events, cpu);
1180
1181 if (x86_pmu.version >= 2) {
1182 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1183 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1184 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1185 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1186 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1187
1188 pr_info("\n");
1189 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1190 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1191 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1192 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1193 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1194 }
1195 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1196
1197 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1198 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1199 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1200
1201 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1202
1203 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1204 cpu, idx, pmc_ctrl);
1205 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1206 cpu, idx, pmc_count);
1207 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1208 cpu, idx, prev_left);
1209 }
1210 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1211 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1212
1213 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1214 cpu, idx, pmc_count);
1215 }
1216 local_irq_restore(flags);
1217 }
1218
1219 static void x86_pmu_stop(struct perf_event *event, int flags)
1220 {
1221 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1222 struct hw_perf_event *hwc = &event->hw;
1223
1224 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1225 x86_pmu.disable(event);
1226 cpuc->events[hwc->idx] = NULL;
1227 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1228 hwc->state |= PERF_HES_STOPPED;
1229 }
1230
1231 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1232 /*
1233 * Drain the remaining delta count out of a event
1234 * that we are disabling:
1235 */
1236 x86_perf_event_update(event);
1237 hwc->state |= PERF_HES_UPTODATE;
1238 }
1239 }
1240
1241 static void x86_pmu_del(struct perf_event *event, int flags)
1242 {
1243 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1244 int i;
1245
1246 /*
1247 * If we're called during a txn, we don't need to do anything.
1248 * The events never got scheduled and ->cancel_txn will truncate
1249 * the event_list.
1250 */
1251 if (cpuc->group_flag & PERF_EVENT_TXN)
1252 return;
1253
1254 x86_pmu_stop(event, PERF_EF_UPDATE);
1255
1256 for (i = 0; i < cpuc->n_events; i++) {
1257 if (event == cpuc->event_list[i]) {
1258
1259 if (x86_pmu.put_event_constraints)
1260 x86_pmu.put_event_constraints(cpuc, event);
1261
1262 while (++i < cpuc->n_events)
1263 cpuc->event_list[i-1] = cpuc->event_list[i];
1264
1265 --cpuc->n_events;
1266 break;
1267 }
1268 }
1269 perf_event_update_userpage(event);
1270 }
1271
1272 static int x86_pmu_handle_irq(struct pt_regs *regs)
1273 {
1274 struct perf_sample_data data;
1275 struct cpu_hw_events *cpuc;
1276 struct perf_event *event;
1277 int idx, handled = 0;
1278 u64 val;
1279
1280 perf_sample_data_init(&data, 0);
1281
1282 cpuc = &__get_cpu_var(cpu_hw_events);
1283
1284 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1285 if (!test_bit(idx, cpuc->active_mask)) {
1286 /*
1287 * Though we deactivated the counter some cpus
1288 * might still deliver spurious interrupts still
1289 * in flight. Catch them:
1290 */
1291 if (__test_and_clear_bit(idx, cpuc->running))
1292 handled++;
1293 continue;
1294 }
1295
1296 event = cpuc->events[idx];
1297
1298 val = x86_perf_event_update(event);
1299 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1300 continue;
1301
1302 /*
1303 * event overflow
1304 */
1305 handled++;
1306 data.period = event->hw.last_period;
1307
1308 if (!x86_perf_event_set_period(event))
1309 continue;
1310
1311 if (perf_event_overflow(event, 1, &data, regs))
1312 x86_pmu_stop(event, 0);
1313 }
1314
1315 if (handled)
1316 inc_irq_stat(apic_perf_irqs);
1317
1318 return handled;
1319 }
1320
1321 void perf_events_lapic_init(void)
1322 {
1323 if (!x86_pmu.apic || !x86_pmu_initialized())
1324 return;
1325
1326 /*
1327 * Always use NMI for PMU
1328 */
1329 apic_write(APIC_LVTPC, APIC_DM_NMI);
1330 }
1331
1332 struct pmu_nmi_state {
1333 unsigned int marked;
1334 int handled;
1335 };
1336
1337 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1338
1339 static int __kprobes
1340 perf_event_nmi_handler(struct notifier_block *self,
1341 unsigned long cmd, void *__args)
1342 {
1343 struct die_args *args = __args;
1344 unsigned int this_nmi;
1345 int handled;
1346
1347 if (!atomic_read(&active_events))
1348 return NOTIFY_DONE;
1349
1350 switch (cmd) {
1351 case DIE_NMI:
1352 break;
1353 case DIE_NMIUNKNOWN:
1354 this_nmi = percpu_read(irq_stat.__nmi_count);
1355 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1356 /* let the kernel handle the unknown nmi */
1357 return NOTIFY_DONE;
1358 /*
1359 * This one is a PMU back-to-back nmi. Two events
1360 * trigger 'simultaneously' raising two back-to-back
1361 * NMIs. If the first NMI handles both, the latter
1362 * will be empty and daze the CPU. So, we drop it to
1363 * avoid false-positive 'unknown nmi' messages.
1364 */
1365 return NOTIFY_STOP;
1366 default:
1367 return NOTIFY_DONE;
1368 }
1369
1370 apic_write(APIC_LVTPC, APIC_DM_NMI);
1371
1372 handled = x86_pmu.handle_irq(args->regs);
1373 if (!handled)
1374 return NOTIFY_DONE;
1375
1376 this_nmi = percpu_read(irq_stat.__nmi_count);
1377 if ((handled > 1) ||
1378 /* the next nmi could be a back-to-back nmi */
1379 ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1380 (__this_cpu_read(pmu_nmi.handled) > 1))) {
1381 /*
1382 * We could have two subsequent back-to-back nmis: The
1383 * first handles more than one counter, the 2nd
1384 * handles only one counter and the 3rd handles no
1385 * counter.
1386 *
1387 * This is the 2nd nmi because the previous was
1388 * handling more than one counter. We will mark the
1389 * next (3rd) and then drop it if unhandled.
1390 */
1391 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1392 __this_cpu_write(pmu_nmi.handled, handled);
1393 }
1394
1395 return NOTIFY_STOP;
1396 }
1397
1398 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1399 .notifier_call = perf_event_nmi_handler,
1400 .next = NULL,
1401 .priority = NMI_LOCAL_LOW_PRIOR,
1402 };
1403
1404 static struct event_constraint unconstrained;
1405 static struct event_constraint emptyconstraint;
1406
1407 static struct event_constraint *
1408 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1409 {
1410 struct event_constraint *c;
1411
1412 if (x86_pmu.event_constraints) {
1413 for_each_event_constraint(c, x86_pmu.event_constraints) {
1414 if ((event->hw.config & c->cmask) == c->code)
1415 return c;
1416 }
1417 }
1418
1419 return &unconstrained;
1420 }
1421
1422 #include "perf_event_amd.c"
1423 #include "perf_event_p6.c"
1424 #include "perf_event_p4.c"
1425 #include "perf_event_intel_lbr.c"
1426 #include "perf_event_intel_ds.c"
1427 #include "perf_event_intel.c"
1428
1429 static int __cpuinit
1430 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1431 {
1432 unsigned int cpu = (long)hcpu;
1433 int ret = NOTIFY_OK;
1434
1435 switch (action & ~CPU_TASKS_FROZEN) {
1436 case CPU_UP_PREPARE:
1437 if (x86_pmu.cpu_prepare)
1438 ret = x86_pmu.cpu_prepare(cpu);
1439 break;
1440
1441 case CPU_STARTING:
1442 if (x86_pmu.cpu_starting)
1443 x86_pmu.cpu_starting(cpu);
1444 break;
1445
1446 case CPU_DYING:
1447 if (x86_pmu.cpu_dying)
1448 x86_pmu.cpu_dying(cpu);
1449 break;
1450
1451 case CPU_UP_CANCELED:
1452 case CPU_DEAD:
1453 if (x86_pmu.cpu_dead)
1454 x86_pmu.cpu_dead(cpu);
1455 break;
1456
1457 default:
1458 break;
1459 }
1460
1461 return ret;
1462 }
1463
1464 static void __init pmu_check_apic(void)
1465 {
1466 if (cpu_has_apic)
1467 return;
1468
1469 x86_pmu.apic = 0;
1470 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1471 pr_info("no hardware sampling interrupt available.\n");
1472 }
1473
1474 static int __init init_hw_perf_events(void)
1475 {
1476 struct event_constraint *c;
1477 int err;
1478
1479 pr_info("Performance Events: ");
1480
1481 switch (boot_cpu_data.x86_vendor) {
1482 case X86_VENDOR_INTEL:
1483 err = intel_pmu_init();
1484 break;
1485 case X86_VENDOR_AMD:
1486 err = amd_pmu_init();
1487 break;
1488 default:
1489 return 0;
1490 }
1491 if (err != 0) {
1492 pr_cont("no PMU driver, software events only.\n");
1493 return 0;
1494 }
1495
1496 pmu_check_apic();
1497
1498 /* sanity check that the hardware exists or is emulated */
1499 if (!check_hw_exists())
1500 return 0;
1501
1502 pr_cont("%s PMU driver.\n", x86_pmu.name);
1503
1504 if (x86_pmu.quirks)
1505 x86_pmu.quirks();
1506
1507 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1508 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1509 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1510 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1511 }
1512 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1513
1514 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1515 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1516 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1517 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1518 }
1519
1520 x86_pmu.intel_ctrl |=
1521 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1522
1523 perf_events_lapic_init();
1524 register_die_notifier(&perf_event_nmi_notifier);
1525
1526 unconstrained = (struct event_constraint)
1527 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1528 0, x86_pmu.num_counters);
1529
1530 if (x86_pmu.event_constraints) {
1531 for_each_event_constraint(c, x86_pmu.event_constraints) {
1532 if (c->cmask != X86_RAW_EVENT_MASK)
1533 continue;
1534
1535 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1536 c->weight += x86_pmu.num_counters;
1537 }
1538 }
1539
1540 pr_info("... version: %d\n", x86_pmu.version);
1541 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1542 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1543 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1544 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1545 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1546 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1547
1548 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1549 perf_cpu_notifier(x86_pmu_notifier);
1550
1551 return 0;
1552 }
1553 early_initcall(init_hw_perf_events);
1554
1555 static inline void x86_pmu_read(struct perf_event *event)
1556 {
1557 x86_perf_event_update(event);
1558 }
1559
1560 /*
1561 * Start group events scheduling transaction
1562 * Set the flag to make pmu::enable() not perform the
1563 * schedulability test, it will be performed at commit time
1564 */
1565 static void x86_pmu_start_txn(struct pmu *pmu)
1566 {
1567 perf_pmu_disable(pmu);
1568 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1569 __this_cpu_write(cpu_hw_events.n_txn, 0);
1570 }
1571
1572 /*
1573 * Stop group events scheduling transaction
1574 * Clear the flag and pmu::enable() will perform the
1575 * schedulability test.
1576 */
1577 static void x86_pmu_cancel_txn(struct pmu *pmu)
1578 {
1579 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1580 /*
1581 * Truncate the collected events.
1582 */
1583 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1584 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1585 perf_pmu_enable(pmu);
1586 }
1587
1588 /*
1589 * Commit group events scheduling transaction
1590 * Perform the group schedulability test as a whole
1591 * Return 0 if success
1592 */
1593 static int x86_pmu_commit_txn(struct pmu *pmu)
1594 {
1595 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1596 int assign[X86_PMC_IDX_MAX];
1597 int n, ret;
1598
1599 n = cpuc->n_events;
1600
1601 if (!x86_pmu_initialized())
1602 return -EAGAIN;
1603
1604 ret = x86_pmu.schedule_events(cpuc, n, assign);
1605 if (ret)
1606 return ret;
1607
1608 /*
1609 * copy new assignment, now we know it is possible
1610 * will be used by hw_perf_enable()
1611 */
1612 memcpy(cpuc->assign, assign, n*sizeof(int));
1613
1614 cpuc->group_flag &= ~PERF_EVENT_TXN;
1615 perf_pmu_enable(pmu);
1616 return 0;
1617 }
1618
1619 /*
1620 * validate that we can schedule this event
1621 */
1622 static int validate_event(struct perf_event *event)
1623 {
1624 struct cpu_hw_events *fake_cpuc;
1625 struct event_constraint *c;
1626 int ret = 0;
1627
1628 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1629 if (!fake_cpuc)
1630 return -ENOMEM;
1631
1632 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1633
1634 if (!c || !c->weight)
1635 ret = -ENOSPC;
1636
1637 if (x86_pmu.put_event_constraints)
1638 x86_pmu.put_event_constraints(fake_cpuc, event);
1639
1640 kfree(fake_cpuc);
1641
1642 return ret;
1643 }
1644
1645 /*
1646 * validate a single event group
1647 *
1648 * validation include:
1649 * - check events are compatible which each other
1650 * - events do not compete for the same counter
1651 * - number of events <= number of counters
1652 *
1653 * validation ensures the group can be loaded onto the
1654 * PMU if it was the only group available.
1655 */
1656 static int validate_group(struct perf_event *event)
1657 {
1658 struct perf_event *leader = event->group_leader;
1659 struct cpu_hw_events *fake_cpuc;
1660 int ret, n;
1661
1662 ret = -ENOMEM;
1663 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1664 if (!fake_cpuc)
1665 goto out;
1666
1667 /*
1668 * the event is not yet connected with its
1669 * siblings therefore we must first collect
1670 * existing siblings, then add the new event
1671 * before we can simulate the scheduling
1672 */
1673 ret = -ENOSPC;
1674 n = collect_events(fake_cpuc, leader, true);
1675 if (n < 0)
1676 goto out_free;
1677
1678 fake_cpuc->n_events = n;
1679 n = collect_events(fake_cpuc, event, false);
1680 if (n < 0)
1681 goto out_free;
1682
1683 fake_cpuc->n_events = n;
1684
1685 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1686
1687 out_free:
1688 kfree(fake_cpuc);
1689 out:
1690 return ret;
1691 }
1692
1693 static int x86_pmu_event_init(struct perf_event *event)
1694 {
1695 struct pmu *tmp;
1696 int err;
1697
1698 switch (event->attr.type) {
1699 case PERF_TYPE_RAW:
1700 case PERF_TYPE_HARDWARE:
1701 case PERF_TYPE_HW_CACHE:
1702 break;
1703
1704 default:
1705 return -ENOENT;
1706 }
1707
1708 err = __x86_pmu_event_init(event);
1709 if (!err) {
1710 /*
1711 * we temporarily connect event to its pmu
1712 * such that validate_group() can classify
1713 * it as an x86 event using is_x86_event()
1714 */
1715 tmp = event->pmu;
1716 event->pmu = &pmu;
1717
1718 if (event->group_leader != event)
1719 err = validate_group(event);
1720 else
1721 err = validate_event(event);
1722
1723 event->pmu = tmp;
1724 }
1725 if (err) {
1726 if (event->destroy)
1727 event->destroy(event);
1728 }
1729
1730 return err;
1731 }
1732
1733 static struct pmu pmu = {
1734 .pmu_enable = x86_pmu_enable,
1735 .pmu_disable = x86_pmu_disable,
1736
1737 .event_init = x86_pmu_event_init,
1738
1739 .add = x86_pmu_add,
1740 .del = x86_pmu_del,
1741 .start = x86_pmu_start,
1742 .stop = x86_pmu_stop,
1743 .read = x86_pmu_read,
1744
1745 .start_txn = x86_pmu_start_txn,
1746 .cancel_txn = x86_pmu_cancel_txn,
1747 .commit_txn = x86_pmu_commit_txn,
1748 };
1749
1750 /*
1751 * callchain support
1752 */
1753
1754 static void
1755 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1756 {
1757 /* Ignore warnings */
1758 }
1759
1760 static void backtrace_warning(void *data, char *msg)
1761 {
1762 /* Ignore warnings */
1763 }
1764
1765 static int backtrace_stack(void *data, char *name)
1766 {
1767 return 0;
1768 }
1769
1770 static void backtrace_address(void *data, unsigned long addr, int reliable)
1771 {
1772 struct perf_callchain_entry *entry = data;
1773
1774 perf_callchain_store(entry, addr);
1775 }
1776
1777 static const struct stacktrace_ops backtrace_ops = {
1778 .warning = backtrace_warning,
1779 .warning_symbol = backtrace_warning_symbol,
1780 .stack = backtrace_stack,
1781 .address = backtrace_address,
1782 .walk_stack = print_context_stack_bp,
1783 };
1784
1785 void
1786 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1787 {
1788 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1789 /* TODO: We don't support guest os callchain now */
1790 return;
1791 }
1792
1793 perf_callchain_store(entry, regs->ip);
1794
1795 dump_trace(NULL, regs, NULL, &backtrace_ops, entry);
1796 }
1797
1798 #ifdef CONFIG_COMPAT
1799 static inline int
1800 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1801 {
1802 /* 32-bit process in 64-bit kernel. */
1803 struct stack_frame_ia32 frame;
1804 const void __user *fp;
1805
1806 if (!test_thread_flag(TIF_IA32))
1807 return 0;
1808
1809 fp = compat_ptr(regs->bp);
1810 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1811 unsigned long bytes;
1812 frame.next_frame = 0;
1813 frame.return_address = 0;
1814
1815 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1816 if (bytes != sizeof(frame))
1817 break;
1818
1819 if (fp < compat_ptr(regs->sp))
1820 break;
1821
1822 perf_callchain_store(entry, frame.return_address);
1823 fp = compat_ptr(frame.next_frame);
1824 }
1825 return 1;
1826 }
1827 #else
1828 static inline int
1829 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1830 {
1831 return 0;
1832 }
1833 #endif
1834
1835 void
1836 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1837 {
1838 struct stack_frame frame;
1839 const void __user *fp;
1840
1841 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1842 /* TODO: We don't support guest os callchain now */
1843 return;
1844 }
1845
1846 fp = (void __user *)regs->bp;
1847
1848 perf_callchain_store(entry, regs->ip);
1849
1850 if (perf_callchain_user32(regs, entry))
1851 return;
1852
1853 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1854 unsigned long bytes;
1855 frame.next_frame = NULL;
1856 frame.return_address = 0;
1857
1858 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1859 if (bytes != sizeof(frame))
1860 break;
1861
1862 if ((unsigned long)fp < regs->sp)
1863 break;
1864
1865 perf_callchain_store(entry, frame.return_address);
1866 fp = frame.next_frame;
1867 }
1868 }
1869
1870 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1871 {
1872 unsigned long ip;
1873
1874 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1875 ip = perf_guest_cbs->get_guest_ip();
1876 else
1877 ip = instruction_pointer(regs);
1878
1879 return ip;
1880 }
1881
1882 unsigned long perf_misc_flags(struct pt_regs *regs)
1883 {
1884 int misc = 0;
1885
1886 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1887 if (perf_guest_cbs->is_user_mode())
1888 misc |= PERF_RECORD_MISC_GUEST_USER;
1889 else
1890 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1891 } else {
1892 if (user_mode(regs))
1893 misc |= PERF_RECORD_MISC_USER;
1894 else
1895 misc |= PERF_RECORD_MISC_KERNEL;
1896 }
1897
1898 if (regs->flags & PERF_EFLAGS_EXACT)
1899 misc |= PERF_RECORD_MISC_EXACT_IP;
1900
1901 return misc;
1902 }