]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/perf_event_intel.c
x86: Replace __get_cpu_var uses
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23 * Intel PerfMon, used on Core and later.
24 */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
28 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
29 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
30 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
31 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
32 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
33 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
34 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45 EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63 EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79 EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87 EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99 EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 EVENT_CONSTRAINT_END
117 };
118
119 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120 {
121 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134 /*
135 * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136 * siblings; disable these events because they can corrupt unrelated
137 * counters.
138 */
139 INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140 INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141 INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142 INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143 EVENT_CONSTRAINT_END
144 };
145
146 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147 {
148 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152 EVENT_EXTRA_END
153 };
154
155 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156 {
157 EVENT_CONSTRAINT_END
158 };
159
160 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161 {
162 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165 EVENT_CONSTRAINT_END
166 };
167
168 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169 {
170 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
172 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
173 EVENT_CONSTRAINT_END
174 };
175
176 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
178 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
179 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181 EVENT_EXTRA_END
182 };
183
184 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
186 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
187 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189 EVENT_EXTRA_END
190 };
191
192 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
193 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
194 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
195
196 struct attribute *nhm_events_attrs[] = {
197 EVENT_PTR(mem_ld_nhm),
198 NULL,
199 };
200
201 struct attribute *snb_events_attrs[] = {
202 EVENT_PTR(mem_ld_snb),
203 EVENT_PTR(mem_st_snb),
204 NULL,
205 };
206
207 static struct event_constraint intel_hsw_event_constraints[] = {
208 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
211 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
212 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
213 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
214 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
215 INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
216 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
217 INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
218 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
219 INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
220 EVENT_CONSTRAINT_END
221 };
222
223 static u64 intel_pmu_event_map(int hw_event)
224 {
225 return intel_perfmon_event_map[hw_event];
226 }
227
228 #define SNB_DMND_DATA_RD (1ULL << 0)
229 #define SNB_DMND_RFO (1ULL << 1)
230 #define SNB_DMND_IFETCH (1ULL << 2)
231 #define SNB_DMND_WB (1ULL << 3)
232 #define SNB_PF_DATA_RD (1ULL << 4)
233 #define SNB_PF_RFO (1ULL << 5)
234 #define SNB_PF_IFETCH (1ULL << 6)
235 #define SNB_LLC_DATA_RD (1ULL << 7)
236 #define SNB_LLC_RFO (1ULL << 8)
237 #define SNB_LLC_IFETCH (1ULL << 9)
238 #define SNB_BUS_LOCKS (1ULL << 10)
239 #define SNB_STRM_ST (1ULL << 11)
240 #define SNB_OTHER (1ULL << 15)
241 #define SNB_RESP_ANY (1ULL << 16)
242 #define SNB_NO_SUPP (1ULL << 17)
243 #define SNB_LLC_HITM (1ULL << 18)
244 #define SNB_LLC_HITE (1ULL << 19)
245 #define SNB_LLC_HITS (1ULL << 20)
246 #define SNB_LLC_HITF (1ULL << 21)
247 #define SNB_LOCAL (1ULL << 22)
248 #define SNB_REMOTE (0xffULL << 23)
249 #define SNB_SNP_NONE (1ULL << 31)
250 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
251 #define SNB_SNP_MISS (1ULL << 33)
252 #define SNB_NO_FWD (1ULL << 34)
253 #define SNB_SNP_FWD (1ULL << 35)
254 #define SNB_HITM (1ULL << 36)
255 #define SNB_NON_DRAM (1ULL << 37)
256
257 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
258 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
259 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
260
261 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
262 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
263 SNB_HITM)
264
265 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
266 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
267
268 #define SNB_L3_ACCESS SNB_RESP_ANY
269 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
270
271 static __initconst const u64 snb_hw_cache_extra_regs
272 [PERF_COUNT_HW_CACHE_MAX]
273 [PERF_COUNT_HW_CACHE_OP_MAX]
274 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
275 {
276 [ C(LL ) ] = {
277 [ C(OP_READ) ] = {
278 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
279 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
280 },
281 [ C(OP_WRITE) ] = {
282 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
283 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
284 },
285 [ C(OP_PREFETCH) ] = {
286 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
287 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
288 },
289 },
290 [ C(NODE) ] = {
291 [ C(OP_READ) ] = {
292 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
293 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
294 },
295 [ C(OP_WRITE) ] = {
296 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
297 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
298 },
299 [ C(OP_PREFETCH) ] = {
300 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
301 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
302 },
303 },
304 };
305
306 static __initconst const u64 snb_hw_cache_event_ids
307 [PERF_COUNT_HW_CACHE_MAX]
308 [PERF_COUNT_HW_CACHE_OP_MAX]
309 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
310 {
311 [ C(L1D) ] = {
312 [ C(OP_READ) ] = {
313 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
314 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
315 },
316 [ C(OP_WRITE) ] = {
317 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
318 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
319 },
320 [ C(OP_PREFETCH) ] = {
321 [ C(RESULT_ACCESS) ] = 0x0,
322 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
323 },
324 },
325 [ C(L1I ) ] = {
326 [ C(OP_READ) ] = {
327 [ C(RESULT_ACCESS) ] = 0x0,
328 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
329 },
330 [ C(OP_WRITE) ] = {
331 [ C(RESULT_ACCESS) ] = -1,
332 [ C(RESULT_MISS) ] = -1,
333 },
334 [ C(OP_PREFETCH) ] = {
335 [ C(RESULT_ACCESS) ] = 0x0,
336 [ C(RESULT_MISS) ] = 0x0,
337 },
338 },
339 [ C(LL ) ] = {
340 [ C(OP_READ) ] = {
341 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
342 [ C(RESULT_ACCESS) ] = 0x01b7,
343 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
344 [ C(RESULT_MISS) ] = 0x01b7,
345 },
346 [ C(OP_WRITE) ] = {
347 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
348 [ C(RESULT_ACCESS) ] = 0x01b7,
349 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
350 [ C(RESULT_MISS) ] = 0x01b7,
351 },
352 [ C(OP_PREFETCH) ] = {
353 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
354 [ C(RESULT_ACCESS) ] = 0x01b7,
355 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
356 [ C(RESULT_MISS) ] = 0x01b7,
357 },
358 },
359 [ C(DTLB) ] = {
360 [ C(OP_READ) ] = {
361 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
362 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
363 },
364 [ C(OP_WRITE) ] = {
365 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
366 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
367 },
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = 0x0,
370 [ C(RESULT_MISS) ] = 0x0,
371 },
372 },
373 [ C(ITLB) ] = {
374 [ C(OP_READ) ] = {
375 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
376 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
377 },
378 [ C(OP_WRITE) ] = {
379 [ C(RESULT_ACCESS) ] = -1,
380 [ C(RESULT_MISS) ] = -1,
381 },
382 [ C(OP_PREFETCH) ] = {
383 [ C(RESULT_ACCESS) ] = -1,
384 [ C(RESULT_MISS) ] = -1,
385 },
386 },
387 [ C(BPU ) ] = {
388 [ C(OP_READ) ] = {
389 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
390 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
391 },
392 [ C(OP_WRITE) ] = {
393 [ C(RESULT_ACCESS) ] = -1,
394 [ C(RESULT_MISS) ] = -1,
395 },
396 [ C(OP_PREFETCH) ] = {
397 [ C(RESULT_ACCESS) ] = -1,
398 [ C(RESULT_MISS) ] = -1,
399 },
400 },
401 [ C(NODE) ] = {
402 [ C(OP_READ) ] = {
403 [ C(RESULT_ACCESS) ] = 0x01b7,
404 [ C(RESULT_MISS) ] = 0x01b7,
405 },
406 [ C(OP_WRITE) ] = {
407 [ C(RESULT_ACCESS) ] = 0x01b7,
408 [ C(RESULT_MISS) ] = 0x01b7,
409 },
410 [ C(OP_PREFETCH) ] = {
411 [ C(RESULT_ACCESS) ] = 0x01b7,
412 [ C(RESULT_MISS) ] = 0x01b7,
413 },
414 },
415
416 };
417
418 static __initconst const u64 westmere_hw_cache_event_ids
419 [PERF_COUNT_HW_CACHE_MAX]
420 [PERF_COUNT_HW_CACHE_OP_MAX]
421 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
422 {
423 [ C(L1D) ] = {
424 [ C(OP_READ) ] = {
425 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
426 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
427 },
428 [ C(OP_WRITE) ] = {
429 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
430 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
431 },
432 [ C(OP_PREFETCH) ] = {
433 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
434 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
435 },
436 },
437 [ C(L1I ) ] = {
438 [ C(OP_READ) ] = {
439 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
440 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
441 },
442 [ C(OP_WRITE) ] = {
443 [ C(RESULT_ACCESS) ] = -1,
444 [ C(RESULT_MISS) ] = -1,
445 },
446 [ C(OP_PREFETCH) ] = {
447 [ C(RESULT_ACCESS) ] = 0x0,
448 [ C(RESULT_MISS) ] = 0x0,
449 },
450 },
451 [ C(LL ) ] = {
452 [ C(OP_READ) ] = {
453 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
454 [ C(RESULT_ACCESS) ] = 0x01b7,
455 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
456 [ C(RESULT_MISS) ] = 0x01b7,
457 },
458 /*
459 * Use RFO, not WRITEBACK, because a write miss would typically occur
460 * on RFO.
461 */
462 [ C(OP_WRITE) ] = {
463 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
464 [ C(RESULT_ACCESS) ] = 0x01b7,
465 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
466 [ C(RESULT_MISS) ] = 0x01b7,
467 },
468 [ C(OP_PREFETCH) ] = {
469 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
470 [ C(RESULT_ACCESS) ] = 0x01b7,
471 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
472 [ C(RESULT_MISS) ] = 0x01b7,
473 },
474 },
475 [ C(DTLB) ] = {
476 [ C(OP_READ) ] = {
477 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
478 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
479 },
480 [ C(OP_WRITE) ] = {
481 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
482 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
483 },
484 [ C(OP_PREFETCH) ] = {
485 [ C(RESULT_ACCESS) ] = 0x0,
486 [ C(RESULT_MISS) ] = 0x0,
487 },
488 },
489 [ C(ITLB) ] = {
490 [ C(OP_READ) ] = {
491 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
492 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
493 },
494 [ C(OP_WRITE) ] = {
495 [ C(RESULT_ACCESS) ] = -1,
496 [ C(RESULT_MISS) ] = -1,
497 },
498 [ C(OP_PREFETCH) ] = {
499 [ C(RESULT_ACCESS) ] = -1,
500 [ C(RESULT_MISS) ] = -1,
501 },
502 },
503 [ C(BPU ) ] = {
504 [ C(OP_READ) ] = {
505 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
506 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
507 },
508 [ C(OP_WRITE) ] = {
509 [ C(RESULT_ACCESS) ] = -1,
510 [ C(RESULT_MISS) ] = -1,
511 },
512 [ C(OP_PREFETCH) ] = {
513 [ C(RESULT_ACCESS) ] = -1,
514 [ C(RESULT_MISS) ] = -1,
515 },
516 },
517 [ C(NODE) ] = {
518 [ C(OP_READ) ] = {
519 [ C(RESULT_ACCESS) ] = 0x01b7,
520 [ C(RESULT_MISS) ] = 0x01b7,
521 },
522 [ C(OP_WRITE) ] = {
523 [ C(RESULT_ACCESS) ] = 0x01b7,
524 [ C(RESULT_MISS) ] = 0x01b7,
525 },
526 [ C(OP_PREFETCH) ] = {
527 [ C(RESULT_ACCESS) ] = 0x01b7,
528 [ C(RESULT_MISS) ] = 0x01b7,
529 },
530 },
531 };
532
533 /*
534 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
535 * See IA32 SDM Vol 3B 30.6.1.3
536 */
537
538 #define NHM_DMND_DATA_RD (1 << 0)
539 #define NHM_DMND_RFO (1 << 1)
540 #define NHM_DMND_IFETCH (1 << 2)
541 #define NHM_DMND_WB (1 << 3)
542 #define NHM_PF_DATA_RD (1 << 4)
543 #define NHM_PF_DATA_RFO (1 << 5)
544 #define NHM_PF_IFETCH (1 << 6)
545 #define NHM_OFFCORE_OTHER (1 << 7)
546 #define NHM_UNCORE_HIT (1 << 8)
547 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
548 #define NHM_OTHER_CORE_HITM (1 << 10)
549 /* reserved */
550 #define NHM_REMOTE_CACHE_FWD (1 << 12)
551 #define NHM_REMOTE_DRAM (1 << 13)
552 #define NHM_LOCAL_DRAM (1 << 14)
553 #define NHM_NON_DRAM (1 << 15)
554
555 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
556 #define NHM_REMOTE (NHM_REMOTE_DRAM)
557
558 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
559 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
560 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
561
562 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
563 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
564 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
565
566 static __initconst const u64 nehalem_hw_cache_extra_regs
567 [PERF_COUNT_HW_CACHE_MAX]
568 [PERF_COUNT_HW_CACHE_OP_MAX]
569 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
570 {
571 [ C(LL ) ] = {
572 [ C(OP_READ) ] = {
573 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
574 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
575 },
576 [ C(OP_WRITE) ] = {
577 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
578 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
579 },
580 [ C(OP_PREFETCH) ] = {
581 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
582 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
583 },
584 },
585 [ C(NODE) ] = {
586 [ C(OP_READ) ] = {
587 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
588 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
589 },
590 [ C(OP_WRITE) ] = {
591 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
592 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
593 },
594 [ C(OP_PREFETCH) ] = {
595 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
596 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
597 },
598 },
599 };
600
601 static __initconst const u64 nehalem_hw_cache_event_ids
602 [PERF_COUNT_HW_CACHE_MAX]
603 [PERF_COUNT_HW_CACHE_OP_MAX]
604 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
605 {
606 [ C(L1D) ] = {
607 [ C(OP_READ) ] = {
608 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
609 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
610 },
611 [ C(OP_WRITE) ] = {
612 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
613 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
614 },
615 [ C(OP_PREFETCH) ] = {
616 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
617 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
618 },
619 },
620 [ C(L1I ) ] = {
621 [ C(OP_READ) ] = {
622 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
623 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
624 },
625 [ C(OP_WRITE) ] = {
626 [ C(RESULT_ACCESS) ] = -1,
627 [ C(RESULT_MISS) ] = -1,
628 },
629 [ C(OP_PREFETCH) ] = {
630 [ C(RESULT_ACCESS) ] = 0x0,
631 [ C(RESULT_MISS) ] = 0x0,
632 },
633 },
634 [ C(LL ) ] = {
635 [ C(OP_READ) ] = {
636 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
637 [ C(RESULT_ACCESS) ] = 0x01b7,
638 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
639 [ C(RESULT_MISS) ] = 0x01b7,
640 },
641 /*
642 * Use RFO, not WRITEBACK, because a write miss would typically occur
643 * on RFO.
644 */
645 [ C(OP_WRITE) ] = {
646 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
647 [ C(RESULT_ACCESS) ] = 0x01b7,
648 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
649 [ C(RESULT_MISS) ] = 0x01b7,
650 },
651 [ C(OP_PREFETCH) ] = {
652 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
653 [ C(RESULT_ACCESS) ] = 0x01b7,
654 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
655 [ C(RESULT_MISS) ] = 0x01b7,
656 },
657 },
658 [ C(DTLB) ] = {
659 [ C(OP_READ) ] = {
660 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
661 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
662 },
663 [ C(OP_WRITE) ] = {
664 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
665 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
666 },
667 [ C(OP_PREFETCH) ] = {
668 [ C(RESULT_ACCESS) ] = 0x0,
669 [ C(RESULT_MISS) ] = 0x0,
670 },
671 },
672 [ C(ITLB) ] = {
673 [ C(OP_READ) ] = {
674 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
675 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
676 },
677 [ C(OP_WRITE) ] = {
678 [ C(RESULT_ACCESS) ] = -1,
679 [ C(RESULT_MISS) ] = -1,
680 },
681 [ C(OP_PREFETCH) ] = {
682 [ C(RESULT_ACCESS) ] = -1,
683 [ C(RESULT_MISS) ] = -1,
684 },
685 },
686 [ C(BPU ) ] = {
687 [ C(OP_READ) ] = {
688 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
689 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
690 },
691 [ C(OP_WRITE) ] = {
692 [ C(RESULT_ACCESS) ] = -1,
693 [ C(RESULT_MISS) ] = -1,
694 },
695 [ C(OP_PREFETCH) ] = {
696 [ C(RESULT_ACCESS) ] = -1,
697 [ C(RESULT_MISS) ] = -1,
698 },
699 },
700 [ C(NODE) ] = {
701 [ C(OP_READ) ] = {
702 [ C(RESULT_ACCESS) ] = 0x01b7,
703 [ C(RESULT_MISS) ] = 0x01b7,
704 },
705 [ C(OP_WRITE) ] = {
706 [ C(RESULT_ACCESS) ] = 0x01b7,
707 [ C(RESULT_MISS) ] = 0x01b7,
708 },
709 [ C(OP_PREFETCH) ] = {
710 [ C(RESULT_ACCESS) ] = 0x01b7,
711 [ C(RESULT_MISS) ] = 0x01b7,
712 },
713 },
714 };
715
716 static __initconst const u64 core2_hw_cache_event_ids
717 [PERF_COUNT_HW_CACHE_MAX]
718 [PERF_COUNT_HW_CACHE_OP_MAX]
719 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
720 {
721 [ C(L1D) ] = {
722 [ C(OP_READ) ] = {
723 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
724 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
725 },
726 [ C(OP_WRITE) ] = {
727 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
728 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
729 },
730 [ C(OP_PREFETCH) ] = {
731 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
732 [ C(RESULT_MISS) ] = 0,
733 },
734 },
735 [ C(L1I ) ] = {
736 [ C(OP_READ) ] = {
737 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
738 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
739 },
740 [ C(OP_WRITE) ] = {
741 [ C(RESULT_ACCESS) ] = -1,
742 [ C(RESULT_MISS) ] = -1,
743 },
744 [ C(OP_PREFETCH) ] = {
745 [ C(RESULT_ACCESS) ] = 0,
746 [ C(RESULT_MISS) ] = 0,
747 },
748 },
749 [ C(LL ) ] = {
750 [ C(OP_READ) ] = {
751 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
752 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
753 },
754 [ C(OP_WRITE) ] = {
755 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
756 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
757 },
758 [ C(OP_PREFETCH) ] = {
759 [ C(RESULT_ACCESS) ] = 0,
760 [ C(RESULT_MISS) ] = 0,
761 },
762 },
763 [ C(DTLB) ] = {
764 [ C(OP_READ) ] = {
765 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
766 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
767 },
768 [ C(OP_WRITE) ] = {
769 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
770 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
771 },
772 [ C(OP_PREFETCH) ] = {
773 [ C(RESULT_ACCESS) ] = 0,
774 [ C(RESULT_MISS) ] = 0,
775 },
776 },
777 [ C(ITLB) ] = {
778 [ C(OP_READ) ] = {
779 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
780 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
781 },
782 [ C(OP_WRITE) ] = {
783 [ C(RESULT_ACCESS) ] = -1,
784 [ C(RESULT_MISS) ] = -1,
785 },
786 [ C(OP_PREFETCH) ] = {
787 [ C(RESULT_ACCESS) ] = -1,
788 [ C(RESULT_MISS) ] = -1,
789 },
790 },
791 [ C(BPU ) ] = {
792 [ C(OP_READ) ] = {
793 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
794 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
795 },
796 [ C(OP_WRITE) ] = {
797 [ C(RESULT_ACCESS) ] = -1,
798 [ C(RESULT_MISS) ] = -1,
799 },
800 [ C(OP_PREFETCH) ] = {
801 [ C(RESULT_ACCESS) ] = -1,
802 [ C(RESULT_MISS) ] = -1,
803 },
804 },
805 };
806
807 static __initconst const u64 atom_hw_cache_event_ids
808 [PERF_COUNT_HW_CACHE_MAX]
809 [PERF_COUNT_HW_CACHE_OP_MAX]
810 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
811 {
812 [ C(L1D) ] = {
813 [ C(OP_READ) ] = {
814 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
815 [ C(RESULT_MISS) ] = 0,
816 },
817 [ C(OP_WRITE) ] = {
818 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
819 [ C(RESULT_MISS) ] = 0,
820 },
821 [ C(OP_PREFETCH) ] = {
822 [ C(RESULT_ACCESS) ] = 0x0,
823 [ C(RESULT_MISS) ] = 0,
824 },
825 },
826 [ C(L1I ) ] = {
827 [ C(OP_READ) ] = {
828 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
829 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
830 },
831 [ C(OP_WRITE) ] = {
832 [ C(RESULT_ACCESS) ] = -1,
833 [ C(RESULT_MISS) ] = -1,
834 },
835 [ C(OP_PREFETCH) ] = {
836 [ C(RESULT_ACCESS) ] = 0,
837 [ C(RESULT_MISS) ] = 0,
838 },
839 },
840 [ C(LL ) ] = {
841 [ C(OP_READ) ] = {
842 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
843 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
844 },
845 [ C(OP_WRITE) ] = {
846 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
847 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
848 },
849 [ C(OP_PREFETCH) ] = {
850 [ C(RESULT_ACCESS) ] = 0,
851 [ C(RESULT_MISS) ] = 0,
852 },
853 },
854 [ C(DTLB) ] = {
855 [ C(OP_READ) ] = {
856 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
857 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
858 },
859 [ C(OP_WRITE) ] = {
860 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
861 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
862 },
863 [ C(OP_PREFETCH) ] = {
864 [ C(RESULT_ACCESS) ] = 0,
865 [ C(RESULT_MISS) ] = 0,
866 },
867 },
868 [ C(ITLB) ] = {
869 [ C(OP_READ) ] = {
870 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
871 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
872 },
873 [ C(OP_WRITE) ] = {
874 [ C(RESULT_ACCESS) ] = -1,
875 [ C(RESULT_MISS) ] = -1,
876 },
877 [ C(OP_PREFETCH) ] = {
878 [ C(RESULT_ACCESS) ] = -1,
879 [ C(RESULT_MISS) ] = -1,
880 },
881 },
882 [ C(BPU ) ] = {
883 [ C(OP_READ) ] = {
884 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
885 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
886 },
887 [ C(OP_WRITE) ] = {
888 [ C(RESULT_ACCESS) ] = -1,
889 [ C(RESULT_MISS) ] = -1,
890 },
891 [ C(OP_PREFETCH) ] = {
892 [ C(RESULT_ACCESS) ] = -1,
893 [ C(RESULT_MISS) ] = -1,
894 },
895 },
896 };
897
898 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
899 {
900 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
901 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
902 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
903 EVENT_EXTRA_END
904 };
905
906 #define SLM_DMND_READ SNB_DMND_DATA_RD
907 #define SLM_DMND_WRITE SNB_DMND_RFO
908 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
909
910 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
911 #define SLM_LLC_ACCESS SNB_RESP_ANY
912 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
913
914 static __initconst const u64 slm_hw_cache_extra_regs
915 [PERF_COUNT_HW_CACHE_MAX]
916 [PERF_COUNT_HW_CACHE_OP_MAX]
917 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
918 {
919 [ C(LL ) ] = {
920 [ C(OP_READ) ] = {
921 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
922 [ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS,
923 },
924 [ C(OP_WRITE) ] = {
925 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
926 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
927 },
928 [ C(OP_PREFETCH) ] = {
929 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
930 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
931 },
932 },
933 };
934
935 static __initconst const u64 slm_hw_cache_event_ids
936 [PERF_COUNT_HW_CACHE_MAX]
937 [PERF_COUNT_HW_CACHE_OP_MAX]
938 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
939 {
940 [ C(L1D) ] = {
941 [ C(OP_READ) ] = {
942 [ C(RESULT_ACCESS) ] = 0,
943 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
944 },
945 [ C(OP_WRITE) ] = {
946 [ C(RESULT_ACCESS) ] = 0,
947 [ C(RESULT_MISS) ] = 0,
948 },
949 [ C(OP_PREFETCH) ] = {
950 [ C(RESULT_ACCESS) ] = 0,
951 [ C(RESULT_MISS) ] = 0,
952 },
953 },
954 [ C(L1I ) ] = {
955 [ C(OP_READ) ] = {
956 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
957 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
958 },
959 [ C(OP_WRITE) ] = {
960 [ C(RESULT_ACCESS) ] = -1,
961 [ C(RESULT_MISS) ] = -1,
962 },
963 [ C(OP_PREFETCH) ] = {
964 [ C(RESULT_ACCESS) ] = 0,
965 [ C(RESULT_MISS) ] = 0,
966 },
967 },
968 [ C(LL ) ] = {
969 [ C(OP_READ) ] = {
970 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
971 [ C(RESULT_ACCESS) ] = 0x01b7,
972 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
973 [ C(RESULT_MISS) ] = 0x01b7,
974 },
975 [ C(OP_WRITE) ] = {
976 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
977 [ C(RESULT_ACCESS) ] = 0x01b7,
978 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
979 [ C(RESULT_MISS) ] = 0x01b7,
980 },
981 [ C(OP_PREFETCH) ] = {
982 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
983 [ C(RESULT_ACCESS) ] = 0x01b7,
984 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
985 [ C(RESULT_MISS) ] = 0x01b7,
986 },
987 },
988 [ C(DTLB) ] = {
989 [ C(OP_READ) ] = {
990 [ C(RESULT_ACCESS) ] = 0,
991 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
992 },
993 [ C(OP_WRITE) ] = {
994 [ C(RESULT_ACCESS) ] = 0,
995 [ C(RESULT_MISS) ] = 0,
996 },
997 [ C(OP_PREFETCH) ] = {
998 [ C(RESULT_ACCESS) ] = 0,
999 [ C(RESULT_MISS) ] = 0,
1000 },
1001 },
1002 [ C(ITLB) ] = {
1003 [ C(OP_READ) ] = {
1004 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1005 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1006 },
1007 [ C(OP_WRITE) ] = {
1008 [ C(RESULT_ACCESS) ] = -1,
1009 [ C(RESULT_MISS) ] = -1,
1010 },
1011 [ C(OP_PREFETCH) ] = {
1012 [ C(RESULT_ACCESS) ] = -1,
1013 [ C(RESULT_MISS) ] = -1,
1014 },
1015 },
1016 [ C(BPU ) ] = {
1017 [ C(OP_READ) ] = {
1018 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1019 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1020 },
1021 [ C(OP_WRITE) ] = {
1022 [ C(RESULT_ACCESS) ] = -1,
1023 [ C(RESULT_MISS) ] = -1,
1024 },
1025 [ C(OP_PREFETCH) ] = {
1026 [ C(RESULT_ACCESS) ] = -1,
1027 [ C(RESULT_MISS) ] = -1,
1028 },
1029 },
1030 };
1031
1032 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
1033 {
1034 /* user explicitly requested branch sampling */
1035 if (has_branch_stack(event))
1036 return true;
1037
1038 /* implicit branch sampling to correct PEBS skid */
1039 if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
1040 x86_pmu.intel_cap.pebs_format < 2)
1041 return true;
1042
1043 return false;
1044 }
1045
1046 static void intel_pmu_disable_all(void)
1047 {
1048 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1049
1050 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1051
1052 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1053 intel_pmu_disable_bts();
1054
1055 intel_pmu_pebs_disable_all();
1056 intel_pmu_lbr_disable_all();
1057 }
1058
1059 static void intel_pmu_enable_all(int added)
1060 {
1061 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1062
1063 intel_pmu_pebs_enable_all();
1064 intel_pmu_lbr_enable_all();
1065 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1066 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1067
1068 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1069 struct perf_event *event =
1070 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1071
1072 if (WARN_ON_ONCE(!event))
1073 return;
1074
1075 intel_pmu_enable_bts(event->hw.config);
1076 }
1077 }
1078
1079 /*
1080 * Workaround for:
1081 * Intel Errata AAK100 (model 26)
1082 * Intel Errata AAP53 (model 30)
1083 * Intel Errata BD53 (model 44)
1084 *
1085 * The official story:
1086 * These chips need to be 'reset' when adding counters by programming the
1087 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1088 * in sequence on the same PMC or on different PMCs.
1089 *
1090 * In practise it appears some of these events do in fact count, and
1091 * we need to programm all 4 events.
1092 */
1093 static void intel_pmu_nhm_workaround(void)
1094 {
1095 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1096 static const unsigned long nhm_magic[4] = {
1097 0x4300B5,
1098 0x4300D2,
1099 0x4300B1,
1100 0x4300B1
1101 };
1102 struct perf_event *event;
1103 int i;
1104
1105 /*
1106 * The Errata requires below steps:
1107 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1108 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1109 * the corresponding PMCx;
1110 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1111 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1112 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1113 */
1114
1115 /*
1116 * The real steps we choose are a little different from above.
1117 * A) To reduce MSR operations, we don't run step 1) as they
1118 * are already cleared before this function is called;
1119 * B) Call x86_perf_event_update to save PMCx before configuring
1120 * PERFEVTSELx with magic number;
1121 * C) With step 5), we do clear only when the PERFEVTSELx is
1122 * not used currently.
1123 * D) Call x86_perf_event_set_period to restore PMCx;
1124 */
1125
1126 /* We always operate 4 pairs of PERF Counters */
1127 for (i = 0; i < 4; i++) {
1128 event = cpuc->events[i];
1129 if (event)
1130 x86_perf_event_update(event);
1131 }
1132
1133 for (i = 0; i < 4; i++) {
1134 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1135 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1136 }
1137
1138 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1139 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1140
1141 for (i = 0; i < 4; i++) {
1142 event = cpuc->events[i];
1143
1144 if (event) {
1145 x86_perf_event_set_period(event);
1146 __x86_pmu_enable_event(&event->hw,
1147 ARCH_PERFMON_EVENTSEL_ENABLE);
1148 } else
1149 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1150 }
1151 }
1152
1153 static void intel_pmu_nhm_enable_all(int added)
1154 {
1155 if (added)
1156 intel_pmu_nhm_workaround();
1157 intel_pmu_enable_all(added);
1158 }
1159
1160 static inline u64 intel_pmu_get_status(void)
1161 {
1162 u64 status;
1163
1164 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1165
1166 return status;
1167 }
1168
1169 static inline void intel_pmu_ack_status(u64 ack)
1170 {
1171 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1172 }
1173
1174 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1175 {
1176 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1177 u64 ctrl_val, mask;
1178
1179 mask = 0xfULL << (idx * 4);
1180
1181 rdmsrl(hwc->config_base, ctrl_val);
1182 ctrl_val &= ~mask;
1183 wrmsrl(hwc->config_base, ctrl_val);
1184 }
1185
1186 static inline bool event_is_checkpointed(struct perf_event *event)
1187 {
1188 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1189 }
1190
1191 static void intel_pmu_disable_event(struct perf_event *event)
1192 {
1193 struct hw_perf_event *hwc = &event->hw;
1194 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1195
1196 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1197 intel_pmu_disable_bts();
1198 intel_pmu_drain_bts_buffer();
1199 return;
1200 }
1201
1202 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1203 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1204 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1205
1206 /*
1207 * must disable before any actual event
1208 * because any event may be combined with LBR
1209 */
1210 if (intel_pmu_needs_lbr_smpl(event))
1211 intel_pmu_lbr_disable(event);
1212
1213 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1214 intel_pmu_disable_fixed(hwc);
1215 return;
1216 }
1217
1218 x86_pmu_disable_event(event);
1219
1220 if (unlikely(event->attr.precise_ip))
1221 intel_pmu_pebs_disable(event);
1222 }
1223
1224 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1225 {
1226 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1227 u64 ctrl_val, bits, mask;
1228
1229 /*
1230 * Enable IRQ generation (0x8),
1231 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1232 * if requested:
1233 */
1234 bits = 0x8ULL;
1235 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1236 bits |= 0x2;
1237 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1238 bits |= 0x1;
1239
1240 /*
1241 * ANY bit is supported in v3 and up
1242 */
1243 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1244 bits |= 0x4;
1245
1246 bits <<= (idx * 4);
1247 mask = 0xfULL << (idx * 4);
1248
1249 rdmsrl(hwc->config_base, ctrl_val);
1250 ctrl_val &= ~mask;
1251 ctrl_val |= bits;
1252 wrmsrl(hwc->config_base, ctrl_val);
1253 }
1254
1255 static void intel_pmu_enable_event(struct perf_event *event)
1256 {
1257 struct hw_perf_event *hwc = &event->hw;
1258 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1259
1260 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1261 if (!__this_cpu_read(cpu_hw_events.enabled))
1262 return;
1263
1264 intel_pmu_enable_bts(hwc->config);
1265 return;
1266 }
1267 /*
1268 * must enabled before any actual event
1269 * because any event may be combined with LBR
1270 */
1271 if (intel_pmu_needs_lbr_smpl(event))
1272 intel_pmu_lbr_enable(event);
1273
1274 if (event->attr.exclude_host)
1275 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1276 if (event->attr.exclude_guest)
1277 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1278
1279 if (unlikely(event_is_checkpointed(event)))
1280 cpuc->intel_cp_status |= (1ull << hwc->idx);
1281
1282 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1283 intel_pmu_enable_fixed(hwc);
1284 return;
1285 }
1286
1287 if (unlikely(event->attr.precise_ip))
1288 intel_pmu_pebs_enable(event);
1289
1290 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1291 }
1292
1293 /*
1294 * Save and restart an expired event. Called by NMI contexts,
1295 * so it has to be careful about preempting normal event ops:
1296 */
1297 int intel_pmu_save_and_restart(struct perf_event *event)
1298 {
1299 x86_perf_event_update(event);
1300 /*
1301 * For a checkpointed counter always reset back to 0. This
1302 * avoids a situation where the counter overflows, aborts the
1303 * transaction and is then set back to shortly before the
1304 * overflow, and overflows and aborts again.
1305 */
1306 if (unlikely(event_is_checkpointed(event))) {
1307 /* No race with NMIs because the counter should not be armed */
1308 wrmsrl(event->hw.event_base, 0);
1309 local64_set(&event->hw.prev_count, 0);
1310 }
1311 return x86_perf_event_set_period(event);
1312 }
1313
1314 static void intel_pmu_reset(void)
1315 {
1316 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1317 unsigned long flags;
1318 int idx;
1319
1320 if (!x86_pmu.num_counters)
1321 return;
1322
1323 local_irq_save(flags);
1324
1325 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1326
1327 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1328 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1329 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1330 }
1331 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1332 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1333
1334 if (ds)
1335 ds->bts_index = ds->bts_buffer_base;
1336
1337 local_irq_restore(flags);
1338 }
1339
1340 /*
1341 * This handler is triggered by the local APIC, so the APIC IRQ handling
1342 * rules apply:
1343 */
1344 static int intel_pmu_handle_irq(struct pt_regs *regs)
1345 {
1346 struct perf_sample_data data;
1347 struct cpu_hw_events *cpuc;
1348 int bit, loops;
1349 u64 status;
1350 int handled;
1351
1352 cpuc = this_cpu_ptr(&cpu_hw_events);
1353
1354 /*
1355 * No known reason to not always do late ACK,
1356 * but just in case do it opt-in.
1357 */
1358 if (!x86_pmu.late_ack)
1359 apic_write(APIC_LVTPC, APIC_DM_NMI);
1360 intel_pmu_disable_all();
1361 handled = intel_pmu_drain_bts_buffer();
1362 status = intel_pmu_get_status();
1363 if (!status)
1364 goto done;
1365
1366 loops = 0;
1367 again:
1368 intel_pmu_ack_status(status);
1369 if (++loops > 100) {
1370 static bool warned = false;
1371 if (!warned) {
1372 WARN(1, "perfevents: irq loop stuck!\n");
1373 perf_event_print_debug();
1374 warned = true;
1375 }
1376 intel_pmu_reset();
1377 goto done;
1378 }
1379
1380 inc_irq_stat(apic_perf_irqs);
1381
1382 intel_pmu_lbr_read();
1383
1384 /*
1385 * CondChgd bit 63 doesn't mean any overflow status. Ignore
1386 * and clear the bit.
1387 */
1388 if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1389 if (!status)
1390 goto done;
1391 }
1392
1393 /*
1394 * PEBS overflow sets bit 62 in the global status register
1395 */
1396 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1397 handled++;
1398 x86_pmu.drain_pebs(regs);
1399 }
1400
1401 /*
1402 * Checkpointed counters can lead to 'spurious' PMIs because the
1403 * rollback caused by the PMI will have cleared the overflow status
1404 * bit. Therefore always force probe these counters.
1405 */
1406 status |= cpuc->intel_cp_status;
1407
1408 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1409 struct perf_event *event = cpuc->events[bit];
1410
1411 handled++;
1412
1413 if (!test_bit(bit, cpuc->active_mask))
1414 continue;
1415
1416 if (!intel_pmu_save_and_restart(event))
1417 continue;
1418
1419 perf_sample_data_init(&data, 0, event->hw.last_period);
1420
1421 if (has_branch_stack(event))
1422 data.br_stack = &cpuc->lbr_stack;
1423
1424 if (perf_event_overflow(event, &data, regs))
1425 x86_pmu_stop(event, 0);
1426 }
1427
1428 /*
1429 * Repeat if there is more work to be done:
1430 */
1431 status = intel_pmu_get_status();
1432 if (status)
1433 goto again;
1434
1435 done:
1436 intel_pmu_enable_all(0);
1437 /*
1438 * Only unmask the NMI after the overflow counters
1439 * have been reset. This avoids spurious NMIs on
1440 * Haswell CPUs.
1441 */
1442 if (x86_pmu.late_ack)
1443 apic_write(APIC_LVTPC, APIC_DM_NMI);
1444 return handled;
1445 }
1446
1447 static struct event_constraint *
1448 intel_bts_constraints(struct perf_event *event)
1449 {
1450 struct hw_perf_event *hwc = &event->hw;
1451 unsigned int hw_event, bts_event;
1452
1453 if (event->attr.freq)
1454 return NULL;
1455
1456 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1457 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1458
1459 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1460 return &bts_constraint;
1461
1462 return NULL;
1463 }
1464
1465 static int intel_alt_er(int idx)
1466 {
1467 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1468 return idx;
1469
1470 if (idx == EXTRA_REG_RSP_0)
1471 return EXTRA_REG_RSP_1;
1472
1473 if (idx == EXTRA_REG_RSP_1)
1474 return EXTRA_REG_RSP_0;
1475
1476 return idx;
1477 }
1478
1479 static void intel_fixup_er(struct perf_event *event, int idx)
1480 {
1481 event->hw.extra_reg.idx = idx;
1482
1483 if (idx == EXTRA_REG_RSP_0) {
1484 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1485 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1486 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1487 } else if (idx == EXTRA_REG_RSP_1) {
1488 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1489 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1490 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1491 }
1492 }
1493
1494 /*
1495 * manage allocation of shared extra msr for certain events
1496 *
1497 * sharing can be:
1498 * per-cpu: to be shared between the various events on a single PMU
1499 * per-core: per-cpu + shared by HT threads
1500 */
1501 static struct event_constraint *
1502 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1503 struct perf_event *event,
1504 struct hw_perf_event_extra *reg)
1505 {
1506 struct event_constraint *c = &emptyconstraint;
1507 struct er_account *era;
1508 unsigned long flags;
1509 int idx = reg->idx;
1510
1511 /*
1512 * reg->alloc can be set due to existing state, so for fake cpuc we
1513 * need to ignore this, otherwise we might fail to allocate proper fake
1514 * state for this extra reg constraint. Also see the comment below.
1515 */
1516 if (reg->alloc && !cpuc->is_fake)
1517 return NULL; /* call x86_get_event_constraint() */
1518
1519 again:
1520 era = &cpuc->shared_regs->regs[idx];
1521 /*
1522 * we use spin_lock_irqsave() to avoid lockdep issues when
1523 * passing a fake cpuc
1524 */
1525 raw_spin_lock_irqsave(&era->lock, flags);
1526
1527 if (!atomic_read(&era->ref) || era->config == reg->config) {
1528
1529 /*
1530 * If its a fake cpuc -- as per validate_{group,event}() we
1531 * shouldn't touch event state and we can avoid doing so
1532 * since both will only call get_event_constraints() once
1533 * on each event, this avoids the need for reg->alloc.
1534 *
1535 * Not doing the ER fixup will only result in era->reg being
1536 * wrong, but since we won't actually try and program hardware
1537 * this isn't a problem either.
1538 */
1539 if (!cpuc->is_fake) {
1540 if (idx != reg->idx)
1541 intel_fixup_er(event, idx);
1542
1543 /*
1544 * x86_schedule_events() can call get_event_constraints()
1545 * multiple times on events in the case of incremental
1546 * scheduling(). reg->alloc ensures we only do the ER
1547 * allocation once.
1548 */
1549 reg->alloc = 1;
1550 }
1551
1552 /* lock in msr value */
1553 era->config = reg->config;
1554 era->reg = reg->reg;
1555
1556 /* one more user */
1557 atomic_inc(&era->ref);
1558
1559 /*
1560 * need to call x86_get_event_constraint()
1561 * to check if associated event has constraints
1562 */
1563 c = NULL;
1564 } else {
1565 idx = intel_alt_er(idx);
1566 if (idx != reg->idx) {
1567 raw_spin_unlock_irqrestore(&era->lock, flags);
1568 goto again;
1569 }
1570 }
1571 raw_spin_unlock_irqrestore(&era->lock, flags);
1572
1573 return c;
1574 }
1575
1576 static void
1577 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1578 struct hw_perf_event_extra *reg)
1579 {
1580 struct er_account *era;
1581
1582 /*
1583 * Only put constraint if extra reg was actually allocated. Also takes
1584 * care of event which do not use an extra shared reg.
1585 *
1586 * Also, if this is a fake cpuc we shouldn't touch any event state
1587 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1588 * either since it'll be thrown out.
1589 */
1590 if (!reg->alloc || cpuc->is_fake)
1591 return;
1592
1593 era = &cpuc->shared_regs->regs[reg->idx];
1594
1595 /* one fewer user */
1596 atomic_dec(&era->ref);
1597
1598 /* allocate again next time */
1599 reg->alloc = 0;
1600 }
1601
1602 static struct event_constraint *
1603 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1604 struct perf_event *event)
1605 {
1606 struct event_constraint *c = NULL, *d;
1607 struct hw_perf_event_extra *xreg, *breg;
1608
1609 xreg = &event->hw.extra_reg;
1610 if (xreg->idx != EXTRA_REG_NONE) {
1611 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1612 if (c == &emptyconstraint)
1613 return c;
1614 }
1615 breg = &event->hw.branch_reg;
1616 if (breg->idx != EXTRA_REG_NONE) {
1617 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1618 if (d == &emptyconstraint) {
1619 __intel_shared_reg_put_constraints(cpuc, xreg);
1620 c = d;
1621 }
1622 }
1623 return c;
1624 }
1625
1626 struct event_constraint *
1627 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1628 {
1629 struct event_constraint *c;
1630
1631 if (x86_pmu.event_constraints) {
1632 for_each_event_constraint(c, x86_pmu.event_constraints) {
1633 if ((event->hw.config & c->cmask) == c->code) {
1634 event->hw.flags |= c->flags;
1635 return c;
1636 }
1637 }
1638 }
1639
1640 return &unconstrained;
1641 }
1642
1643 static struct event_constraint *
1644 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1645 {
1646 struct event_constraint *c;
1647
1648 c = intel_bts_constraints(event);
1649 if (c)
1650 return c;
1651
1652 c = intel_pebs_constraints(event);
1653 if (c)
1654 return c;
1655
1656 c = intel_shared_regs_constraints(cpuc, event);
1657 if (c)
1658 return c;
1659
1660 return x86_get_event_constraints(cpuc, event);
1661 }
1662
1663 static void
1664 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1665 struct perf_event *event)
1666 {
1667 struct hw_perf_event_extra *reg;
1668
1669 reg = &event->hw.extra_reg;
1670 if (reg->idx != EXTRA_REG_NONE)
1671 __intel_shared_reg_put_constraints(cpuc, reg);
1672
1673 reg = &event->hw.branch_reg;
1674 if (reg->idx != EXTRA_REG_NONE)
1675 __intel_shared_reg_put_constraints(cpuc, reg);
1676 }
1677
1678 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1679 struct perf_event *event)
1680 {
1681 intel_put_shared_regs_event_constraints(cpuc, event);
1682 }
1683
1684 static void intel_pebs_aliases_core2(struct perf_event *event)
1685 {
1686 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1687 /*
1688 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1689 * (0x003c) so that we can use it with PEBS.
1690 *
1691 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1692 * PEBS capable. However we can use INST_RETIRED.ANY_P
1693 * (0x00c0), which is a PEBS capable event, to get the same
1694 * count.
1695 *
1696 * INST_RETIRED.ANY_P counts the number of cycles that retires
1697 * CNTMASK instructions. By setting CNTMASK to a value (16)
1698 * larger than the maximum number of instructions that can be
1699 * retired per cycle (4) and then inverting the condition, we
1700 * count all cycles that retire 16 or less instructions, which
1701 * is every cycle.
1702 *
1703 * Thereby we gain a PEBS capable cycle counter.
1704 */
1705 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1706
1707 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1708 event->hw.config = alt_config;
1709 }
1710 }
1711
1712 static void intel_pebs_aliases_snb(struct perf_event *event)
1713 {
1714 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1715 /*
1716 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1717 * (0x003c) so that we can use it with PEBS.
1718 *
1719 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1720 * PEBS capable. However we can use UOPS_RETIRED.ALL
1721 * (0x01c2), which is a PEBS capable event, to get the same
1722 * count.
1723 *
1724 * UOPS_RETIRED.ALL counts the number of cycles that retires
1725 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1726 * larger than the maximum number of micro-ops that can be
1727 * retired per cycle (4) and then inverting the condition, we
1728 * count all cycles that retire 16 or less micro-ops, which
1729 * is every cycle.
1730 *
1731 * Thereby we gain a PEBS capable cycle counter.
1732 */
1733 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1734
1735 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1736 event->hw.config = alt_config;
1737 }
1738 }
1739
1740 static int intel_pmu_hw_config(struct perf_event *event)
1741 {
1742 int ret = x86_pmu_hw_config(event);
1743
1744 if (ret)
1745 return ret;
1746
1747 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1748 x86_pmu.pebs_aliases(event);
1749
1750 if (intel_pmu_needs_lbr_smpl(event)) {
1751 ret = intel_pmu_setup_lbr_filter(event);
1752 if (ret)
1753 return ret;
1754 }
1755
1756 if (event->attr.type != PERF_TYPE_RAW)
1757 return 0;
1758
1759 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1760 return 0;
1761
1762 if (x86_pmu.version < 3)
1763 return -EINVAL;
1764
1765 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1766 return -EACCES;
1767
1768 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1769
1770 return 0;
1771 }
1772
1773 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1774 {
1775 if (x86_pmu.guest_get_msrs)
1776 return x86_pmu.guest_get_msrs(nr);
1777 *nr = 0;
1778 return NULL;
1779 }
1780 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1781
1782 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1783 {
1784 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1785 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1786
1787 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1788 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1789 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1790 /*
1791 * If PMU counter has PEBS enabled it is not enough to disable counter
1792 * on a guest entry since PEBS memory write can overshoot guest entry
1793 * and corrupt guest memory. Disabling PEBS solves the problem.
1794 */
1795 arr[1].msr = MSR_IA32_PEBS_ENABLE;
1796 arr[1].host = cpuc->pebs_enabled;
1797 arr[1].guest = 0;
1798
1799 *nr = 2;
1800 return arr;
1801 }
1802
1803 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1804 {
1805 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1806 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1807 int idx;
1808
1809 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1810 struct perf_event *event = cpuc->events[idx];
1811
1812 arr[idx].msr = x86_pmu_config_addr(idx);
1813 arr[idx].host = arr[idx].guest = 0;
1814
1815 if (!test_bit(idx, cpuc->active_mask))
1816 continue;
1817
1818 arr[idx].host = arr[idx].guest =
1819 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1820
1821 if (event->attr.exclude_host)
1822 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1823 else if (event->attr.exclude_guest)
1824 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1825 }
1826
1827 *nr = x86_pmu.num_counters;
1828 return arr;
1829 }
1830
1831 static void core_pmu_enable_event(struct perf_event *event)
1832 {
1833 if (!event->attr.exclude_host)
1834 x86_pmu_enable_event(event);
1835 }
1836
1837 static void core_pmu_enable_all(int added)
1838 {
1839 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1840 int idx;
1841
1842 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1843 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1844
1845 if (!test_bit(idx, cpuc->active_mask) ||
1846 cpuc->events[idx]->attr.exclude_host)
1847 continue;
1848
1849 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1850 }
1851 }
1852
1853 static int hsw_hw_config(struct perf_event *event)
1854 {
1855 int ret = intel_pmu_hw_config(event);
1856
1857 if (ret)
1858 return ret;
1859 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1860 return 0;
1861 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1862
1863 /*
1864 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1865 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1866 * this combination.
1867 */
1868 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1869 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1870 event->attr.precise_ip > 0))
1871 return -EOPNOTSUPP;
1872
1873 if (event_is_checkpointed(event)) {
1874 /*
1875 * Sampling of checkpointed events can cause situations where
1876 * the CPU constantly aborts because of a overflow, which is
1877 * then checkpointed back and ignored. Forbid checkpointing
1878 * for sampling.
1879 *
1880 * But still allow a long sampling period, so that perf stat
1881 * from KVM works.
1882 */
1883 if (event->attr.sample_period > 0 &&
1884 event->attr.sample_period < 0x7fffffff)
1885 return -EOPNOTSUPP;
1886 }
1887 return 0;
1888 }
1889
1890 static struct event_constraint counter2_constraint =
1891 EVENT_CONSTRAINT(0, 0x4, 0);
1892
1893 static struct event_constraint *
1894 hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1895 {
1896 struct event_constraint *c = intel_get_event_constraints(cpuc, event);
1897
1898 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
1899 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
1900 if (c->idxmsk64 & (1U << 2))
1901 return &counter2_constraint;
1902 return &emptyconstraint;
1903 }
1904
1905 return c;
1906 }
1907
1908 PMU_FORMAT_ATTR(event, "config:0-7" );
1909 PMU_FORMAT_ATTR(umask, "config:8-15" );
1910 PMU_FORMAT_ATTR(edge, "config:18" );
1911 PMU_FORMAT_ATTR(pc, "config:19" );
1912 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
1913 PMU_FORMAT_ATTR(inv, "config:23" );
1914 PMU_FORMAT_ATTR(cmask, "config:24-31" );
1915 PMU_FORMAT_ATTR(in_tx, "config:32");
1916 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
1917
1918 static struct attribute *intel_arch_formats_attr[] = {
1919 &format_attr_event.attr,
1920 &format_attr_umask.attr,
1921 &format_attr_edge.attr,
1922 &format_attr_pc.attr,
1923 &format_attr_inv.attr,
1924 &format_attr_cmask.attr,
1925 NULL,
1926 };
1927
1928 ssize_t intel_event_sysfs_show(char *page, u64 config)
1929 {
1930 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1931
1932 return x86_event_sysfs_show(page, config, event);
1933 }
1934
1935 static __initconst const struct x86_pmu core_pmu = {
1936 .name = "core",
1937 .handle_irq = x86_pmu_handle_irq,
1938 .disable_all = x86_pmu_disable_all,
1939 .enable_all = core_pmu_enable_all,
1940 .enable = core_pmu_enable_event,
1941 .disable = x86_pmu_disable_event,
1942 .hw_config = x86_pmu_hw_config,
1943 .schedule_events = x86_schedule_events,
1944 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1945 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1946 .event_map = intel_pmu_event_map,
1947 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1948 .apic = 1,
1949 /*
1950 * Intel PMCs cannot be accessed sanely above 32 bit width,
1951 * so we install an artificial 1<<31 period regardless of
1952 * the generic event period:
1953 */
1954 .max_period = (1ULL << 31) - 1,
1955 .get_event_constraints = intel_get_event_constraints,
1956 .put_event_constraints = intel_put_event_constraints,
1957 .event_constraints = intel_core_event_constraints,
1958 .guest_get_msrs = core_guest_get_msrs,
1959 .format_attrs = intel_arch_formats_attr,
1960 .events_sysfs_show = intel_event_sysfs_show,
1961 };
1962
1963 struct intel_shared_regs *allocate_shared_regs(int cpu)
1964 {
1965 struct intel_shared_regs *regs;
1966 int i;
1967
1968 regs = kzalloc_node(sizeof(struct intel_shared_regs),
1969 GFP_KERNEL, cpu_to_node(cpu));
1970 if (regs) {
1971 /*
1972 * initialize the locks to keep lockdep happy
1973 */
1974 for (i = 0; i < EXTRA_REG_MAX; i++)
1975 raw_spin_lock_init(&regs->regs[i].lock);
1976
1977 regs->core_id = -1;
1978 }
1979 return regs;
1980 }
1981
1982 static int intel_pmu_cpu_prepare(int cpu)
1983 {
1984 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1985
1986 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1987 return NOTIFY_OK;
1988
1989 cpuc->shared_regs = allocate_shared_regs(cpu);
1990 if (!cpuc->shared_regs)
1991 return NOTIFY_BAD;
1992
1993 return NOTIFY_OK;
1994 }
1995
1996 static void intel_pmu_cpu_starting(int cpu)
1997 {
1998 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1999 int core_id = topology_core_id(cpu);
2000 int i;
2001
2002 init_debug_store_on_cpu(cpu);
2003 /*
2004 * Deal with CPUs that don't clear their LBRs on power-up.
2005 */
2006 intel_pmu_lbr_reset();
2007
2008 cpuc->lbr_sel = NULL;
2009
2010 if (!cpuc->shared_regs)
2011 return;
2012
2013 if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
2014 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2015 struct intel_shared_regs *pc;
2016
2017 pc = per_cpu(cpu_hw_events, i).shared_regs;
2018 if (pc && pc->core_id == core_id) {
2019 cpuc->kfree_on_online = cpuc->shared_regs;
2020 cpuc->shared_regs = pc;
2021 break;
2022 }
2023 }
2024 cpuc->shared_regs->core_id = core_id;
2025 cpuc->shared_regs->refcnt++;
2026 }
2027
2028 if (x86_pmu.lbr_sel_map)
2029 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2030 }
2031
2032 static void intel_pmu_cpu_dying(int cpu)
2033 {
2034 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2035 struct intel_shared_regs *pc;
2036
2037 pc = cpuc->shared_regs;
2038 if (pc) {
2039 if (pc->core_id == -1 || --pc->refcnt == 0)
2040 kfree(pc);
2041 cpuc->shared_regs = NULL;
2042 }
2043
2044 fini_debug_store_on_cpu(cpu);
2045 }
2046
2047 static void intel_pmu_flush_branch_stack(void)
2048 {
2049 /*
2050 * Intel LBR does not tag entries with the
2051 * PID of the current task, then we need to
2052 * flush it on ctxsw
2053 * For now, we simply reset it
2054 */
2055 if (x86_pmu.lbr_nr)
2056 intel_pmu_lbr_reset();
2057 }
2058
2059 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2060
2061 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2062
2063 static struct attribute *intel_arch3_formats_attr[] = {
2064 &format_attr_event.attr,
2065 &format_attr_umask.attr,
2066 &format_attr_edge.attr,
2067 &format_attr_pc.attr,
2068 &format_attr_any.attr,
2069 &format_attr_inv.attr,
2070 &format_attr_cmask.attr,
2071 &format_attr_in_tx.attr,
2072 &format_attr_in_tx_cp.attr,
2073
2074 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2075 &format_attr_ldlat.attr, /* PEBS load latency */
2076 NULL,
2077 };
2078
2079 static __initconst const struct x86_pmu intel_pmu = {
2080 .name = "Intel",
2081 .handle_irq = intel_pmu_handle_irq,
2082 .disable_all = intel_pmu_disable_all,
2083 .enable_all = intel_pmu_enable_all,
2084 .enable = intel_pmu_enable_event,
2085 .disable = intel_pmu_disable_event,
2086 .hw_config = intel_pmu_hw_config,
2087 .schedule_events = x86_schedule_events,
2088 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2089 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2090 .event_map = intel_pmu_event_map,
2091 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2092 .apic = 1,
2093 /*
2094 * Intel PMCs cannot be accessed sanely above 32 bit width,
2095 * so we install an artificial 1<<31 period regardless of
2096 * the generic event period:
2097 */
2098 .max_period = (1ULL << 31) - 1,
2099 .get_event_constraints = intel_get_event_constraints,
2100 .put_event_constraints = intel_put_event_constraints,
2101 .pebs_aliases = intel_pebs_aliases_core2,
2102
2103 .format_attrs = intel_arch3_formats_attr,
2104 .events_sysfs_show = intel_event_sysfs_show,
2105
2106 .cpu_prepare = intel_pmu_cpu_prepare,
2107 .cpu_starting = intel_pmu_cpu_starting,
2108 .cpu_dying = intel_pmu_cpu_dying,
2109 .guest_get_msrs = intel_guest_get_msrs,
2110 .flush_branch_stack = intel_pmu_flush_branch_stack,
2111 };
2112
2113 static __init void intel_clovertown_quirk(void)
2114 {
2115 /*
2116 * PEBS is unreliable due to:
2117 *
2118 * AJ67 - PEBS may experience CPL leaks
2119 * AJ68 - PEBS PMI may be delayed by one event
2120 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2121 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2122 *
2123 * AJ67 could be worked around by restricting the OS/USR flags.
2124 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2125 *
2126 * AJ106 could possibly be worked around by not allowing LBR
2127 * usage from PEBS, including the fixup.
2128 * AJ68 could possibly be worked around by always programming
2129 * a pebs_event_reset[0] value and coping with the lost events.
2130 *
2131 * But taken together it might just make sense to not enable PEBS on
2132 * these chips.
2133 */
2134 pr_warn("PEBS disabled due to CPU errata\n");
2135 x86_pmu.pebs = 0;
2136 x86_pmu.pebs_constraints = NULL;
2137 }
2138
2139 static int intel_snb_pebs_broken(int cpu)
2140 {
2141 u32 rev = UINT_MAX; /* default to broken for unknown models */
2142
2143 switch (cpu_data(cpu).x86_model) {
2144 case 42: /* SNB */
2145 rev = 0x28;
2146 break;
2147
2148 case 45: /* SNB-EP */
2149 switch (cpu_data(cpu).x86_mask) {
2150 case 6: rev = 0x618; break;
2151 case 7: rev = 0x70c; break;
2152 }
2153 }
2154
2155 return (cpu_data(cpu).microcode < rev);
2156 }
2157
2158 static void intel_snb_check_microcode(void)
2159 {
2160 int pebs_broken = 0;
2161 int cpu;
2162
2163 get_online_cpus();
2164 for_each_online_cpu(cpu) {
2165 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2166 break;
2167 }
2168 put_online_cpus();
2169
2170 if (pebs_broken == x86_pmu.pebs_broken)
2171 return;
2172
2173 /*
2174 * Serialized by the microcode lock..
2175 */
2176 if (x86_pmu.pebs_broken) {
2177 pr_info("PEBS enabled due to microcode update\n");
2178 x86_pmu.pebs_broken = 0;
2179 } else {
2180 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2181 x86_pmu.pebs_broken = 1;
2182 }
2183 }
2184
2185 /*
2186 * Under certain circumstances, access certain MSR may cause #GP.
2187 * The function tests if the input MSR can be safely accessed.
2188 */
2189 static bool check_msr(unsigned long msr, u64 mask)
2190 {
2191 u64 val_old, val_new, val_tmp;
2192
2193 /*
2194 * Read the current value, change it and read it back to see if it
2195 * matches, this is needed to detect certain hardware emulators
2196 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2197 */
2198 if (rdmsrl_safe(msr, &val_old))
2199 return false;
2200
2201 /*
2202 * Only change the bits which can be updated by wrmsrl.
2203 */
2204 val_tmp = val_old ^ mask;
2205 if (wrmsrl_safe(msr, val_tmp) ||
2206 rdmsrl_safe(msr, &val_new))
2207 return false;
2208
2209 if (val_new != val_tmp)
2210 return false;
2211
2212 /* Here it's sure that the MSR can be safely accessed.
2213 * Restore the old value and return.
2214 */
2215 wrmsrl(msr, val_old);
2216
2217 return true;
2218 }
2219
2220 static __init void intel_sandybridge_quirk(void)
2221 {
2222 x86_pmu.check_microcode = intel_snb_check_microcode;
2223 intel_snb_check_microcode();
2224 }
2225
2226 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2227 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2228 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2229 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2230 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2231 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2232 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2233 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2234 };
2235
2236 static __init void intel_arch_events_quirk(void)
2237 {
2238 int bit;
2239
2240 /* disable event that reported as not presend by cpuid */
2241 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2242 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2243 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2244 intel_arch_events_map[bit].name);
2245 }
2246 }
2247
2248 static __init void intel_nehalem_quirk(void)
2249 {
2250 union cpuid10_ebx ebx;
2251
2252 ebx.full = x86_pmu.events_maskl;
2253 if (ebx.split.no_branch_misses_retired) {
2254 /*
2255 * Erratum AAJ80 detected, we work it around by using
2256 * the BR_MISP_EXEC.ANY event. This will over-count
2257 * branch-misses, but it's still much better than the
2258 * architectural event which is often completely bogus:
2259 */
2260 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2261 ebx.split.no_branch_misses_retired = 0;
2262 x86_pmu.events_maskl = ebx.full;
2263 pr_info("CPU erratum AAJ80 worked around\n");
2264 }
2265 }
2266
2267 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
2268 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
2269
2270 /* Haswell special events */
2271 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
2272 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
2273 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
2274 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
2275 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
2276 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
2277 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
2278 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
2279 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
2280 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
2281 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
2282 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
2283
2284 static struct attribute *hsw_events_attrs[] = {
2285 EVENT_PTR(tx_start),
2286 EVENT_PTR(tx_commit),
2287 EVENT_PTR(tx_abort),
2288 EVENT_PTR(tx_capacity),
2289 EVENT_PTR(tx_conflict),
2290 EVENT_PTR(el_start),
2291 EVENT_PTR(el_commit),
2292 EVENT_PTR(el_abort),
2293 EVENT_PTR(el_capacity),
2294 EVENT_PTR(el_conflict),
2295 EVENT_PTR(cycles_t),
2296 EVENT_PTR(cycles_ct),
2297 EVENT_PTR(mem_ld_hsw),
2298 EVENT_PTR(mem_st_hsw),
2299 NULL
2300 };
2301
2302 __init int intel_pmu_init(void)
2303 {
2304 union cpuid10_edx edx;
2305 union cpuid10_eax eax;
2306 union cpuid10_ebx ebx;
2307 struct event_constraint *c;
2308 unsigned int unused;
2309 struct extra_reg *er;
2310 int version, i;
2311
2312 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2313 switch (boot_cpu_data.x86) {
2314 case 0x6:
2315 return p6_pmu_init();
2316 case 0xb:
2317 return knc_pmu_init();
2318 case 0xf:
2319 return p4_pmu_init();
2320 }
2321 return -ENODEV;
2322 }
2323
2324 /*
2325 * Check whether the Architectural PerfMon supports
2326 * Branch Misses Retired hw_event or not.
2327 */
2328 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2329 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2330 return -ENODEV;
2331
2332 version = eax.split.version_id;
2333 if (version < 2)
2334 x86_pmu = core_pmu;
2335 else
2336 x86_pmu = intel_pmu;
2337
2338 x86_pmu.version = version;
2339 x86_pmu.num_counters = eax.split.num_counters;
2340 x86_pmu.cntval_bits = eax.split.bit_width;
2341 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
2342
2343 x86_pmu.events_maskl = ebx.full;
2344 x86_pmu.events_mask_len = eax.split.mask_length;
2345
2346 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2347
2348 /*
2349 * Quirk: v2 perfmon does not report fixed-purpose events, so
2350 * assume at least 3 events:
2351 */
2352 if (version > 1)
2353 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2354
2355 if (boot_cpu_has(X86_FEATURE_PDCM)) {
2356 u64 capabilities;
2357
2358 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2359 x86_pmu.intel_cap.capabilities = capabilities;
2360 }
2361
2362 intel_ds_init();
2363
2364 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2365
2366 /*
2367 * Install the hw-cache-events table:
2368 */
2369 switch (boot_cpu_data.x86_model) {
2370 case 14: /* 65 nm core solo/duo, "Yonah" */
2371 pr_cont("Core events, ");
2372 break;
2373
2374 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2375 x86_add_quirk(intel_clovertown_quirk);
2376 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2377 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2378 case 29: /* six-core 45 nm xeon "Dunnington" */
2379 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2380 sizeof(hw_cache_event_ids));
2381
2382 intel_pmu_lbr_init_core();
2383
2384 x86_pmu.event_constraints = intel_core2_event_constraints;
2385 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2386 pr_cont("Core2 events, ");
2387 break;
2388
2389 case 26: /* 45 nm nehalem, "Bloomfield" */
2390 case 30: /* 45 nm nehalem, "Lynnfield" */
2391 case 46: /* 45 nm nehalem-ex, "Beckton" */
2392 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2393 sizeof(hw_cache_event_ids));
2394 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2395 sizeof(hw_cache_extra_regs));
2396
2397 intel_pmu_lbr_init_nhm();
2398
2399 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2400 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2401 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2402 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2403
2404 x86_pmu.cpu_events = nhm_events_attrs;
2405
2406 /* UOPS_ISSUED.STALLED_CYCLES */
2407 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2408 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2409 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2410 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2411 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2412
2413 x86_add_quirk(intel_nehalem_quirk);
2414
2415 pr_cont("Nehalem events, ");
2416 break;
2417
2418 case 28: /* Atom */
2419 case 38: /* Lincroft */
2420 case 39: /* Penwell */
2421 case 53: /* Cloverview */
2422 case 54: /* Cedarview */
2423 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2424 sizeof(hw_cache_event_ids));
2425
2426 intel_pmu_lbr_init_atom();
2427
2428 x86_pmu.event_constraints = intel_gen_event_constraints;
2429 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2430 pr_cont("Atom events, ");
2431 break;
2432
2433 case 55: /* Atom 22nm "Silvermont" */
2434 case 77: /* Avoton "Silvermont" */
2435 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2436 sizeof(hw_cache_event_ids));
2437 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2438 sizeof(hw_cache_extra_regs));
2439
2440 intel_pmu_lbr_init_atom();
2441
2442 x86_pmu.event_constraints = intel_slm_event_constraints;
2443 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2444 x86_pmu.extra_regs = intel_slm_extra_regs;
2445 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2446 pr_cont("Silvermont events, ");
2447 break;
2448
2449 case 37: /* 32 nm nehalem, "Clarkdale" */
2450 case 44: /* 32 nm nehalem, "Gulftown" */
2451 case 47: /* 32 nm Xeon E7 */
2452 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2453 sizeof(hw_cache_event_ids));
2454 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2455 sizeof(hw_cache_extra_regs));
2456
2457 intel_pmu_lbr_init_nhm();
2458
2459 x86_pmu.event_constraints = intel_westmere_event_constraints;
2460 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2461 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2462 x86_pmu.extra_regs = intel_westmere_extra_regs;
2463 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2464
2465 x86_pmu.cpu_events = nhm_events_attrs;
2466
2467 /* UOPS_ISSUED.STALLED_CYCLES */
2468 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2469 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2470 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2471 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2472 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2473
2474 pr_cont("Westmere events, ");
2475 break;
2476
2477 case 42: /* SandyBridge */
2478 case 45: /* SandyBridge, "Romely-EP" */
2479 x86_add_quirk(intel_sandybridge_quirk);
2480 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2481 sizeof(hw_cache_event_ids));
2482 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2483 sizeof(hw_cache_extra_regs));
2484
2485 intel_pmu_lbr_init_snb();
2486
2487 x86_pmu.event_constraints = intel_snb_event_constraints;
2488 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2489 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2490 if (boot_cpu_data.x86_model == 45)
2491 x86_pmu.extra_regs = intel_snbep_extra_regs;
2492 else
2493 x86_pmu.extra_regs = intel_snb_extra_regs;
2494 /* all extra regs are per-cpu when HT is on */
2495 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2496 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2497
2498 x86_pmu.cpu_events = snb_events_attrs;
2499
2500 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2501 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2502 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2503 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2504 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2505 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2506
2507 pr_cont("SandyBridge events, ");
2508 break;
2509 case 58: /* IvyBridge */
2510 case 62: /* IvyBridge EP */
2511 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2512 sizeof(hw_cache_event_ids));
2513 /* dTLB-load-misses on IVB is different than SNB */
2514 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
2515
2516 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2517 sizeof(hw_cache_extra_regs));
2518
2519 intel_pmu_lbr_init_snb();
2520
2521 x86_pmu.event_constraints = intel_ivb_event_constraints;
2522 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2523 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2524 if (boot_cpu_data.x86_model == 62)
2525 x86_pmu.extra_regs = intel_snbep_extra_regs;
2526 else
2527 x86_pmu.extra_regs = intel_snb_extra_regs;
2528 /* all extra regs are per-cpu when HT is on */
2529 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2530 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2531
2532 x86_pmu.cpu_events = snb_events_attrs;
2533
2534 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2535 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2536 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2537
2538 pr_cont("IvyBridge events, ");
2539 break;
2540
2541
2542 case 60: /* Haswell Client */
2543 case 70:
2544 case 71:
2545 case 63:
2546 case 69:
2547 x86_pmu.late_ack = true;
2548 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2549 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2550
2551 intel_pmu_lbr_init_snb();
2552
2553 x86_pmu.event_constraints = intel_hsw_event_constraints;
2554 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2555 x86_pmu.extra_regs = intel_snb_extra_regs;
2556 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2557 /* all extra regs are per-cpu when HT is on */
2558 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2559 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2560
2561 x86_pmu.hw_config = hsw_hw_config;
2562 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2563 x86_pmu.cpu_events = hsw_events_attrs;
2564 x86_pmu.lbr_double_abort = true;
2565 pr_cont("Haswell events, ");
2566 break;
2567
2568 default:
2569 switch (x86_pmu.version) {
2570 case 1:
2571 x86_pmu.event_constraints = intel_v1_event_constraints;
2572 pr_cont("generic architected perfmon v1, ");
2573 break;
2574 default:
2575 /*
2576 * default constraints for v2 and up
2577 */
2578 x86_pmu.event_constraints = intel_gen_event_constraints;
2579 pr_cont("generic architected perfmon, ");
2580 break;
2581 }
2582 }
2583
2584 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2585 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2586 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2587 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2588 }
2589 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2590
2591 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2592 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2593 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2594 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2595 }
2596
2597 x86_pmu.intel_ctrl |=
2598 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2599
2600 if (x86_pmu.event_constraints) {
2601 /*
2602 * event on fixed counter2 (REF_CYCLES) only works on this
2603 * counter, so do not extend mask to generic counters
2604 */
2605 for_each_event_constraint(c, x86_pmu.event_constraints) {
2606 if (c->cmask != FIXED_EVENT_FLAGS
2607 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2608 continue;
2609 }
2610
2611 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2612 c->weight += x86_pmu.num_counters;
2613 }
2614 }
2615
2616 /*
2617 * Access LBR MSR may cause #GP under certain circumstances.
2618 * E.g. KVM doesn't support LBR MSR
2619 * Check all LBT MSR here.
2620 * Disable LBR access if any LBR MSRs can not be accessed.
2621 */
2622 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
2623 x86_pmu.lbr_nr = 0;
2624 for (i = 0; i < x86_pmu.lbr_nr; i++) {
2625 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
2626 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
2627 x86_pmu.lbr_nr = 0;
2628 }
2629
2630 /*
2631 * Access extra MSR may cause #GP under certain circumstances.
2632 * E.g. KVM doesn't support offcore event
2633 * Check all extra_regs here.
2634 */
2635 if (x86_pmu.extra_regs) {
2636 for (er = x86_pmu.extra_regs; er->msr; er++) {
2637 er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
2638 /* Disable LBR select mapping */
2639 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
2640 x86_pmu.lbr_sel_map = NULL;
2641 }
2642 }
2643
2644 /* Support full width counters using alternative MSR range */
2645 if (x86_pmu.intel_cap.full_width_write) {
2646 x86_pmu.max_period = x86_pmu.cntval_mask;
2647 x86_pmu.perfctr = MSR_IA32_PMC0;
2648 pr_cont("full-width counters, ");
2649 }
2650
2651 return 0;
2652 }