]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/cpu/perf_event.c
Merge commit 'v2.6.34-rc1' into for-linus
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31
32 static u64 perf_event_mask __read_mostly;
33
34 /* The maximal number of PEBS events: */
35 #define MAX_PEBS_EVENTS 4
36
37 /* The size of a BTS record in bytes: */
38 #define BTS_RECORD_SIZE 24
39
40 /* The size of a per-cpu BTS buffer in bytes: */
41 #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
42
43 /* The BTS overflow threshold in bytes from the end of the buffer: */
44 #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
45
46
47 /*
48 * Bits in the debugctlmsr controlling branch tracing.
49 */
50 #define X86_DEBUGCTL_TR (1 << 6)
51 #define X86_DEBUGCTL_BTS (1 << 7)
52 #define X86_DEBUGCTL_BTINT (1 << 8)
53 #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54 #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55
56 /*
57 * A debug store configuration.
58 *
59 * We only support architectures that use 64bit fields.
60 */
61 struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
71 };
72
73 struct event_constraint {
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
76 u64 idxmsk64[1];
77 };
78 int code;
79 int cmask;
80 int weight;
81 };
82
83 struct amd_nb {
84 int nb_id; /* NorthBridge id */
85 int refcnt; /* reference count */
86 struct perf_event *owners[X86_PMC_IDX_MAX];
87 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
88 };
89
90 struct cpu_hw_events {
91 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
92 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
93 unsigned long interrupts;
94 int enabled;
95 struct debug_store *ds;
96
97 int n_events;
98 int n_added;
99 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
100 u64 tags[X86_PMC_IDX_MAX];
101 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
102 struct amd_nb *amd_nb;
103 };
104
105 #define __EVENT_CONSTRAINT(c, n, m, w) {\
106 { .idxmsk64[0] = (n) }, \
107 .code = (c), \
108 .cmask = (m), \
109 .weight = (w), \
110 }
111
112 #define EVENT_CONSTRAINT(c, n, m) \
113 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
114
115 #define INTEL_EVENT_CONSTRAINT(c, n) \
116 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
117
118 #define FIXED_EVENT_CONSTRAINT(c, n) \
119 EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
120
121 #define EVENT_CONSTRAINT_END \
122 EVENT_CONSTRAINT(0, 0, 0)
123
124 #define for_each_event_constraint(e, c) \
125 for ((e) = (c); (e)->cmask; (e)++)
126
127 /*
128 * struct x86_pmu - generic x86 pmu
129 */
130 struct x86_pmu {
131 const char *name;
132 int version;
133 int (*handle_irq)(struct pt_regs *);
134 void (*disable_all)(void);
135 void (*enable_all)(void);
136 void (*enable)(struct hw_perf_event *, int);
137 void (*disable)(struct hw_perf_event *, int);
138 unsigned eventsel;
139 unsigned perfctr;
140 u64 (*event_map)(int);
141 u64 (*raw_event)(u64);
142 int max_events;
143 int num_events;
144 int num_events_fixed;
145 int event_bits;
146 u64 event_mask;
147 int apic;
148 u64 max_period;
149 u64 intel_ctrl;
150 void (*enable_bts)(u64 config);
151 void (*disable_bts)(void);
152
153 struct event_constraint *
154 (*get_event_constraints)(struct cpu_hw_events *cpuc,
155 struct perf_event *event);
156
157 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
158 struct perf_event *event);
159 struct event_constraint *event_constraints;
160 };
161
162 static struct x86_pmu x86_pmu __read_mostly;
163
164 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
165 .enabled = 1,
166 };
167
168 static int x86_perf_event_set_period(struct perf_event *event,
169 struct hw_perf_event *hwc, int idx);
170
171 /*
172 * Generalized hw caching related hw_event table, filled
173 * in on a per model basis. A value of 0 means
174 * 'not supported', -1 means 'hw_event makes no sense on
175 * this CPU', any other value means the raw hw_event
176 * ID.
177 */
178
179 #define C(x) PERF_COUNT_HW_CACHE_##x
180
181 static u64 __read_mostly hw_cache_event_ids
182 [PERF_COUNT_HW_CACHE_MAX]
183 [PERF_COUNT_HW_CACHE_OP_MAX]
184 [PERF_COUNT_HW_CACHE_RESULT_MAX];
185
186 /*
187 * Propagate event elapsed time into the generic event.
188 * Can only be executed on the CPU where the event is active.
189 * Returns the delta events processed.
190 */
191 static u64
192 x86_perf_event_update(struct perf_event *event,
193 struct hw_perf_event *hwc, int idx)
194 {
195 int shift = 64 - x86_pmu.event_bits;
196 u64 prev_raw_count, new_raw_count;
197 s64 delta;
198
199 if (idx == X86_PMC_IDX_FIXED_BTS)
200 return 0;
201
202 /*
203 * Careful: an NMI might modify the previous event value.
204 *
205 * Our tactic to handle this is to first atomically read and
206 * exchange a new raw count - then add that new-prev delta
207 * count to the generic event atomically:
208 */
209 again:
210 prev_raw_count = atomic64_read(&hwc->prev_count);
211 rdmsrl(hwc->event_base + idx, new_raw_count);
212
213 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
214 new_raw_count) != prev_raw_count)
215 goto again;
216
217 /*
218 * Now we have the new raw value and have updated the prev
219 * timestamp already. We can now calculate the elapsed delta
220 * (event-)time and add that to the generic event.
221 *
222 * Careful, not all hw sign-extends above the physical width
223 * of the count.
224 */
225 delta = (new_raw_count << shift) - (prev_raw_count << shift);
226 delta >>= shift;
227
228 atomic64_add(delta, &event->count);
229 atomic64_sub(delta, &hwc->period_left);
230
231 return new_raw_count;
232 }
233
234 static atomic_t active_events;
235 static DEFINE_MUTEX(pmc_reserve_mutex);
236
237 static bool reserve_pmc_hardware(void)
238 {
239 #ifdef CONFIG_X86_LOCAL_APIC
240 int i;
241
242 if (nmi_watchdog == NMI_LOCAL_APIC)
243 disable_lapic_nmi_watchdog();
244
245 for (i = 0; i < x86_pmu.num_events; i++) {
246 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
247 goto perfctr_fail;
248 }
249
250 for (i = 0; i < x86_pmu.num_events; i++) {
251 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
252 goto eventsel_fail;
253 }
254 #endif
255
256 return true;
257
258 #ifdef CONFIG_X86_LOCAL_APIC
259 eventsel_fail:
260 for (i--; i >= 0; i--)
261 release_evntsel_nmi(x86_pmu.eventsel + i);
262
263 i = x86_pmu.num_events;
264
265 perfctr_fail:
266 for (i--; i >= 0; i--)
267 release_perfctr_nmi(x86_pmu.perfctr + i);
268
269 if (nmi_watchdog == NMI_LOCAL_APIC)
270 enable_lapic_nmi_watchdog();
271
272 return false;
273 #endif
274 }
275
276 static void release_pmc_hardware(void)
277 {
278 #ifdef CONFIG_X86_LOCAL_APIC
279 int i;
280
281 for (i = 0; i < x86_pmu.num_events; i++) {
282 release_perfctr_nmi(x86_pmu.perfctr + i);
283 release_evntsel_nmi(x86_pmu.eventsel + i);
284 }
285
286 if (nmi_watchdog == NMI_LOCAL_APIC)
287 enable_lapic_nmi_watchdog();
288 #endif
289 }
290
291 static inline bool bts_available(void)
292 {
293 return x86_pmu.enable_bts != NULL;
294 }
295
296 static inline void init_debug_store_on_cpu(int cpu)
297 {
298 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
299
300 if (!ds)
301 return;
302
303 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
304 (u32)((u64)(unsigned long)ds),
305 (u32)((u64)(unsigned long)ds >> 32));
306 }
307
308 static inline void fini_debug_store_on_cpu(int cpu)
309 {
310 if (!per_cpu(cpu_hw_events, cpu).ds)
311 return;
312
313 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
314 }
315
316 static void release_bts_hardware(void)
317 {
318 int cpu;
319
320 if (!bts_available())
321 return;
322
323 get_online_cpus();
324
325 for_each_online_cpu(cpu)
326 fini_debug_store_on_cpu(cpu);
327
328 for_each_possible_cpu(cpu) {
329 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
330
331 if (!ds)
332 continue;
333
334 per_cpu(cpu_hw_events, cpu).ds = NULL;
335
336 kfree((void *)(unsigned long)ds->bts_buffer_base);
337 kfree(ds);
338 }
339
340 put_online_cpus();
341 }
342
343 static int reserve_bts_hardware(void)
344 {
345 int cpu, err = 0;
346
347 if (!bts_available())
348 return 0;
349
350 get_online_cpus();
351
352 for_each_possible_cpu(cpu) {
353 struct debug_store *ds;
354 void *buffer;
355
356 err = -ENOMEM;
357 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
358 if (unlikely(!buffer))
359 break;
360
361 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
362 if (unlikely(!ds)) {
363 kfree(buffer);
364 break;
365 }
366
367 ds->bts_buffer_base = (u64)(unsigned long)buffer;
368 ds->bts_index = ds->bts_buffer_base;
369 ds->bts_absolute_maximum =
370 ds->bts_buffer_base + BTS_BUFFER_SIZE;
371 ds->bts_interrupt_threshold =
372 ds->bts_absolute_maximum - BTS_OVFL_TH;
373
374 per_cpu(cpu_hw_events, cpu).ds = ds;
375 err = 0;
376 }
377
378 if (err)
379 release_bts_hardware();
380 else {
381 for_each_online_cpu(cpu)
382 init_debug_store_on_cpu(cpu);
383 }
384
385 put_online_cpus();
386
387 return err;
388 }
389
390 static void hw_perf_event_destroy(struct perf_event *event)
391 {
392 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
393 release_pmc_hardware();
394 release_bts_hardware();
395 mutex_unlock(&pmc_reserve_mutex);
396 }
397 }
398
399 static inline int x86_pmu_initialized(void)
400 {
401 return x86_pmu.handle_irq != NULL;
402 }
403
404 static inline int
405 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
406 {
407 unsigned int cache_type, cache_op, cache_result;
408 u64 config, val;
409
410 config = attr->config;
411
412 cache_type = (config >> 0) & 0xff;
413 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
414 return -EINVAL;
415
416 cache_op = (config >> 8) & 0xff;
417 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
418 return -EINVAL;
419
420 cache_result = (config >> 16) & 0xff;
421 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
422 return -EINVAL;
423
424 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
425
426 if (val == 0)
427 return -ENOENT;
428
429 if (val == -1)
430 return -EINVAL;
431
432 hwc->config |= val;
433
434 return 0;
435 }
436
437 /*
438 * Setup the hardware configuration for a given attr_type
439 */
440 static int __hw_perf_event_init(struct perf_event *event)
441 {
442 struct perf_event_attr *attr = &event->attr;
443 struct hw_perf_event *hwc = &event->hw;
444 u64 config;
445 int err;
446
447 if (!x86_pmu_initialized())
448 return -ENODEV;
449
450 err = 0;
451 if (!atomic_inc_not_zero(&active_events)) {
452 mutex_lock(&pmc_reserve_mutex);
453 if (atomic_read(&active_events) == 0) {
454 if (!reserve_pmc_hardware())
455 err = -EBUSY;
456 else
457 err = reserve_bts_hardware();
458 }
459 if (!err)
460 atomic_inc(&active_events);
461 mutex_unlock(&pmc_reserve_mutex);
462 }
463 if (err)
464 return err;
465
466 event->destroy = hw_perf_event_destroy;
467
468 /*
469 * Generate PMC IRQs:
470 * (keep 'enabled' bit clear for now)
471 */
472 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
473
474 hwc->idx = -1;
475 hwc->last_cpu = -1;
476 hwc->last_tag = ~0ULL;
477
478 /*
479 * Count user and OS events unless requested not to.
480 */
481 if (!attr->exclude_user)
482 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
483 if (!attr->exclude_kernel)
484 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
485
486 if (!hwc->sample_period) {
487 hwc->sample_period = x86_pmu.max_period;
488 hwc->last_period = hwc->sample_period;
489 atomic64_set(&hwc->period_left, hwc->sample_period);
490 } else {
491 /*
492 * If we have a PMU initialized but no APIC
493 * interrupts, we cannot sample hardware
494 * events (user-space has to fall back and
495 * sample via a hrtimer based software event):
496 */
497 if (!x86_pmu.apic)
498 return -EOPNOTSUPP;
499 }
500
501 /*
502 * Raw hw_event type provide the config in the hw_event structure
503 */
504 if (attr->type == PERF_TYPE_RAW) {
505 hwc->config |= x86_pmu.raw_event(attr->config);
506 return 0;
507 }
508
509 if (attr->type == PERF_TYPE_HW_CACHE)
510 return set_ext_hw_attr(hwc, attr);
511
512 if (attr->config >= x86_pmu.max_events)
513 return -EINVAL;
514
515 /*
516 * The generic map:
517 */
518 config = x86_pmu.event_map(attr->config);
519
520 if (config == 0)
521 return -ENOENT;
522
523 if (config == -1LL)
524 return -EINVAL;
525
526 /*
527 * Branch tracing:
528 */
529 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
530 (hwc->sample_period == 1)) {
531 /* BTS is not supported by this architecture. */
532 if (!bts_available())
533 return -EOPNOTSUPP;
534
535 /* BTS is currently only allowed for user-mode. */
536 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
537 return -EOPNOTSUPP;
538 }
539
540 hwc->config |= config;
541
542 return 0;
543 }
544
545 static void x86_pmu_disable_all(void)
546 {
547 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
548 int idx;
549
550 for (idx = 0; idx < x86_pmu.num_events; idx++) {
551 u64 val;
552
553 if (!test_bit(idx, cpuc->active_mask))
554 continue;
555 rdmsrl(x86_pmu.eventsel + idx, val);
556 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
557 continue;
558 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
559 wrmsrl(x86_pmu.eventsel + idx, val);
560 }
561 }
562
563 void hw_perf_disable(void)
564 {
565 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
566
567 if (!x86_pmu_initialized())
568 return;
569
570 if (!cpuc->enabled)
571 return;
572
573 cpuc->n_added = 0;
574 cpuc->enabled = 0;
575 barrier();
576
577 x86_pmu.disable_all();
578 }
579
580 static void x86_pmu_enable_all(void)
581 {
582 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
583 int idx;
584
585 for (idx = 0; idx < x86_pmu.num_events; idx++) {
586 struct perf_event *event = cpuc->events[idx];
587 u64 val;
588
589 if (!test_bit(idx, cpuc->active_mask))
590 continue;
591
592 val = event->hw.config;
593 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
594 wrmsrl(x86_pmu.eventsel + idx, val);
595 }
596 }
597
598 static const struct pmu pmu;
599
600 static inline int is_x86_event(struct perf_event *event)
601 {
602 return event->pmu == &pmu;
603 }
604
605 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
606 {
607 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
608 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
609 int i, j, w, wmax, num = 0;
610 struct hw_perf_event *hwc;
611
612 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
613
614 for (i = 0; i < n; i++) {
615 constraints[i] =
616 x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
617 }
618
619 /*
620 * fastpath, try to reuse previous register
621 */
622 for (i = 0; i < n; i++) {
623 hwc = &cpuc->event_list[i]->hw;
624 c = constraints[i];
625
626 /* never assigned */
627 if (hwc->idx == -1)
628 break;
629
630 /* constraint still honored */
631 if (!test_bit(hwc->idx, c->idxmsk))
632 break;
633
634 /* not already used */
635 if (test_bit(hwc->idx, used_mask))
636 break;
637
638 set_bit(hwc->idx, used_mask);
639 if (assign)
640 assign[i] = hwc->idx;
641 }
642 if (i == n)
643 goto done;
644
645 /*
646 * begin slow path
647 */
648
649 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
650
651 /*
652 * weight = number of possible counters
653 *
654 * 1 = most constrained, only works on one counter
655 * wmax = least constrained, works on any counter
656 *
657 * assign events to counters starting with most
658 * constrained events.
659 */
660 wmax = x86_pmu.num_events;
661
662 /*
663 * when fixed event counters are present,
664 * wmax is incremented by 1 to account
665 * for one more choice
666 */
667 if (x86_pmu.num_events_fixed)
668 wmax++;
669
670 for (w = 1, num = n; num && w <= wmax; w++) {
671 /* for each event */
672 for (i = 0; num && i < n; i++) {
673 c = constraints[i];
674 hwc = &cpuc->event_list[i]->hw;
675
676 if (c->weight != w)
677 continue;
678
679 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
680 if (!test_bit(j, used_mask))
681 break;
682 }
683
684 if (j == X86_PMC_IDX_MAX)
685 break;
686
687 set_bit(j, used_mask);
688
689 if (assign)
690 assign[i] = j;
691 num--;
692 }
693 }
694 done:
695 /*
696 * scheduling failed or is just a simulation,
697 * free resources if necessary
698 */
699 if (!assign || num) {
700 for (i = 0; i < n; i++) {
701 if (x86_pmu.put_event_constraints)
702 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
703 }
704 }
705 return num ? -ENOSPC : 0;
706 }
707
708 /*
709 * dogrp: true if must collect siblings events (group)
710 * returns total number of events and error code
711 */
712 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
713 {
714 struct perf_event *event;
715 int n, max_count;
716
717 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
718
719 /* current number of events already accepted */
720 n = cpuc->n_events;
721
722 if (is_x86_event(leader)) {
723 if (n >= max_count)
724 return -ENOSPC;
725 cpuc->event_list[n] = leader;
726 n++;
727 }
728 if (!dogrp)
729 return n;
730
731 list_for_each_entry(event, &leader->sibling_list, group_entry) {
732 if (!is_x86_event(event) ||
733 event->state <= PERF_EVENT_STATE_OFF)
734 continue;
735
736 if (n >= max_count)
737 return -ENOSPC;
738
739 cpuc->event_list[n] = event;
740 n++;
741 }
742 return n;
743 }
744
745 static inline void x86_assign_hw_event(struct perf_event *event,
746 struct cpu_hw_events *cpuc, int i)
747 {
748 struct hw_perf_event *hwc = &event->hw;
749
750 hwc->idx = cpuc->assign[i];
751 hwc->last_cpu = smp_processor_id();
752 hwc->last_tag = ++cpuc->tags[i];
753
754 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
755 hwc->config_base = 0;
756 hwc->event_base = 0;
757 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
758 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
759 /*
760 * We set it so that event_base + idx in wrmsr/rdmsr maps to
761 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
762 */
763 hwc->event_base =
764 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
765 } else {
766 hwc->config_base = x86_pmu.eventsel;
767 hwc->event_base = x86_pmu.perfctr;
768 }
769 }
770
771 static inline int match_prev_assignment(struct hw_perf_event *hwc,
772 struct cpu_hw_events *cpuc,
773 int i)
774 {
775 return hwc->idx == cpuc->assign[i] &&
776 hwc->last_cpu == smp_processor_id() &&
777 hwc->last_tag == cpuc->tags[i];
778 }
779
780 static void x86_pmu_stop(struct perf_event *event);
781
782 void hw_perf_enable(void)
783 {
784 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
785 struct perf_event *event;
786 struct hw_perf_event *hwc;
787 int i;
788
789 if (!x86_pmu_initialized())
790 return;
791
792 if (cpuc->enabled)
793 return;
794
795 if (cpuc->n_added) {
796 /*
797 * apply assignment obtained either from
798 * hw_perf_group_sched_in() or x86_pmu_enable()
799 *
800 * step1: save events moving to new counters
801 * step2: reprogram moved events into new counters
802 */
803 for (i = 0; i < cpuc->n_events; i++) {
804
805 event = cpuc->event_list[i];
806 hwc = &event->hw;
807
808 /*
809 * we can avoid reprogramming counter if:
810 * - assigned same counter as last time
811 * - running on same CPU as last time
812 * - no other event has used the counter since
813 */
814 if (hwc->idx == -1 ||
815 match_prev_assignment(hwc, cpuc, i))
816 continue;
817
818 x86_pmu_stop(event);
819
820 hwc->idx = -1;
821 }
822
823 for (i = 0; i < cpuc->n_events; i++) {
824
825 event = cpuc->event_list[i];
826 hwc = &event->hw;
827
828 if (hwc->idx == -1) {
829 x86_assign_hw_event(event, cpuc, i);
830 x86_perf_event_set_period(event, hwc, hwc->idx);
831 }
832 /*
833 * need to mark as active because x86_pmu_disable()
834 * clear active_mask and events[] yet it preserves
835 * idx
836 */
837 set_bit(hwc->idx, cpuc->active_mask);
838 cpuc->events[hwc->idx] = event;
839
840 x86_pmu.enable(hwc, hwc->idx);
841 perf_event_update_userpage(event);
842 }
843 cpuc->n_added = 0;
844 perf_events_lapic_init();
845 }
846
847 cpuc->enabled = 1;
848 barrier();
849
850 x86_pmu.enable_all();
851 }
852
853 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
854 {
855 (void)checking_wrmsrl(hwc->config_base + idx,
856 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
857 }
858
859 static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
860 {
861 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
862 }
863
864 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
865
866 /*
867 * Set the next IRQ period, based on the hwc->period_left value.
868 * To be called with the event disabled in hw:
869 */
870 static int
871 x86_perf_event_set_period(struct perf_event *event,
872 struct hw_perf_event *hwc, int idx)
873 {
874 s64 left = atomic64_read(&hwc->period_left);
875 s64 period = hwc->sample_period;
876 int err, ret = 0;
877
878 if (idx == X86_PMC_IDX_FIXED_BTS)
879 return 0;
880
881 /*
882 * If we are way outside a reasonable range then just skip forward:
883 */
884 if (unlikely(left <= -period)) {
885 left = period;
886 atomic64_set(&hwc->period_left, left);
887 hwc->last_period = period;
888 ret = 1;
889 }
890
891 if (unlikely(left <= 0)) {
892 left += period;
893 atomic64_set(&hwc->period_left, left);
894 hwc->last_period = period;
895 ret = 1;
896 }
897 /*
898 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
899 */
900 if (unlikely(left < 2))
901 left = 2;
902
903 if (left > x86_pmu.max_period)
904 left = x86_pmu.max_period;
905
906 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
907
908 /*
909 * The hw event starts counting from this event offset,
910 * mark it to be able to extra future deltas:
911 */
912 atomic64_set(&hwc->prev_count, (u64)-left);
913
914 err = checking_wrmsrl(hwc->event_base + idx,
915 (u64)(-left) & x86_pmu.event_mask);
916
917 perf_event_update_userpage(event);
918
919 return ret;
920 }
921
922 static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
923 {
924 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
925 if (cpuc->enabled)
926 __x86_pmu_enable_event(hwc, idx);
927 }
928
929 /*
930 * activate a single event
931 *
932 * The event is added to the group of enabled events
933 * but only if it can be scehduled with existing events.
934 *
935 * Called with PMU disabled. If successful and return value 1,
936 * then guaranteed to call perf_enable() and hw_perf_enable()
937 */
938 static int x86_pmu_enable(struct perf_event *event)
939 {
940 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
941 struct hw_perf_event *hwc;
942 int assign[X86_PMC_IDX_MAX];
943 int n, n0, ret;
944
945 hwc = &event->hw;
946
947 n0 = cpuc->n_events;
948 n = collect_events(cpuc, event, false);
949 if (n < 0)
950 return n;
951
952 ret = x86_schedule_events(cpuc, n, assign);
953 if (ret)
954 return ret;
955 /*
956 * copy new assignment, now we know it is possible
957 * will be used by hw_perf_enable()
958 */
959 memcpy(cpuc->assign, assign, n*sizeof(int));
960
961 cpuc->n_events = n;
962 cpuc->n_added = n - n0;
963
964 return 0;
965 }
966
967 static int x86_pmu_start(struct perf_event *event)
968 {
969 struct hw_perf_event *hwc = &event->hw;
970
971 if (hwc->idx == -1)
972 return -EAGAIN;
973
974 x86_perf_event_set_period(event, hwc, hwc->idx);
975 x86_pmu.enable(hwc, hwc->idx);
976
977 return 0;
978 }
979
980 static void x86_pmu_unthrottle(struct perf_event *event)
981 {
982 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
983 struct hw_perf_event *hwc = &event->hw;
984
985 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
986 cpuc->events[hwc->idx] != event))
987 return;
988
989 x86_pmu.enable(hwc, hwc->idx);
990 }
991
992 void perf_event_print_debug(void)
993 {
994 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
995 struct cpu_hw_events *cpuc;
996 unsigned long flags;
997 int cpu, idx;
998
999 if (!x86_pmu.num_events)
1000 return;
1001
1002 local_irq_save(flags);
1003
1004 cpu = smp_processor_id();
1005 cpuc = &per_cpu(cpu_hw_events, cpu);
1006
1007 if (x86_pmu.version >= 2) {
1008 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1009 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1010 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1011 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1012
1013 pr_info("\n");
1014 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1015 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1016 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1017 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1018 }
1019 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1020
1021 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1022 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1023 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1024
1025 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1026
1027 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1028 cpu, idx, pmc_ctrl);
1029 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1030 cpu, idx, pmc_count);
1031 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1032 cpu, idx, prev_left);
1033 }
1034 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1035 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1036
1037 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1038 cpu, idx, pmc_count);
1039 }
1040 local_irq_restore(flags);
1041 }
1042
1043 static void x86_pmu_stop(struct perf_event *event)
1044 {
1045 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1046 struct hw_perf_event *hwc = &event->hw;
1047 int idx = hwc->idx;
1048
1049 /*
1050 * Must be done before we disable, otherwise the nmi handler
1051 * could reenable again:
1052 */
1053 clear_bit(idx, cpuc->active_mask);
1054 x86_pmu.disable(hwc, idx);
1055
1056 /*
1057 * Drain the remaining delta count out of a event
1058 * that we are disabling:
1059 */
1060 x86_perf_event_update(event, hwc, idx);
1061
1062 cpuc->events[idx] = NULL;
1063 }
1064
1065 static void x86_pmu_disable(struct perf_event *event)
1066 {
1067 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1068 int i;
1069
1070 x86_pmu_stop(event);
1071
1072 for (i = 0; i < cpuc->n_events; i++) {
1073 if (event == cpuc->event_list[i]) {
1074
1075 if (x86_pmu.put_event_constraints)
1076 x86_pmu.put_event_constraints(cpuc, event);
1077
1078 while (++i < cpuc->n_events)
1079 cpuc->event_list[i-1] = cpuc->event_list[i];
1080
1081 --cpuc->n_events;
1082 break;
1083 }
1084 }
1085 perf_event_update_userpage(event);
1086 }
1087
1088 static int x86_pmu_handle_irq(struct pt_regs *regs)
1089 {
1090 struct perf_sample_data data;
1091 struct cpu_hw_events *cpuc;
1092 struct perf_event *event;
1093 struct hw_perf_event *hwc;
1094 int idx, handled = 0;
1095 u64 val;
1096
1097 data.addr = 0;
1098 data.raw = NULL;
1099
1100 cpuc = &__get_cpu_var(cpu_hw_events);
1101
1102 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1103 if (!test_bit(idx, cpuc->active_mask))
1104 continue;
1105
1106 event = cpuc->events[idx];
1107 hwc = &event->hw;
1108
1109 val = x86_perf_event_update(event, hwc, idx);
1110 if (val & (1ULL << (x86_pmu.event_bits - 1)))
1111 continue;
1112
1113 /*
1114 * event overflow
1115 */
1116 handled = 1;
1117 data.period = event->hw.last_period;
1118
1119 if (!x86_perf_event_set_period(event, hwc, idx))
1120 continue;
1121
1122 if (perf_event_overflow(event, 1, &data, regs))
1123 x86_pmu.disable(hwc, idx);
1124 }
1125
1126 if (handled)
1127 inc_irq_stat(apic_perf_irqs);
1128
1129 return handled;
1130 }
1131
1132 void smp_perf_pending_interrupt(struct pt_regs *regs)
1133 {
1134 irq_enter();
1135 ack_APIC_irq();
1136 inc_irq_stat(apic_pending_irqs);
1137 perf_event_do_pending();
1138 irq_exit();
1139 }
1140
1141 void set_perf_event_pending(void)
1142 {
1143 #ifdef CONFIG_X86_LOCAL_APIC
1144 if (!x86_pmu.apic || !x86_pmu_initialized())
1145 return;
1146
1147 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1148 #endif
1149 }
1150
1151 void perf_events_lapic_init(void)
1152 {
1153 #ifdef CONFIG_X86_LOCAL_APIC
1154 if (!x86_pmu.apic || !x86_pmu_initialized())
1155 return;
1156
1157 /*
1158 * Always use NMI for PMU
1159 */
1160 apic_write(APIC_LVTPC, APIC_DM_NMI);
1161 #endif
1162 }
1163
1164 static int __kprobes
1165 perf_event_nmi_handler(struct notifier_block *self,
1166 unsigned long cmd, void *__args)
1167 {
1168 struct die_args *args = __args;
1169 struct pt_regs *regs;
1170
1171 if (!atomic_read(&active_events))
1172 return NOTIFY_DONE;
1173
1174 switch (cmd) {
1175 case DIE_NMI:
1176 case DIE_NMI_IPI:
1177 break;
1178
1179 default:
1180 return NOTIFY_DONE;
1181 }
1182
1183 regs = args->regs;
1184
1185 #ifdef CONFIG_X86_LOCAL_APIC
1186 apic_write(APIC_LVTPC, APIC_DM_NMI);
1187 #endif
1188 /*
1189 * Can't rely on the handled return value to say it was our NMI, two
1190 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1191 *
1192 * If the first NMI handles both, the latter will be empty and daze
1193 * the CPU.
1194 */
1195 x86_pmu.handle_irq(regs);
1196
1197 return NOTIFY_STOP;
1198 }
1199
1200 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1201 .notifier_call = perf_event_nmi_handler,
1202 .next = NULL,
1203 .priority = 1
1204 };
1205
1206 static struct event_constraint unconstrained;
1207 static struct event_constraint emptyconstraint;
1208
1209 static struct event_constraint *
1210 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1211 {
1212 struct event_constraint *c;
1213
1214 if (x86_pmu.event_constraints) {
1215 for_each_event_constraint(c, x86_pmu.event_constraints) {
1216 if ((event->hw.config & c->cmask) == c->code)
1217 return c;
1218 }
1219 }
1220
1221 return &unconstrained;
1222 }
1223
1224 static int x86_event_sched_in(struct perf_event *event,
1225 struct perf_cpu_context *cpuctx)
1226 {
1227 int ret = 0;
1228
1229 event->state = PERF_EVENT_STATE_ACTIVE;
1230 event->oncpu = smp_processor_id();
1231 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1232
1233 if (!is_x86_event(event))
1234 ret = event->pmu->enable(event);
1235
1236 if (!ret && !is_software_event(event))
1237 cpuctx->active_oncpu++;
1238
1239 if (!ret && event->attr.exclusive)
1240 cpuctx->exclusive = 1;
1241
1242 return ret;
1243 }
1244
1245 static void x86_event_sched_out(struct perf_event *event,
1246 struct perf_cpu_context *cpuctx)
1247 {
1248 event->state = PERF_EVENT_STATE_INACTIVE;
1249 event->oncpu = -1;
1250
1251 if (!is_x86_event(event))
1252 event->pmu->disable(event);
1253
1254 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1255
1256 if (!is_software_event(event))
1257 cpuctx->active_oncpu--;
1258
1259 if (event->attr.exclusive || !cpuctx->active_oncpu)
1260 cpuctx->exclusive = 0;
1261 }
1262
1263 /*
1264 * Called to enable a whole group of events.
1265 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1266 * Assumes the caller has disabled interrupts and has
1267 * frozen the PMU with hw_perf_save_disable.
1268 *
1269 * called with PMU disabled. If successful and return value 1,
1270 * then guaranteed to call perf_enable() and hw_perf_enable()
1271 */
1272 int hw_perf_group_sched_in(struct perf_event *leader,
1273 struct perf_cpu_context *cpuctx,
1274 struct perf_event_context *ctx)
1275 {
1276 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1277 struct perf_event *sub;
1278 int assign[X86_PMC_IDX_MAX];
1279 int n0, n1, ret;
1280
1281 /* n0 = total number of events */
1282 n0 = collect_events(cpuc, leader, true);
1283 if (n0 < 0)
1284 return n0;
1285
1286 ret = x86_schedule_events(cpuc, n0, assign);
1287 if (ret)
1288 return ret;
1289
1290 ret = x86_event_sched_in(leader, cpuctx);
1291 if (ret)
1292 return ret;
1293
1294 n1 = 1;
1295 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1296 if (sub->state > PERF_EVENT_STATE_OFF) {
1297 ret = x86_event_sched_in(sub, cpuctx);
1298 if (ret)
1299 goto undo;
1300 ++n1;
1301 }
1302 }
1303 /*
1304 * copy new assignment, now we know it is possible
1305 * will be used by hw_perf_enable()
1306 */
1307 memcpy(cpuc->assign, assign, n0*sizeof(int));
1308
1309 cpuc->n_events = n0;
1310 cpuc->n_added = n1;
1311 ctx->nr_active += n1;
1312
1313 /*
1314 * 1 means successful and events are active
1315 * This is not quite true because we defer
1316 * actual activation until hw_perf_enable() but
1317 * this way we* ensure caller won't try to enable
1318 * individual events
1319 */
1320 return 1;
1321 undo:
1322 x86_event_sched_out(leader, cpuctx);
1323 n0 = 1;
1324 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1325 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1326 x86_event_sched_out(sub, cpuctx);
1327 if (++n0 == n1)
1328 break;
1329 }
1330 }
1331 return ret;
1332 }
1333
1334 #include "perf_event_amd.c"
1335 #include "perf_event_p6.c"
1336 #include "perf_event_intel.c"
1337
1338 static void __init pmu_check_apic(void)
1339 {
1340 if (cpu_has_apic)
1341 return;
1342
1343 x86_pmu.apic = 0;
1344 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1345 pr_info("no hardware sampling interrupt available.\n");
1346 }
1347
1348 void __init init_hw_perf_events(void)
1349 {
1350 int err;
1351
1352 pr_info("Performance Events: ");
1353
1354 switch (boot_cpu_data.x86_vendor) {
1355 case X86_VENDOR_INTEL:
1356 err = intel_pmu_init();
1357 break;
1358 case X86_VENDOR_AMD:
1359 err = amd_pmu_init();
1360 break;
1361 default:
1362 return;
1363 }
1364 if (err != 0) {
1365 pr_cont("no PMU driver, software events only.\n");
1366 return;
1367 }
1368
1369 pmu_check_apic();
1370
1371 pr_cont("%s PMU driver.\n", x86_pmu.name);
1372
1373 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1374 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1375 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1376 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
1377 }
1378 perf_event_mask = (1 << x86_pmu.num_events) - 1;
1379 perf_max_events = x86_pmu.num_events;
1380
1381 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1382 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1383 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1384 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
1385 }
1386
1387 perf_event_mask |=
1388 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1389 x86_pmu.intel_ctrl = perf_event_mask;
1390
1391 perf_events_lapic_init();
1392 register_die_notifier(&perf_event_nmi_notifier);
1393
1394 unconstrained = (struct event_constraint)
1395 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1396 0, x86_pmu.num_events);
1397
1398 pr_info("... version: %d\n", x86_pmu.version);
1399 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1400 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1401 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1402 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1403 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1404 pr_info("... event mask: %016Lx\n", perf_event_mask);
1405 }
1406
1407 static inline void x86_pmu_read(struct perf_event *event)
1408 {
1409 x86_perf_event_update(event, &event->hw, event->hw.idx);
1410 }
1411
1412 static const struct pmu pmu = {
1413 .enable = x86_pmu_enable,
1414 .disable = x86_pmu_disable,
1415 .start = x86_pmu_start,
1416 .stop = x86_pmu_stop,
1417 .read = x86_pmu_read,
1418 .unthrottle = x86_pmu_unthrottle,
1419 };
1420
1421 /*
1422 * validate a single event group
1423 *
1424 * validation include:
1425 * - check events are compatible which each other
1426 * - events do not compete for the same counter
1427 * - number of events <= number of counters
1428 *
1429 * validation ensures the group can be loaded onto the
1430 * PMU if it was the only group available.
1431 */
1432 static int validate_group(struct perf_event *event)
1433 {
1434 struct perf_event *leader = event->group_leader;
1435 struct cpu_hw_events *fake_cpuc;
1436 int ret, n;
1437
1438 ret = -ENOMEM;
1439 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1440 if (!fake_cpuc)
1441 goto out;
1442
1443 /*
1444 * the event is not yet connected with its
1445 * siblings therefore we must first collect
1446 * existing siblings, then add the new event
1447 * before we can simulate the scheduling
1448 */
1449 ret = -ENOSPC;
1450 n = collect_events(fake_cpuc, leader, true);
1451 if (n < 0)
1452 goto out_free;
1453
1454 fake_cpuc->n_events = n;
1455 n = collect_events(fake_cpuc, event, false);
1456 if (n < 0)
1457 goto out_free;
1458
1459 fake_cpuc->n_events = n;
1460
1461 ret = x86_schedule_events(fake_cpuc, n, NULL);
1462
1463 out_free:
1464 kfree(fake_cpuc);
1465 out:
1466 return ret;
1467 }
1468
1469 const struct pmu *hw_perf_event_init(struct perf_event *event)
1470 {
1471 const struct pmu *tmp;
1472 int err;
1473
1474 err = __hw_perf_event_init(event);
1475 if (!err) {
1476 /*
1477 * we temporarily connect event to its pmu
1478 * such that validate_group() can classify
1479 * it as an x86 event using is_x86_event()
1480 */
1481 tmp = event->pmu;
1482 event->pmu = &pmu;
1483
1484 if (event->group_leader != event)
1485 err = validate_group(event);
1486
1487 event->pmu = tmp;
1488 }
1489 if (err) {
1490 if (event->destroy)
1491 event->destroy(event);
1492 return ERR_PTR(err);
1493 }
1494
1495 return &pmu;
1496 }
1497
1498 /*
1499 * callchain support
1500 */
1501
1502 static inline
1503 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1504 {
1505 if (entry->nr < PERF_MAX_STACK_DEPTH)
1506 entry->ip[entry->nr++] = ip;
1507 }
1508
1509 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1510 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1511
1512
1513 static void
1514 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1515 {
1516 /* Ignore warnings */
1517 }
1518
1519 static void backtrace_warning(void *data, char *msg)
1520 {
1521 /* Ignore warnings */
1522 }
1523
1524 static int backtrace_stack(void *data, char *name)
1525 {
1526 return 0;
1527 }
1528
1529 static void backtrace_address(void *data, unsigned long addr, int reliable)
1530 {
1531 struct perf_callchain_entry *entry = data;
1532
1533 if (reliable)
1534 callchain_store(entry, addr);
1535 }
1536
1537 static const struct stacktrace_ops backtrace_ops = {
1538 .warning = backtrace_warning,
1539 .warning_symbol = backtrace_warning_symbol,
1540 .stack = backtrace_stack,
1541 .address = backtrace_address,
1542 .walk_stack = print_context_stack_bp,
1543 };
1544
1545 #include "../dumpstack.h"
1546
1547 static void
1548 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1549 {
1550 callchain_store(entry, PERF_CONTEXT_KERNEL);
1551 callchain_store(entry, regs->ip);
1552
1553 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1554 }
1555
1556 /*
1557 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1558 */
1559 static unsigned long
1560 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1561 {
1562 unsigned long offset, addr = (unsigned long)from;
1563 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1564 unsigned long size, len = 0;
1565 struct page *page;
1566 void *map;
1567 int ret;
1568
1569 do {
1570 ret = __get_user_pages_fast(addr, 1, 0, &page);
1571 if (!ret)
1572 break;
1573
1574 offset = addr & (PAGE_SIZE - 1);
1575 size = min(PAGE_SIZE - offset, n - len);
1576
1577 map = kmap_atomic(page, type);
1578 memcpy(to, map+offset, size);
1579 kunmap_atomic(map, type);
1580 put_page(page);
1581
1582 len += size;
1583 to += size;
1584 addr += size;
1585
1586 } while (len < n);
1587
1588 return len;
1589 }
1590
1591 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1592 {
1593 unsigned long bytes;
1594
1595 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1596
1597 return bytes == sizeof(*frame);
1598 }
1599
1600 static void
1601 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1602 {
1603 struct stack_frame frame;
1604 const void __user *fp;
1605
1606 if (!user_mode(regs))
1607 regs = task_pt_regs(current);
1608
1609 fp = (void __user *)regs->bp;
1610
1611 callchain_store(entry, PERF_CONTEXT_USER);
1612 callchain_store(entry, regs->ip);
1613
1614 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1615 frame.next_frame = NULL;
1616 frame.return_address = 0;
1617
1618 if (!copy_stack_frame(fp, &frame))
1619 break;
1620
1621 if ((unsigned long)fp < regs->sp)
1622 break;
1623
1624 callchain_store(entry, frame.return_address);
1625 fp = frame.next_frame;
1626 }
1627 }
1628
1629 static void
1630 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1631 {
1632 int is_user;
1633
1634 if (!regs)
1635 return;
1636
1637 is_user = user_mode(regs);
1638
1639 if (is_user && current->state != TASK_RUNNING)
1640 return;
1641
1642 if (!is_user)
1643 perf_callchain_kernel(regs, entry);
1644
1645 if (current->mm)
1646 perf_callchain_user(regs, entry);
1647 }
1648
1649 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1650 {
1651 struct perf_callchain_entry *entry;
1652
1653 if (in_nmi())
1654 entry = &__get_cpu_var(pmc_nmi_entry);
1655 else
1656 entry = &__get_cpu_var(pmc_irq_entry);
1657
1658 entry->nr = 0;
1659
1660 perf_do_callchain(regs, entry);
1661
1662 return entry;
1663 }
1664
1665 void hw_perf_event_setup_online(int cpu)
1666 {
1667 init_debug_store_on_cpu(cpu);
1668
1669 switch (boot_cpu_data.x86_vendor) {
1670 case X86_VENDOR_AMD:
1671 amd_pmu_cpu_online(cpu);
1672 break;
1673 default:
1674 return;
1675 }
1676 }
1677
1678 void hw_perf_event_setup_offline(int cpu)
1679 {
1680 init_debug_store_on_cpu(cpu);
1681
1682 switch (boot_cpu_data.x86_vendor) {
1683 case X86_VENDOR_AMD:
1684 amd_pmu_cpu_offline(cpu);
1685 break;
1686 default:
1687 return;
1688 }
1689 }