]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/cpu/perf_event.c
4ee3abf20ed6118a45e0e6068962f4c181eeecaf
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31 #include <asm/compat.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34
35 #if 0
36 #undef wrmsrl
37 #define wrmsrl(msr, val) \
38 do { \
39 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
40 (unsigned long)(val)); \
41 native_write_msr((msr), (u32)((u64)(val)), \
42 (u32)((u64)(val) >> 32)); \
43 } while (0)
44 #endif
45
46 /*
47 * | NHM/WSM | SNB |
48 * register -------------------------------
49 * | HT | no HT | HT | no HT |
50 *-----------------------------------------
51 * offcore | core | core | cpu | core |
52 * lbr_sel | core | core | cpu | core |
53 * ld_lat | cpu | core | cpu | core |
54 *-----------------------------------------
55 *
56 * Given that there is a small number of shared regs,
57 * we can pre-allocate their slot in the per-cpu
58 * per-core reg tables.
59 */
60 enum extra_reg_type {
61 EXTRA_REG_NONE = -1, /* not used */
62
63 EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */
64 EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */
65
66 EXTRA_REG_MAX /* number of entries needed */
67 };
68
69 struct event_constraint {
70 union {
71 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
72 u64 idxmsk64;
73 };
74 u64 code;
75 u64 cmask;
76 int weight;
77 };
78
79 struct amd_nb {
80 int nb_id; /* NorthBridge id */
81 int refcnt; /* reference count */
82 struct perf_event *owners[X86_PMC_IDX_MAX];
83 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
84 };
85
86 struct intel_percore;
87
88 #define MAX_LBR_ENTRIES 16
89
90 struct cpu_hw_events {
91 /*
92 * Generic x86 PMC bits
93 */
94 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
95 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
96 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
97 int enabled;
98
99 int n_events;
100 int n_added;
101 int n_txn;
102 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
103 u64 tags[X86_PMC_IDX_MAX];
104 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
105
106 unsigned int group_flag;
107
108 /*
109 * Intel DebugStore bits
110 */
111 struct debug_store *ds;
112 u64 pebs_enabled;
113
114 /*
115 * Intel LBR bits
116 */
117 int lbr_users;
118 void *lbr_context;
119 struct perf_branch_stack lbr_stack;
120 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
121
122 /*
123 * manage shared (per-core, per-cpu) registers
124 * used on Intel NHM/WSM/SNB
125 */
126 struct intel_shared_regs *shared_regs;
127
128 /*
129 * AMD specific bits
130 */
131 struct amd_nb *amd_nb;
132 };
133
134 #define __EVENT_CONSTRAINT(c, n, m, w) {\
135 { .idxmsk64 = (n) }, \
136 .code = (c), \
137 .cmask = (m), \
138 .weight = (w), \
139 }
140
141 #define EVENT_CONSTRAINT(c, n, m) \
142 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
143
144 /*
145 * Constraint on the Event code.
146 */
147 #define INTEL_EVENT_CONSTRAINT(c, n) \
148 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
149
150 /*
151 * Constraint on the Event code + UMask + fixed-mask
152 *
153 * filter mask to validate fixed counter events.
154 * the following filters disqualify for fixed counters:
155 * - inv
156 * - edge
157 * - cnt-mask
158 * The other filters are supported by fixed counters.
159 * The any-thread option is supported starting with v3.
160 */
161 #define FIXED_EVENT_CONSTRAINT(c, n) \
162 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
163
164 /*
165 * Constraint on the Event code + UMask
166 */
167 #define INTEL_UEVENT_CONSTRAINT(c, n) \
168 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
169
170 #define EVENT_CONSTRAINT_END \
171 EVENT_CONSTRAINT(0, 0, 0)
172
173 #define for_each_event_constraint(e, c) \
174 for ((e) = (c); (e)->weight; (e)++)
175
176 /*
177 * Per register state.
178 */
179 struct er_account {
180 raw_spinlock_t lock; /* per-core: protect structure */
181 u64 config; /* extra MSR config */
182 u64 reg; /* extra MSR number */
183 atomic_t ref; /* reference count */
184 };
185
186 /*
187 * Extra registers for specific events.
188 *
189 * Some events need large masks and require external MSRs.
190 * Those extra MSRs end up being shared for all events on
191 * a PMU and sometimes between PMU of sibling HT threads.
192 * In either case, the kernel needs to handle conflicting
193 * accesses to those extra, shared, regs. The data structure
194 * to manage those registers is stored in cpu_hw_event.
195 */
196 struct extra_reg {
197 unsigned int event;
198 unsigned int msr;
199 u64 config_mask;
200 u64 valid_mask;
201 int idx; /* per_xxx->regs[] reg index */
202 };
203
204 #define EVENT_EXTRA_REG(e, ms, m, vm, i) { \
205 .event = (e), \
206 .msr = (ms), \
207 .config_mask = (m), \
208 .valid_mask = (vm), \
209 .idx = EXTRA_REG_##i \
210 }
211
212 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \
213 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
214
215 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
216
217 union perf_capabilities {
218 struct {
219 u64 lbr_format : 6;
220 u64 pebs_trap : 1;
221 u64 pebs_arch_reg : 1;
222 u64 pebs_format : 4;
223 u64 smm_freeze : 1;
224 };
225 u64 capabilities;
226 };
227
228 /*
229 * struct x86_pmu - generic x86 pmu
230 */
231 struct x86_pmu {
232 /*
233 * Generic x86 PMC bits
234 */
235 const char *name;
236 int version;
237 int (*handle_irq)(struct pt_regs *);
238 void (*disable_all)(void);
239 void (*enable_all)(int added);
240 void (*enable)(struct perf_event *);
241 void (*disable)(struct perf_event *);
242 int (*hw_config)(struct perf_event *event);
243 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
244 unsigned eventsel;
245 unsigned perfctr;
246 u64 (*event_map)(int);
247 int max_events;
248 int num_counters;
249 int num_counters_fixed;
250 int cntval_bits;
251 u64 cntval_mask;
252 int apic;
253 u64 max_period;
254 struct event_constraint *
255 (*get_event_constraints)(struct cpu_hw_events *cpuc,
256 struct perf_event *event);
257
258 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
259 struct perf_event *event);
260 struct event_constraint *event_constraints;
261 void (*quirks)(void);
262 int perfctr_second_write;
263
264 int (*cpu_prepare)(int cpu);
265 void (*cpu_starting)(int cpu);
266 void (*cpu_dying)(int cpu);
267 void (*cpu_dead)(int cpu);
268
269 /*
270 * Intel Arch Perfmon v2+
271 */
272 u64 intel_ctrl;
273 union perf_capabilities intel_cap;
274
275 /*
276 * Intel DebugStore bits
277 */
278 int bts, pebs;
279 int bts_active, pebs_active;
280 int pebs_record_size;
281 void (*drain_pebs)(struct pt_regs *regs);
282 struct event_constraint *pebs_constraints;
283
284 /*
285 * Intel LBR
286 */
287 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
288 int lbr_nr; /* hardware stack size */
289
290 /*
291 * Extra registers for events
292 */
293 struct extra_reg *extra_regs;
294 unsigned int er_flags;
295 };
296
297 #define ERF_NO_HT_SHARING 1
298 #define ERF_HAS_RSP_1 2
299
300 static struct x86_pmu x86_pmu __read_mostly;
301
302 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
303 .enabled = 1,
304 };
305
306 static int x86_perf_event_set_period(struct perf_event *event);
307
308 /*
309 * Generalized hw caching related hw_event table, filled
310 * in on a per model basis. A value of 0 means
311 * 'not supported', -1 means 'hw_event makes no sense on
312 * this CPU', any other value means the raw hw_event
313 * ID.
314 */
315
316 #define C(x) PERF_COUNT_HW_CACHE_##x
317
318 static u64 __read_mostly hw_cache_event_ids
319 [PERF_COUNT_HW_CACHE_MAX]
320 [PERF_COUNT_HW_CACHE_OP_MAX]
321 [PERF_COUNT_HW_CACHE_RESULT_MAX];
322 static u64 __read_mostly hw_cache_extra_regs
323 [PERF_COUNT_HW_CACHE_MAX]
324 [PERF_COUNT_HW_CACHE_OP_MAX]
325 [PERF_COUNT_HW_CACHE_RESULT_MAX];
326
327 /*
328 * Propagate event elapsed time into the generic event.
329 * Can only be executed on the CPU where the event is active.
330 * Returns the delta events processed.
331 */
332 static u64
333 x86_perf_event_update(struct perf_event *event)
334 {
335 struct hw_perf_event *hwc = &event->hw;
336 int shift = 64 - x86_pmu.cntval_bits;
337 u64 prev_raw_count, new_raw_count;
338 int idx = hwc->idx;
339 s64 delta;
340
341 if (idx == X86_PMC_IDX_FIXED_BTS)
342 return 0;
343
344 /*
345 * Careful: an NMI might modify the previous event value.
346 *
347 * Our tactic to handle this is to first atomically read and
348 * exchange a new raw count - then add that new-prev delta
349 * count to the generic event atomically:
350 */
351 again:
352 prev_raw_count = local64_read(&hwc->prev_count);
353 rdmsrl(hwc->event_base, new_raw_count);
354
355 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
356 new_raw_count) != prev_raw_count)
357 goto again;
358
359 /*
360 * Now we have the new raw value and have updated the prev
361 * timestamp already. We can now calculate the elapsed delta
362 * (event-)time and add that to the generic event.
363 *
364 * Careful, not all hw sign-extends above the physical width
365 * of the count.
366 */
367 delta = (new_raw_count << shift) - (prev_raw_count << shift);
368 delta >>= shift;
369
370 local64_add(delta, &event->count);
371 local64_sub(delta, &hwc->period_left);
372
373 return new_raw_count;
374 }
375
376 static inline int x86_pmu_addr_offset(int index)
377 {
378 int offset;
379
380 /* offset = X86_FEATURE_PERFCTR_CORE ? index << 1 : index */
381 alternative_io(ASM_NOP2,
382 "shll $1, %%eax",
383 X86_FEATURE_PERFCTR_CORE,
384 "=a" (offset),
385 "a" (index));
386
387 return offset;
388 }
389
390 static inline unsigned int x86_pmu_config_addr(int index)
391 {
392 return x86_pmu.eventsel + x86_pmu_addr_offset(index);
393 }
394
395 static inline unsigned int x86_pmu_event_addr(int index)
396 {
397 return x86_pmu.perfctr + x86_pmu_addr_offset(index);
398 }
399
400 /*
401 * Find and validate any extra registers to set up.
402 */
403 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
404 {
405 struct hw_perf_event_extra *reg;
406 struct extra_reg *er;
407
408 reg = &event->hw.extra_reg;
409
410 if (!x86_pmu.extra_regs)
411 return 0;
412
413 for (er = x86_pmu.extra_regs; er->msr; er++) {
414 if (er->event != (config & er->config_mask))
415 continue;
416 if (event->attr.config1 & ~er->valid_mask)
417 return -EINVAL;
418
419 reg->idx = er->idx;
420 reg->config = event->attr.config1;
421 reg->reg = er->msr;
422 break;
423 }
424 return 0;
425 }
426
427 static atomic_t active_events;
428 static DEFINE_MUTEX(pmc_reserve_mutex);
429
430 #ifdef CONFIG_X86_LOCAL_APIC
431
432 static bool reserve_pmc_hardware(void)
433 {
434 int i;
435
436 for (i = 0; i < x86_pmu.num_counters; i++) {
437 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
438 goto perfctr_fail;
439 }
440
441 for (i = 0; i < x86_pmu.num_counters; i++) {
442 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
443 goto eventsel_fail;
444 }
445
446 return true;
447
448 eventsel_fail:
449 for (i--; i >= 0; i--)
450 release_evntsel_nmi(x86_pmu_config_addr(i));
451
452 i = x86_pmu.num_counters;
453
454 perfctr_fail:
455 for (i--; i >= 0; i--)
456 release_perfctr_nmi(x86_pmu_event_addr(i));
457
458 return false;
459 }
460
461 static void release_pmc_hardware(void)
462 {
463 int i;
464
465 for (i = 0; i < x86_pmu.num_counters; i++) {
466 release_perfctr_nmi(x86_pmu_event_addr(i));
467 release_evntsel_nmi(x86_pmu_config_addr(i));
468 }
469 }
470
471 #else
472
473 static bool reserve_pmc_hardware(void) { return true; }
474 static void release_pmc_hardware(void) {}
475
476 #endif
477
478 static bool check_hw_exists(void)
479 {
480 u64 val, val_new = 0;
481 int i, reg, ret = 0;
482
483 /*
484 * Check to see if the BIOS enabled any of the counters, if so
485 * complain and bail.
486 */
487 for (i = 0; i < x86_pmu.num_counters; i++) {
488 reg = x86_pmu_config_addr(i);
489 ret = rdmsrl_safe(reg, &val);
490 if (ret)
491 goto msr_fail;
492 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
493 goto bios_fail;
494 }
495
496 if (x86_pmu.num_counters_fixed) {
497 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
498 ret = rdmsrl_safe(reg, &val);
499 if (ret)
500 goto msr_fail;
501 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
502 if (val & (0x03 << i*4))
503 goto bios_fail;
504 }
505 }
506
507 /*
508 * Now write a value and read it back to see if it matches,
509 * this is needed to detect certain hardware emulators (qemu/kvm)
510 * that don't trap on the MSR access and always return 0s.
511 */
512 val = 0xabcdUL;
513 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
514 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
515 if (ret || val != val_new)
516 goto msr_fail;
517
518 return true;
519
520 bios_fail:
521 /*
522 * We still allow the PMU driver to operate:
523 */
524 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
525 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
526
527 return true;
528
529 msr_fail:
530 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
531
532 return false;
533 }
534
535 static void reserve_ds_buffers(void);
536 static void release_ds_buffers(void);
537
538 static void hw_perf_event_destroy(struct perf_event *event)
539 {
540 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
541 release_pmc_hardware();
542 release_ds_buffers();
543 mutex_unlock(&pmc_reserve_mutex);
544 }
545 }
546
547 static inline int x86_pmu_initialized(void)
548 {
549 return x86_pmu.handle_irq != NULL;
550 }
551
552 static inline int
553 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
554 {
555 struct perf_event_attr *attr = &event->attr;
556 unsigned int cache_type, cache_op, cache_result;
557 u64 config, val;
558
559 config = attr->config;
560
561 cache_type = (config >> 0) & 0xff;
562 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
563 return -EINVAL;
564
565 cache_op = (config >> 8) & 0xff;
566 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
567 return -EINVAL;
568
569 cache_result = (config >> 16) & 0xff;
570 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
571 return -EINVAL;
572
573 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
574
575 if (val == 0)
576 return -ENOENT;
577
578 if (val == -1)
579 return -EINVAL;
580
581 hwc->config |= val;
582 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
583 return x86_pmu_extra_regs(val, event);
584 }
585
586 static int x86_setup_perfctr(struct perf_event *event)
587 {
588 struct perf_event_attr *attr = &event->attr;
589 struct hw_perf_event *hwc = &event->hw;
590 u64 config;
591
592 if (!is_sampling_event(event)) {
593 hwc->sample_period = x86_pmu.max_period;
594 hwc->last_period = hwc->sample_period;
595 local64_set(&hwc->period_left, hwc->sample_period);
596 } else {
597 /*
598 * If we have a PMU initialized but no APIC
599 * interrupts, we cannot sample hardware
600 * events (user-space has to fall back and
601 * sample via a hrtimer based software event):
602 */
603 if (!x86_pmu.apic)
604 return -EOPNOTSUPP;
605 }
606
607 /*
608 * Do not allow config1 (extended registers) to propagate,
609 * there's no sane user-space generalization yet:
610 */
611 if (attr->type == PERF_TYPE_RAW)
612 return 0;
613
614 if (attr->type == PERF_TYPE_HW_CACHE)
615 return set_ext_hw_attr(hwc, event);
616
617 if (attr->config >= x86_pmu.max_events)
618 return -EINVAL;
619
620 /*
621 * The generic map:
622 */
623 config = x86_pmu.event_map(attr->config);
624
625 if (config == 0)
626 return -ENOENT;
627
628 if (config == -1LL)
629 return -EINVAL;
630
631 /*
632 * Branch tracing:
633 */
634 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
635 !attr->freq && hwc->sample_period == 1) {
636 /* BTS is not supported by this architecture. */
637 if (!x86_pmu.bts_active)
638 return -EOPNOTSUPP;
639
640 /* BTS is currently only allowed for user-mode. */
641 if (!attr->exclude_kernel)
642 return -EOPNOTSUPP;
643 }
644
645 hwc->config |= config;
646
647 return 0;
648 }
649
650 static int x86_pmu_hw_config(struct perf_event *event)
651 {
652 if (event->attr.precise_ip) {
653 int precise = 0;
654
655 /* Support for constant skid */
656 if (x86_pmu.pebs_active) {
657 precise++;
658
659 /* Support for IP fixup */
660 if (x86_pmu.lbr_nr)
661 precise++;
662 }
663
664 if (event->attr.precise_ip > precise)
665 return -EOPNOTSUPP;
666 }
667
668 /*
669 * Generate PMC IRQs:
670 * (keep 'enabled' bit clear for now)
671 */
672 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
673
674 /*
675 * Count user and OS events unless requested not to
676 */
677 if (!event->attr.exclude_user)
678 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
679 if (!event->attr.exclude_kernel)
680 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
681
682 if (event->attr.type == PERF_TYPE_RAW)
683 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
684
685 return x86_setup_perfctr(event);
686 }
687
688 /*
689 * Setup the hardware configuration for a given attr_type
690 */
691 static int __x86_pmu_event_init(struct perf_event *event)
692 {
693 int err;
694
695 if (!x86_pmu_initialized())
696 return -ENODEV;
697
698 err = 0;
699 if (!atomic_inc_not_zero(&active_events)) {
700 mutex_lock(&pmc_reserve_mutex);
701 if (atomic_read(&active_events) == 0) {
702 if (!reserve_pmc_hardware())
703 err = -EBUSY;
704 else
705 reserve_ds_buffers();
706 }
707 if (!err)
708 atomic_inc(&active_events);
709 mutex_unlock(&pmc_reserve_mutex);
710 }
711 if (err)
712 return err;
713
714 event->destroy = hw_perf_event_destroy;
715
716 event->hw.idx = -1;
717 event->hw.last_cpu = -1;
718 event->hw.last_tag = ~0ULL;
719
720 /* mark unused */
721 event->hw.extra_reg.idx = EXTRA_REG_NONE;
722
723 return x86_pmu.hw_config(event);
724 }
725
726 static void x86_pmu_disable_all(void)
727 {
728 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
729 int idx;
730
731 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
732 u64 val;
733
734 if (!test_bit(idx, cpuc->active_mask))
735 continue;
736 rdmsrl(x86_pmu_config_addr(idx), val);
737 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
738 continue;
739 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
740 wrmsrl(x86_pmu_config_addr(idx), val);
741 }
742 }
743
744 static void x86_pmu_disable(struct pmu *pmu)
745 {
746 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
747
748 if (!x86_pmu_initialized())
749 return;
750
751 if (!cpuc->enabled)
752 return;
753
754 cpuc->n_added = 0;
755 cpuc->enabled = 0;
756 barrier();
757
758 x86_pmu.disable_all();
759 }
760
761 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
762 u64 enable_mask)
763 {
764 if (hwc->extra_reg.reg)
765 wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config);
766 wrmsrl(hwc->config_base, hwc->config | enable_mask);
767 }
768
769 static void x86_pmu_enable_all(int added)
770 {
771 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
772 int idx;
773
774 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
775 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
776
777 if (!test_bit(idx, cpuc->active_mask))
778 continue;
779
780 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
781 }
782 }
783
784 static struct pmu pmu;
785
786 static inline int is_x86_event(struct perf_event *event)
787 {
788 return event->pmu == &pmu;
789 }
790
791 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
792 {
793 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
794 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
795 int i, j, w, wmax, num = 0;
796 struct hw_perf_event *hwc;
797
798 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
799
800 for (i = 0; i < n; i++) {
801 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
802 constraints[i] = c;
803 }
804
805 /*
806 * fastpath, try to reuse previous register
807 */
808 for (i = 0; i < n; i++) {
809 hwc = &cpuc->event_list[i]->hw;
810 c = constraints[i];
811
812 /* never assigned */
813 if (hwc->idx == -1)
814 break;
815
816 /* constraint still honored */
817 if (!test_bit(hwc->idx, c->idxmsk))
818 break;
819
820 /* not already used */
821 if (test_bit(hwc->idx, used_mask))
822 break;
823
824 __set_bit(hwc->idx, used_mask);
825 if (assign)
826 assign[i] = hwc->idx;
827 }
828 if (i == n)
829 goto done;
830
831 /*
832 * begin slow path
833 */
834
835 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
836
837 /*
838 * weight = number of possible counters
839 *
840 * 1 = most constrained, only works on one counter
841 * wmax = least constrained, works on any counter
842 *
843 * assign events to counters starting with most
844 * constrained events.
845 */
846 wmax = x86_pmu.num_counters;
847
848 /*
849 * when fixed event counters are present,
850 * wmax is incremented by 1 to account
851 * for one more choice
852 */
853 if (x86_pmu.num_counters_fixed)
854 wmax++;
855
856 for (w = 1, num = n; num && w <= wmax; w++) {
857 /* for each event */
858 for (i = 0; num && i < n; i++) {
859 c = constraints[i];
860 hwc = &cpuc->event_list[i]->hw;
861
862 if (c->weight != w)
863 continue;
864
865 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
866 if (!test_bit(j, used_mask))
867 break;
868 }
869
870 if (j == X86_PMC_IDX_MAX)
871 break;
872
873 __set_bit(j, used_mask);
874
875 if (assign)
876 assign[i] = j;
877 num--;
878 }
879 }
880 done:
881 /*
882 * scheduling failed or is just a simulation,
883 * free resources if necessary
884 */
885 if (!assign || num) {
886 for (i = 0; i < n; i++) {
887 if (x86_pmu.put_event_constraints)
888 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
889 }
890 }
891 return num ? -ENOSPC : 0;
892 }
893
894 /*
895 * dogrp: true if must collect siblings events (group)
896 * returns total number of events and error code
897 */
898 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
899 {
900 struct perf_event *event;
901 int n, max_count;
902
903 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
904
905 /* current number of events already accepted */
906 n = cpuc->n_events;
907
908 if (is_x86_event(leader)) {
909 if (n >= max_count)
910 return -ENOSPC;
911 cpuc->event_list[n] = leader;
912 n++;
913 }
914 if (!dogrp)
915 return n;
916
917 list_for_each_entry(event, &leader->sibling_list, group_entry) {
918 if (!is_x86_event(event) ||
919 event->state <= PERF_EVENT_STATE_OFF)
920 continue;
921
922 if (n >= max_count)
923 return -ENOSPC;
924
925 cpuc->event_list[n] = event;
926 n++;
927 }
928 return n;
929 }
930
931 static inline void x86_assign_hw_event(struct perf_event *event,
932 struct cpu_hw_events *cpuc, int i)
933 {
934 struct hw_perf_event *hwc = &event->hw;
935
936 hwc->idx = cpuc->assign[i];
937 hwc->last_cpu = smp_processor_id();
938 hwc->last_tag = ++cpuc->tags[i];
939
940 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
941 hwc->config_base = 0;
942 hwc->event_base = 0;
943 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
944 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
945 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
946 } else {
947 hwc->config_base = x86_pmu_config_addr(hwc->idx);
948 hwc->event_base = x86_pmu_event_addr(hwc->idx);
949 }
950 }
951
952 static inline int match_prev_assignment(struct hw_perf_event *hwc,
953 struct cpu_hw_events *cpuc,
954 int i)
955 {
956 return hwc->idx == cpuc->assign[i] &&
957 hwc->last_cpu == smp_processor_id() &&
958 hwc->last_tag == cpuc->tags[i];
959 }
960
961 static void x86_pmu_start(struct perf_event *event, int flags);
962 static void x86_pmu_stop(struct perf_event *event, int flags);
963
964 static void x86_pmu_enable(struct pmu *pmu)
965 {
966 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
967 struct perf_event *event;
968 struct hw_perf_event *hwc;
969 int i, added = cpuc->n_added;
970
971 if (!x86_pmu_initialized())
972 return;
973
974 if (cpuc->enabled)
975 return;
976
977 if (cpuc->n_added) {
978 int n_running = cpuc->n_events - cpuc->n_added;
979 /*
980 * apply assignment obtained either from
981 * hw_perf_group_sched_in() or x86_pmu_enable()
982 *
983 * step1: save events moving to new counters
984 * step2: reprogram moved events into new counters
985 */
986 for (i = 0; i < n_running; i++) {
987 event = cpuc->event_list[i];
988 hwc = &event->hw;
989
990 /*
991 * we can avoid reprogramming counter if:
992 * - assigned same counter as last time
993 * - running on same CPU as last time
994 * - no other event has used the counter since
995 */
996 if (hwc->idx == -1 ||
997 match_prev_assignment(hwc, cpuc, i))
998 continue;
999
1000 /*
1001 * Ensure we don't accidentally enable a stopped
1002 * counter simply because we rescheduled.
1003 */
1004 if (hwc->state & PERF_HES_STOPPED)
1005 hwc->state |= PERF_HES_ARCH;
1006
1007 x86_pmu_stop(event, PERF_EF_UPDATE);
1008 }
1009
1010 for (i = 0; i < cpuc->n_events; i++) {
1011 event = cpuc->event_list[i];
1012 hwc = &event->hw;
1013
1014 if (!match_prev_assignment(hwc, cpuc, i))
1015 x86_assign_hw_event(event, cpuc, i);
1016 else if (i < n_running)
1017 continue;
1018
1019 if (hwc->state & PERF_HES_ARCH)
1020 continue;
1021
1022 x86_pmu_start(event, PERF_EF_RELOAD);
1023 }
1024 cpuc->n_added = 0;
1025 perf_events_lapic_init();
1026 }
1027
1028 cpuc->enabled = 1;
1029 barrier();
1030
1031 x86_pmu.enable_all(added);
1032 }
1033
1034 static inline void x86_pmu_disable_event(struct perf_event *event)
1035 {
1036 struct hw_perf_event *hwc = &event->hw;
1037
1038 wrmsrl(hwc->config_base, hwc->config);
1039 }
1040
1041 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1042
1043 /*
1044 * Set the next IRQ period, based on the hwc->period_left value.
1045 * To be called with the event disabled in hw:
1046 */
1047 static int
1048 x86_perf_event_set_period(struct perf_event *event)
1049 {
1050 struct hw_perf_event *hwc = &event->hw;
1051 s64 left = local64_read(&hwc->period_left);
1052 s64 period = hwc->sample_period;
1053 int ret = 0, idx = hwc->idx;
1054
1055 if (idx == X86_PMC_IDX_FIXED_BTS)
1056 return 0;
1057
1058 /*
1059 * If we are way outside a reasonable range then just skip forward:
1060 */
1061 if (unlikely(left <= -period)) {
1062 left = period;
1063 local64_set(&hwc->period_left, left);
1064 hwc->last_period = period;
1065 ret = 1;
1066 }
1067
1068 if (unlikely(left <= 0)) {
1069 left += period;
1070 local64_set(&hwc->period_left, left);
1071 hwc->last_period = period;
1072 ret = 1;
1073 }
1074 /*
1075 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1076 */
1077 if (unlikely(left < 2))
1078 left = 2;
1079
1080 if (left > x86_pmu.max_period)
1081 left = x86_pmu.max_period;
1082
1083 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1084
1085 /*
1086 * The hw event starts counting from this event offset,
1087 * mark it to be able to extra future deltas:
1088 */
1089 local64_set(&hwc->prev_count, (u64)-left);
1090
1091 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1092
1093 /*
1094 * Due to erratum on certan cpu we need
1095 * a second write to be sure the register
1096 * is updated properly
1097 */
1098 if (x86_pmu.perfctr_second_write) {
1099 wrmsrl(hwc->event_base,
1100 (u64)(-left) & x86_pmu.cntval_mask);
1101 }
1102
1103 perf_event_update_userpage(event);
1104
1105 return ret;
1106 }
1107
1108 static void x86_pmu_enable_event(struct perf_event *event)
1109 {
1110 if (__this_cpu_read(cpu_hw_events.enabled))
1111 __x86_pmu_enable_event(&event->hw,
1112 ARCH_PERFMON_EVENTSEL_ENABLE);
1113 }
1114
1115 /*
1116 * Add a single event to the PMU.
1117 *
1118 * The event is added to the group of enabled events
1119 * but only if it can be scehduled with existing events.
1120 */
1121 static int x86_pmu_add(struct perf_event *event, int flags)
1122 {
1123 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1124 struct hw_perf_event *hwc;
1125 int assign[X86_PMC_IDX_MAX];
1126 int n, n0, ret;
1127
1128 hwc = &event->hw;
1129
1130 perf_pmu_disable(event->pmu);
1131 n0 = cpuc->n_events;
1132 ret = n = collect_events(cpuc, event, false);
1133 if (ret < 0)
1134 goto out;
1135
1136 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1137 if (!(flags & PERF_EF_START))
1138 hwc->state |= PERF_HES_ARCH;
1139
1140 /*
1141 * If group events scheduling transaction was started,
1142 * skip the schedulability test here, it will be performed
1143 * at commit time (->commit_txn) as a whole
1144 */
1145 if (cpuc->group_flag & PERF_EVENT_TXN)
1146 goto done_collect;
1147
1148 ret = x86_pmu.schedule_events(cpuc, n, assign);
1149 if (ret)
1150 goto out;
1151 /*
1152 * copy new assignment, now we know it is possible
1153 * will be used by hw_perf_enable()
1154 */
1155 memcpy(cpuc->assign, assign, n*sizeof(int));
1156
1157 done_collect:
1158 cpuc->n_events = n;
1159 cpuc->n_added += n - n0;
1160 cpuc->n_txn += n - n0;
1161
1162 ret = 0;
1163 out:
1164 perf_pmu_enable(event->pmu);
1165 return ret;
1166 }
1167
1168 static void x86_pmu_start(struct perf_event *event, int flags)
1169 {
1170 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1171 int idx = event->hw.idx;
1172
1173 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1174 return;
1175
1176 if (WARN_ON_ONCE(idx == -1))
1177 return;
1178
1179 if (flags & PERF_EF_RELOAD) {
1180 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1181 x86_perf_event_set_period(event);
1182 }
1183
1184 event->hw.state = 0;
1185
1186 cpuc->events[idx] = event;
1187 __set_bit(idx, cpuc->active_mask);
1188 __set_bit(idx, cpuc->running);
1189 x86_pmu.enable(event);
1190 perf_event_update_userpage(event);
1191 }
1192
1193 void perf_event_print_debug(void)
1194 {
1195 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1196 u64 pebs;
1197 struct cpu_hw_events *cpuc;
1198 unsigned long flags;
1199 int cpu, idx;
1200
1201 if (!x86_pmu.num_counters)
1202 return;
1203
1204 local_irq_save(flags);
1205
1206 cpu = smp_processor_id();
1207 cpuc = &per_cpu(cpu_hw_events, cpu);
1208
1209 if (x86_pmu.version >= 2) {
1210 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1211 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1212 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1213 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1214 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1215
1216 pr_info("\n");
1217 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1218 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1219 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1220 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1221 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1222 }
1223 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1224
1225 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1226 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1227 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1228
1229 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1230
1231 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1232 cpu, idx, pmc_ctrl);
1233 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1234 cpu, idx, pmc_count);
1235 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1236 cpu, idx, prev_left);
1237 }
1238 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1239 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1240
1241 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1242 cpu, idx, pmc_count);
1243 }
1244 local_irq_restore(flags);
1245 }
1246
1247 static void x86_pmu_stop(struct perf_event *event, int flags)
1248 {
1249 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1250 struct hw_perf_event *hwc = &event->hw;
1251
1252 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1253 x86_pmu.disable(event);
1254 cpuc->events[hwc->idx] = NULL;
1255 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1256 hwc->state |= PERF_HES_STOPPED;
1257 }
1258
1259 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1260 /*
1261 * Drain the remaining delta count out of a event
1262 * that we are disabling:
1263 */
1264 x86_perf_event_update(event);
1265 hwc->state |= PERF_HES_UPTODATE;
1266 }
1267 }
1268
1269 static void x86_pmu_del(struct perf_event *event, int flags)
1270 {
1271 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1272 int i;
1273
1274 /*
1275 * If we're called during a txn, we don't need to do anything.
1276 * The events never got scheduled and ->cancel_txn will truncate
1277 * the event_list.
1278 */
1279 if (cpuc->group_flag & PERF_EVENT_TXN)
1280 return;
1281
1282 x86_pmu_stop(event, PERF_EF_UPDATE);
1283
1284 for (i = 0; i < cpuc->n_events; i++) {
1285 if (event == cpuc->event_list[i]) {
1286
1287 if (x86_pmu.put_event_constraints)
1288 x86_pmu.put_event_constraints(cpuc, event);
1289
1290 while (++i < cpuc->n_events)
1291 cpuc->event_list[i-1] = cpuc->event_list[i];
1292
1293 --cpuc->n_events;
1294 break;
1295 }
1296 }
1297 perf_event_update_userpage(event);
1298 }
1299
1300 static int x86_pmu_handle_irq(struct pt_regs *regs)
1301 {
1302 struct perf_sample_data data;
1303 struct cpu_hw_events *cpuc;
1304 struct perf_event *event;
1305 int idx, handled = 0;
1306 u64 val;
1307
1308 perf_sample_data_init(&data, 0);
1309
1310 cpuc = &__get_cpu_var(cpu_hw_events);
1311
1312 /*
1313 * Some chipsets need to unmask the LVTPC in a particular spot
1314 * inside the nmi handler. As a result, the unmasking was pushed
1315 * into all the nmi handlers.
1316 *
1317 * This generic handler doesn't seem to have any issues where the
1318 * unmasking occurs so it was left at the top.
1319 */
1320 apic_write(APIC_LVTPC, APIC_DM_NMI);
1321
1322 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1323 if (!test_bit(idx, cpuc->active_mask)) {
1324 /*
1325 * Though we deactivated the counter some cpus
1326 * might still deliver spurious interrupts still
1327 * in flight. Catch them:
1328 */
1329 if (__test_and_clear_bit(idx, cpuc->running))
1330 handled++;
1331 continue;
1332 }
1333
1334 event = cpuc->events[idx];
1335
1336 val = x86_perf_event_update(event);
1337 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1338 continue;
1339
1340 /*
1341 * event overflow
1342 */
1343 handled++;
1344 data.period = event->hw.last_period;
1345
1346 if (!x86_perf_event_set_period(event))
1347 continue;
1348
1349 if (perf_event_overflow(event, &data, regs))
1350 x86_pmu_stop(event, 0);
1351 }
1352
1353 if (handled)
1354 inc_irq_stat(apic_perf_irqs);
1355
1356 return handled;
1357 }
1358
1359 void perf_events_lapic_init(void)
1360 {
1361 if (!x86_pmu.apic || !x86_pmu_initialized())
1362 return;
1363
1364 /*
1365 * Always use NMI for PMU
1366 */
1367 apic_write(APIC_LVTPC, APIC_DM_NMI);
1368 }
1369
1370 struct pmu_nmi_state {
1371 unsigned int marked;
1372 int handled;
1373 };
1374
1375 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1376
1377 static int __kprobes
1378 perf_event_nmi_handler(struct notifier_block *self,
1379 unsigned long cmd, void *__args)
1380 {
1381 struct die_args *args = __args;
1382 unsigned int this_nmi;
1383 int handled;
1384
1385 if (!atomic_read(&active_events))
1386 return NOTIFY_DONE;
1387
1388 switch (cmd) {
1389 case DIE_NMI:
1390 break;
1391 case DIE_NMIUNKNOWN:
1392 this_nmi = percpu_read(irq_stat.__nmi_count);
1393 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1394 /* let the kernel handle the unknown nmi */
1395 return NOTIFY_DONE;
1396 /*
1397 * This one is a PMU back-to-back nmi. Two events
1398 * trigger 'simultaneously' raising two back-to-back
1399 * NMIs. If the first NMI handles both, the latter
1400 * will be empty and daze the CPU. So, we drop it to
1401 * avoid false-positive 'unknown nmi' messages.
1402 */
1403 return NOTIFY_STOP;
1404 default:
1405 return NOTIFY_DONE;
1406 }
1407
1408 handled = x86_pmu.handle_irq(args->regs);
1409 if (!handled)
1410 return NOTIFY_DONE;
1411
1412 this_nmi = percpu_read(irq_stat.__nmi_count);
1413 if ((handled > 1) ||
1414 /* the next nmi could be a back-to-back nmi */
1415 ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1416 (__this_cpu_read(pmu_nmi.handled) > 1))) {
1417 /*
1418 * We could have two subsequent back-to-back nmis: The
1419 * first handles more than one counter, the 2nd
1420 * handles only one counter and the 3rd handles no
1421 * counter.
1422 *
1423 * This is the 2nd nmi because the previous was
1424 * handling more than one counter. We will mark the
1425 * next (3rd) and then drop it if unhandled.
1426 */
1427 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1428 __this_cpu_write(pmu_nmi.handled, handled);
1429 }
1430
1431 return NOTIFY_STOP;
1432 }
1433
1434 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1435 .notifier_call = perf_event_nmi_handler,
1436 .next = NULL,
1437 .priority = NMI_LOCAL_LOW_PRIOR,
1438 };
1439
1440 static struct event_constraint unconstrained;
1441 static struct event_constraint emptyconstraint;
1442
1443 static struct event_constraint *
1444 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1445 {
1446 struct event_constraint *c;
1447
1448 if (x86_pmu.event_constraints) {
1449 for_each_event_constraint(c, x86_pmu.event_constraints) {
1450 if ((event->hw.config & c->cmask) == c->code)
1451 return c;
1452 }
1453 }
1454
1455 return &unconstrained;
1456 }
1457
1458 #include "perf_event_amd.c"
1459 #include "perf_event_p6.c"
1460 #include "perf_event_p4.c"
1461 #include "perf_event_intel_lbr.c"
1462 #include "perf_event_intel_ds.c"
1463 #include "perf_event_intel.c"
1464
1465 static int __cpuinit
1466 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1467 {
1468 unsigned int cpu = (long)hcpu;
1469 int ret = NOTIFY_OK;
1470
1471 switch (action & ~CPU_TASKS_FROZEN) {
1472 case CPU_UP_PREPARE:
1473 if (x86_pmu.cpu_prepare)
1474 ret = x86_pmu.cpu_prepare(cpu);
1475 break;
1476
1477 case CPU_STARTING:
1478 if (x86_pmu.cpu_starting)
1479 x86_pmu.cpu_starting(cpu);
1480 break;
1481
1482 case CPU_DYING:
1483 if (x86_pmu.cpu_dying)
1484 x86_pmu.cpu_dying(cpu);
1485 break;
1486
1487 case CPU_UP_CANCELED:
1488 case CPU_DEAD:
1489 if (x86_pmu.cpu_dead)
1490 x86_pmu.cpu_dead(cpu);
1491 break;
1492
1493 default:
1494 break;
1495 }
1496
1497 return ret;
1498 }
1499
1500 static void __init pmu_check_apic(void)
1501 {
1502 if (cpu_has_apic)
1503 return;
1504
1505 x86_pmu.apic = 0;
1506 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1507 pr_info("no hardware sampling interrupt available.\n");
1508 }
1509
1510 static int __init init_hw_perf_events(void)
1511 {
1512 struct event_constraint *c;
1513 int err;
1514
1515 pr_info("Performance Events: ");
1516
1517 switch (boot_cpu_data.x86_vendor) {
1518 case X86_VENDOR_INTEL:
1519 err = intel_pmu_init();
1520 break;
1521 case X86_VENDOR_AMD:
1522 err = amd_pmu_init();
1523 break;
1524 default:
1525 return 0;
1526 }
1527 if (err != 0) {
1528 pr_cont("no PMU driver, software events only.\n");
1529 return 0;
1530 }
1531
1532 pmu_check_apic();
1533
1534 /* sanity check that the hardware exists or is emulated */
1535 if (!check_hw_exists())
1536 return 0;
1537
1538 pr_cont("%s PMU driver.\n", x86_pmu.name);
1539
1540 if (x86_pmu.quirks)
1541 x86_pmu.quirks();
1542
1543 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1544 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1545 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1546 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1547 }
1548 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1549
1550 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1551 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1552 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1553 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1554 }
1555
1556 x86_pmu.intel_ctrl |=
1557 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1558
1559 perf_events_lapic_init();
1560 register_die_notifier(&perf_event_nmi_notifier);
1561
1562 unconstrained = (struct event_constraint)
1563 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1564 0, x86_pmu.num_counters);
1565
1566 if (x86_pmu.event_constraints) {
1567 for_each_event_constraint(c, x86_pmu.event_constraints) {
1568 if (c->cmask != X86_RAW_EVENT_MASK)
1569 continue;
1570
1571 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1572 c->weight += x86_pmu.num_counters;
1573 }
1574 }
1575
1576 pr_info("... version: %d\n", x86_pmu.version);
1577 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1578 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1579 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1580 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1581 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1582 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1583
1584 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1585 perf_cpu_notifier(x86_pmu_notifier);
1586
1587 return 0;
1588 }
1589 early_initcall(init_hw_perf_events);
1590
1591 static inline void x86_pmu_read(struct perf_event *event)
1592 {
1593 x86_perf_event_update(event);
1594 }
1595
1596 /*
1597 * Start group events scheduling transaction
1598 * Set the flag to make pmu::enable() not perform the
1599 * schedulability test, it will be performed at commit time
1600 */
1601 static void x86_pmu_start_txn(struct pmu *pmu)
1602 {
1603 perf_pmu_disable(pmu);
1604 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1605 __this_cpu_write(cpu_hw_events.n_txn, 0);
1606 }
1607
1608 /*
1609 * Stop group events scheduling transaction
1610 * Clear the flag and pmu::enable() will perform the
1611 * schedulability test.
1612 */
1613 static void x86_pmu_cancel_txn(struct pmu *pmu)
1614 {
1615 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1616 /*
1617 * Truncate the collected events.
1618 */
1619 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1620 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1621 perf_pmu_enable(pmu);
1622 }
1623
1624 /*
1625 * Commit group events scheduling transaction
1626 * Perform the group schedulability test as a whole
1627 * Return 0 if success
1628 */
1629 static int x86_pmu_commit_txn(struct pmu *pmu)
1630 {
1631 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1632 int assign[X86_PMC_IDX_MAX];
1633 int n, ret;
1634
1635 n = cpuc->n_events;
1636
1637 if (!x86_pmu_initialized())
1638 return -EAGAIN;
1639
1640 ret = x86_pmu.schedule_events(cpuc, n, assign);
1641 if (ret)
1642 return ret;
1643
1644 /*
1645 * copy new assignment, now we know it is possible
1646 * will be used by hw_perf_enable()
1647 */
1648 memcpy(cpuc->assign, assign, n*sizeof(int));
1649
1650 cpuc->group_flag &= ~PERF_EVENT_TXN;
1651 perf_pmu_enable(pmu);
1652 return 0;
1653 }
1654 /*
1655 * a fake_cpuc is used to validate event groups. Due to
1656 * the extra reg logic, we need to also allocate a fake
1657 * per_core and per_cpu structure. Otherwise, group events
1658 * using extra reg may conflict without the kernel being
1659 * able to catch this when the last event gets added to
1660 * the group.
1661 */
1662 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1663 {
1664 kfree(cpuc->shared_regs);
1665 kfree(cpuc);
1666 }
1667
1668 static struct cpu_hw_events *allocate_fake_cpuc(void)
1669 {
1670 struct cpu_hw_events *cpuc;
1671 int cpu = raw_smp_processor_id();
1672
1673 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1674 if (!cpuc)
1675 return ERR_PTR(-ENOMEM);
1676
1677 /* only needed, if we have extra_regs */
1678 if (x86_pmu.extra_regs) {
1679 cpuc->shared_regs = allocate_shared_regs(cpu);
1680 if (!cpuc->shared_regs)
1681 goto error;
1682 }
1683 return cpuc;
1684 error:
1685 free_fake_cpuc(cpuc);
1686 return ERR_PTR(-ENOMEM);
1687 }
1688
1689 /*
1690 * validate that we can schedule this event
1691 */
1692 static int validate_event(struct perf_event *event)
1693 {
1694 struct cpu_hw_events *fake_cpuc;
1695 struct event_constraint *c;
1696 int ret = 0;
1697
1698 fake_cpuc = allocate_fake_cpuc();
1699 if (IS_ERR(fake_cpuc))
1700 return PTR_ERR(fake_cpuc);
1701
1702 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1703
1704 if (!c || !c->weight)
1705 ret = -ENOSPC;
1706
1707 if (x86_pmu.put_event_constraints)
1708 x86_pmu.put_event_constraints(fake_cpuc, event);
1709
1710 free_fake_cpuc(fake_cpuc);
1711
1712 return ret;
1713 }
1714
1715 /*
1716 * validate a single event group
1717 *
1718 * validation include:
1719 * - check events are compatible which each other
1720 * - events do not compete for the same counter
1721 * - number of events <= number of counters
1722 *
1723 * validation ensures the group can be loaded onto the
1724 * PMU if it was the only group available.
1725 */
1726 static int validate_group(struct perf_event *event)
1727 {
1728 struct perf_event *leader = event->group_leader;
1729 struct cpu_hw_events *fake_cpuc;
1730 int ret = -ENOSPC, n;
1731
1732 fake_cpuc = allocate_fake_cpuc();
1733 if (IS_ERR(fake_cpuc))
1734 return PTR_ERR(fake_cpuc);
1735 /*
1736 * the event is not yet connected with its
1737 * siblings therefore we must first collect
1738 * existing siblings, then add the new event
1739 * before we can simulate the scheduling
1740 */
1741 n = collect_events(fake_cpuc, leader, true);
1742 if (n < 0)
1743 goto out;
1744
1745 fake_cpuc->n_events = n;
1746 n = collect_events(fake_cpuc, event, false);
1747 if (n < 0)
1748 goto out;
1749
1750 fake_cpuc->n_events = n;
1751
1752 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1753
1754 out:
1755 free_fake_cpuc(fake_cpuc);
1756 return ret;
1757 }
1758
1759 static int x86_pmu_event_init(struct perf_event *event)
1760 {
1761 struct pmu *tmp;
1762 int err;
1763
1764 switch (event->attr.type) {
1765 case PERF_TYPE_RAW:
1766 case PERF_TYPE_HARDWARE:
1767 case PERF_TYPE_HW_CACHE:
1768 break;
1769
1770 default:
1771 return -ENOENT;
1772 }
1773
1774 err = __x86_pmu_event_init(event);
1775 if (!err) {
1776 /*
1777 * we temporarily connect event to its pmu
1778 * such that validate_group() can classify
1779 * it as an x86 event using is_x86_event()
1780 */
1781 tmp = event->pmu;
1782 event->pmu = &pmu;
1783
1784 if (event->group_leader != event)
1785 err = validate_group(event);
1786 else
1787 err = validate_event(event);
1788
1789 event->pmu = tmp;
1790 }
1791 if (err) {
1792 if (event->destroy)
1793 event->destroy(event);
1794 }
1795
1796 return err;
1797 }
1798
1799 static struct pmu pmu = {
1800 .pmu_enable = x86_pmu_enable,
1801 .pmu_disable = x86_pmu_disable,
1802
1803 .event_init = x86_pmu_event_init,
1804
1805 .add = x86_pmu_add,
1806 .del = x86_pmu_del,
1807 .start = x86_pmu_start,
1808 .stop = x86_pmu_stop,
1809 .read = x86_pmu_read,
1810
1811 .start_txn = x86_pmu_start_txn,
1812 .cancel_txn = x86_pmu_cancel_txn,
1813 .commit_txn = x86_pmu_commit_txn,
1814 };
1815
1816 /*
1817 * callchain support
1818 */
1819
1820 static int backtrace_stack(void *data, char *name)
1821 {
1822 return 0;
1823 }
1824
1825 static void backtrace_address(void *data, unsigned long addr, int reliable)
1826 {
1827 struct perf_callchain_entry *entry = data;
1828
1829 perf_callchain_store(entry, addr);
1830 }
1831
1832 static const struct stacktrace_ops backtrace_ops = {
1833 .stack = backtrace_stack,
1834 .address = backtrace_address,
1835 .walk_stack = print_context_stack_bp,
1836 };
1837
1838 void
1839 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1840 {
1841 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1842 /* TODO: We don't support guest os callchain now */
1843 return;
1844 }
1845
1846 perf_callchain_store(entry, regs->ip);
1847
1848 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1849 }
1850
1851 #ifdef CONFIG_COMPAT
1852 static inline int
1853 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1854 {
1855 /* 32-bit process in 64-bit kernel. */
1856 struct stack_frame_ia32 frame;
1857 const void __user *fp;
1858
1859 if (!test_thread_flag(TIF_IA32))
1860 return 0;
1861
1862 fp = compat_ptr(regs->bp);
1863 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1864 unsigned long bytes;
1865 frame.next_frame = 0;
1866 frame.return_address = 0;
1867
1868 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1869 if (bytes != sizeof(frame))
1870 break;
1871
1872 if (fp < compat_ptr(regs->sp))
1873 break;
1874
1875 perf_callchain_store(entry, frame.return_address);
1876 fp = compat_ptr(frame.next_frame);
1877 }
1878 return 1;
1879 }
1880 #else
1881 static inline int
1882 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1883 {
1884 return 0;
1885 }
1886 #endif
1887
1888 void
1889 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1890 {
1891 struct stack_frame frame;
1892 const void __user *fp;
1893
1894 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1895 /* TODO: We don't support guest os callchain now */
1896 return;
1897 }
1898
1899 fp = (void __user *)regs->bp;
1900
1901 perf_callchain_store(entry, regs->ip);
1902
1903 if (perf_callchain_user32(regs, entry))
1904 return;
1905
1906 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1907 unsigned long bytes;
1908 frame.next_frame = NULL;
1909 frame.return_address = 0;
1910
1911 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1912 if (bytes != sizeof(frame))
1913 break;
1914
1915 if ((unsigned long)fp < regs->sp)
1916 break;
1917
1918 perf_callchain_store(entry, frame.return_address);
1919 fp = frame.next_frame;
1920 }
1921 }
1922
1923 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1924 {
1925 unsigned long ip;
1926
1927 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1928 ip = perf_guest_cbs->get_guest_ip();
1929 else
1930 ip = instruction_pointer(regs);
1931
1932 return ip;
1933 }
1934
1935 unsigned long perf_misc_flags(struct pt_regs *regs)
1936 {
1937 int misc = 0;
1938
1939 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1940 if (perf_guest_cbs->is_user_mode())
1941 misc |= PERF_RECORD_MISC_GUEST_USER;
1942 else
1943 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1944 } else {
1945 if (user_mode(regs))
1946 misc |= PERF_RECORD_MISC_USER;
1947 else
1948 misc |= PERF_RECORD_MISC_KERNEL;
1949 }
1950
1951 if (regs->flags & PERF_EFLAGS_EXACT)
1952 misc |= PERF_RECORD_MISC_EXACT_IP;
1953
1954 return misc;
1955 }