]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/cpu/perf_event_intel.c
Merge tag 'for-linus-4.3-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20
21 #include "perf_event.h"
22
23 /*
24 * Intel PerfMon, used on Core and later.
25 */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
36 };
37
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 EVENT_CONSTRAINT_END
47 };
48
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 EVENT_CONSTRAINT_END
65 };
66
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 EVENT_CONSTRAINT_END
81 };
82
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 EVENT_EXTRA_END
89 };
90
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 EVENT_CONSTRAINT_END
101 };
102
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123 EVENT_CONSTRAINT_END
124 };
125
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147 EVENT_CONSTRAINT_END
148 };
149
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156 EVENT_EXTRA_END
157 };
158
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161 EVENT_CONSTRAINT_END
162 };
163
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169 EVENT_CONSTRAINT_END
170 };
171
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 EVENT_CONSTRAINT_END
178 };
179
180 struct event_constraint intel_skl_event_constraints[] = {
181 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
185 EVENT_CONSTRAINT_END
186 };
187
188 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
189 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
191 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
192 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193 EVENT_EXTRA_END
194 };
195
196 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
197 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
199 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
200 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201 EVENT_EXTRA_END
202 };
203
204 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
205 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
206 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
207 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
208 EVENT_EXTRA_END
209 };
210
211 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
212 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
213 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
214
215 struct attribute *nhm_events_attrs[] = {
216 EVENT_PTR(mem_ld_nhm),
217 NULL,
218 };
219
220 struct attribute *snb_events_attrs[] = {
221 EVENT_PTR(mem_ld_snb),
222 EVENT_PTR(mem_st_snb),
223 NULL,
224 };
225
226 static struct event_constraint intel_hsw_event_constraints[] = {
227 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
228 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
229 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
230 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
231 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
232 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
233 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
234 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
235 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
236 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
237 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
238 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
239
240 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
241 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
242 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
243 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
244
245 EVENT_CONSTRAINT_END
246 };
247
248 struct event_constraint intel_bdw_event_constraints[] = {
249 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
250 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
251 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
252 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
253 INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
254 EVENT_CONSTRAINT_END
255 };
256
257 static u64 intel_pmu_event_map(int hw_event)
258 {
259 return intel_perfmon_event_map[hw_event];
260 }
261
262 /*
263 * Notes on the events:
264 * - data reads do not include code reads (comparable to earlier tables)
265 * - data counts include speculative execution (except L1 write, dtlb, bpu)
266 * - remote node access includes remote memory, remote cache, remote mmio.
267 * - prefetches are not included in the counts.
268 * - icache miss does not include decoded icache
269 */
270
271 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
272 #define SKL_DEMAND_RFO BIT_ULL(1)
273 #define SKL_ANY_RESPONSE BIT_ULL(16)
274 #define SKL_SUPPLIER_NONE BIT_ULL(17)
275 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
276 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
277 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
278 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
279 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
280 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
281 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
282 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
283 #define SKL_SPL_HIT BIT_ULL(30)
284 #define SKL_SNOOP_NONE BIT_ULL(31)
285 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
286 #define SKL_SNOOP_MISS BIT_ULL(33)
287 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
288 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
289 #define SKL_SNOOP_HITM BIT_ULL(36)
290 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
291 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
292 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
293 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
294 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
295 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
296 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
297 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
298 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
299 SKL_SNOOP_HITM|SKL_SPL_HIT)
300 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
301 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
302 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
303 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
304 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
305
306 static __initconst const u64 skl_hw_cache_event_ids
307 [PERF_COUNT_HW_CACHE_MAX]
308 [PERF_COUNT_HW_CACHE_OP_MAX]
309 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
310 {
311 [ C(L1D ) ] = {
312 [ C(OP_READ) ] = {
313 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
314 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
315 },
316 [ C(OP_WRITE) ] = {
317 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
318 [ C(RESULT_MISS) ] = 0x0,
319 },
320 [ C(OP_PREFETCH) ] = {
321 [ C(RESULT_ACCESS) ] = 0x0,
322 [ C(RESULT_MISS) ] = 0x0,
323 },
324 },
325 [ C(L1I ) ] = {
326 [ C(OP_READ) ] = {
327 [ C(RESULT_ACCESS) ] = 0x0,
328 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
329 },
330 [ C(OP_WRITE) ] = {
331 [ C(RESULT_ACCESS) ] = -1,
332 [ C(RESULT_MISS) ] = -1,
333 },
334 [ C(OP_PREFETCH) ] = {
335 [ C(RESULT_ACCESS) ] = 0x0,
336 [ C(RESULT_MISS) ] = 0x0,
337 },
338 },
339 [ C(LL ) ] = {
340 [ C(OP_READ) ] = {
341 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
342 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
343 },
344 [ C(OP_WRITE) ] = {
345 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
346 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
347 },
348 [ C(OP_PREFETCH) ] = {
349 [ C(RESULT_ACCESS) ] = 0x0,
350 [ C(RESULT_MISS) ] = 0x0,
351 },
352 },
353 [ C(DTLB) ] = {
354 [ C(OP_READ) ] = {
355 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
356 [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
357 },
358 [ C(OP_WRITE) ] = {
359 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
360 [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
361 },
362 [ C(OP_PREFETCH) ] = {
363 [ C(RESULT_ACCESS) ] = 0x0,
364 [ C(RESULT_MISS) ] = 0x0,
365 },
366 },
367 [ C(ITLB) ] = {
368 [ C(OP_READ) ] = {
369 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
370 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
371 },
372 [ C(OP_WRITE) ] = {
373 [ C(RESULT_ACCESS) ] = -1,
374 [ C(RESULT_MISS) ] = -1,
375 },
376 [ C(OP_PREFETCH) ] = {
377 [ C(RESULT_ACCESS) ] = -1,
378 [ C(RESULT_MISS) ] = -1,
379 },
380 },
381 [ C(BPU ) ] = {
382 [ C(OP_READ) ] = {
383 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
384 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
385 },
386 [ C(OP_WRITE) ] = {
387 [ C(RESULT_ACCESS) ] = -1,
388 [ C(RESULT_MISS) ] = -1,
389 },
390 [ C(OP_PREFETCH) ] = {
391 [ C(RESULT_ACCESS) ] = -1,
392 [ C(RESULT_MISS) ] = -1,
393 },
394 },
395 [ C(NODE) ] = {
396 [ C(OP_READ) ] = {
397 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
398 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
399 },
400 [ C(OP_WRITE) ] = {
401 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
402 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
403 },
404 [ C(OP_PREFETCH) ] = {
405 [ C(RESULT_ACCESS) ] = 0x0,
406 [ C(RESULT_MISS) ] = 0x0,
407 },
408 },
409 };
410
411 static __initconst const u64 skl_hw_cache_extra_regs
412 [PERF_COUNT_HW_CACHE_MAX]
413 [PERF_COUNT_HW_CACHE_OP_MAX]
414 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
415 {
416 [ C(LL ) ] = {
417 [ C(OP_READ) ] = {
418 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
419 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
420 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
421 SKL_L3_MISS|SKL_ANY_SNOOP|
422 SKL_SUPPLIER_NONE,
423 },
424 [ C(OP_WRITE) ] = {
425 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
426 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
427 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
428 SKL_L3_MISS|SKL_ANY_SNOOP|
429 SKL_SUPPLIER_NONE,
430 },
431 [ C(OP_PREFETCH) ] = {
432 [ C(RESULT_ACCESS) ] = 0x0,
433 [ C(RESULT_MISS) ] = 0x0,
434 },
435 },
436 [ C(NODE) ] = {
437 [ C(OP_READ) ] = {
438 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
439 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
440 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
441 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
442 },
443 [ C(OP_WRITE) ] = {
444 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
445 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
446 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
447 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
448 },
449 [ C(OP_PREFETCH) ] = {
450 [ C(RESULT_ACCESS) ] = 0x0,
451 [ C(RESULT_MISS) ] = 0x0,
452 },
453 },
454 };
455
456 #define SNB_DMND_DATA_RD (1ULL << 0)
457 #define SNB_DMND_RFO (1ULL << 1)
458 #define SNB_DMND_IFETCH (1ULL << 2)
459 #define SNB_DMND_WB (1ULL << 3)
460 #define SNB_PF_DATA_RD (1ULL << 4)
461 #define SNB_PF_RFO (1ULL << 5)
462 #define SNB_PF_IFETCH (1ULL << 6)
463 #define SNB_LLC_DATA_RD (1ULL << 7)
464 #define SNB_LLC_RFO (1ULL << 8)
465 #define SNB_LLC_IFETCH (1ULL << 9)
466 #define SNB_BUS_LOCKS (1ULL << 10)
467 #define SNB_STRM_ST (1ULL << 11)
468 #define SNB_OTHER (1ULL << 15)
469 #define SNB_RESP_ANY (1ULL << 16)
470 #define SNB_NO_SUPP (1ULL << 17)
471 #define SNB_LLC_HITM (1ULL << 18)
472 #define SNB_LLC_HITE (1ULL << 19)
473 #define SNB_LLC_HITS (1ULL << 20)
474 #define SNB_LLC_HITF (1ULL << 21)
475 #define SNB_LOCAL (1ULL << 22)
476 #define SNB_REMOTE (0xffULL << 23)
477 #define SNB_SNP_NONE (1ULL << 31)
478 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
479 #define SNB_SNP_MISS (1ULL << 33)
480 #define SNB_NO_FWD (1ULL << 34)
481 #define SNB_SNP_FWD (1ULL << 35)
482 #define SNB_HITM (1ULL << 36)
483 #define SNB_NON_DRAM (1ULL << 37)
484
485 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
486 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
487 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
488
489 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
490 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
491 SNB_HITM)
492
493 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
494 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
495
496 #define SNB_L3_ACCESS SNB_RESP_ANY
497 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
498
499 static __initconst const u64 snb_hw_cache_extra_regs
500 [PERF_COUNT_HW_CACHE_MAX]
501 [PERF_COUNT_HW_CACHE_OP_MAX]
502 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
503 {
504 [ C(LL ) ] = {
505 [ C(OP_READ) ] = {
506 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
507 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
508 },
509 [ C(OP_WRITE) ] = {
510 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
511 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
512 },
513 [ C(OP_PREFETCH) ] = {
514 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
515 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
516 },
517 },
518 [ C(NODE) ] = {
519 [ C(OP_READ) ] = {
520 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
521 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
522 },
523 [ C(OP_WRITE) ] = {
524 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
525 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
526 },
527 [ C(OP_PREFETCH) ] = {
528 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
529 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
530 },
531 },
532 };
533
534 static __initconst const u64 snb_hw_cache_event_ids
535 [PERF_COUNT_HW_CACHE_MAX]
536 [PERF_COUNT_HW_CACHE_OP_MAX]
537 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
538 {
539 [ C(L1D) ] = {
540 [ C(OP_READ) ] = {
541 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
542 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
543 },
544 [ C(OP_WRITE) ] = {
545 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
546 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
547 },
548 [ C(OP_PREFETCH) ] = {
549 [ C(RESULT_ACCESS) ] = 0x0,
550 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
551 },
552 },
553 [ C(L1I ) ] = {
554 [ C(OP_READ) ] = {
555 [ C(RESULT_ACCESS) ] = 0x0,
556 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
557 },
558 [ C(OP_WRITE) ] = {
559 [ C(RESULT_ACCESS) ] = -1,
560 [ C(RESULT_MISS) ] = -1,
561 },
562 [ C(OP_PREFETCH) ] = {
563 [ C(RESULT_ACCESS) ] = 0x0,
564 [ C(RESULT_MISS) ] = 0x0,
565 },
566 },
567 [ C(LL ) ] = {
568 [ C(OP_READ) ] = {
569 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
570 [ C(RESULT_ACCESS) ] = 0x01b7,
571 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
572 [ C(RESULT_MISS) ] = 0x01b7,
573 },
574 [ C(OP_WRITE) ] = {
575 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
576 [ C(RESULT_ACCESS) ] = 0x01b7,
577 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
578 [ C(RESULT_MISS) ] = 0x01b7,
579 },
580 [ C(OP_PREFETCH) ] = {
581 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
582 [ C(RESULT_ACCESS) ] = 0x01b7,
583 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
584 [ C(RESULT_MISS) ] = 0x01b7,
585 },
586 },
587 [ C(DTLB) ] = {
588 [ C(OP_READ) ] = {
589 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
590 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
591 },
592 [ C(OP_WRITE) ] = {
593 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
594 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
595 },
596 [ C(OP_PREFETCH) ] = {
597 [ C(RESULT_ACCESS) ] = 0x0,
598 [ C(RESULT_MISS) ] = 0x0,
599 },
600 },
601 [ C(ITLB) ] = {
602 [ C(OP_READ) ] = {
603 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
604 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
605 },
606 [ C(OP_WRITE) ] = {
607 [ C(RESULT_ACCESS) ] = -1,
608 [ C(RESULT_MISS) ] = -1,
609 },
610 [ C(OP_PREFETCH) ] = {
611 [ C(RESULT_ACCESS) ] = -1,
612 [ C(RESULT_MISS) ] = -1,
613 },
614 },
615 [ C(BPU ) ] = {
616 [ C(OP_READ) ] = {
617 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
618 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
619 },
620 [ C(OP_WRITE) ] = {
621 [ C(RESULT_ACCESS) ] = -1,
622 [ C(RESULT_MISS) ] = -1,
623 },
624 [ C(OP_PREFETCH) ] = {
625 [ C(RESULT_ACCESS) ] = -1,
626 [ C(RESULT_MISS) ] = -1,
627 },
628 },
629 [ C(NODE) ] = {
630 [ C(OP_READ) ] = {
631 [ C(RESULT_ACCESS) ] = 0x01b7,
632 [ C(RESULT_MISS) ] = 0x01b7,
633 },
634 [ C(OP_WRITE) ] = {
635 [ C(RESULT_ACCESS) ] = 0x01b7,
636 [ C(RESULT_MISS) ] = 0x01b7,
637 },
638 [ C(OP_PREFETCH) ] = {
639 [ C(RESULT_ACCESS) ] = 0x01b7,
640 [ C(RESULT_MISS) ] = 0x01b7,
641 },
642 },
643
644 };
645
646 /*
647 * Notes on the events:
648 * - data reads do not include code reads (comparable to earlier tables)
649 * - data counts include speculative execution (except L1 write, dtlb, bpu)
650 * - remote node access includes remote memory, remote cache, remote mmio.
651 * - prefetches are not included in the counts because they are not
652 * reliably counted.
653 */
654
655 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
656 #define HSW_DEMAND_RFO BIT_ULL(1)
657 #define HSW_ANY_RESPONSE BIT_ULL(16)
658 #define HSW_SUPPLIER_NONE BIT_ULL(17)
659 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
660 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
661 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
662 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
663 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
664 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
665 HSW_L3_MISS_REMOTE_HOP2P)
666 #define HSW_SNOOP_NONE BIT_ULL(31)
667 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
668 #define HSW_SNOOP_MISS BIT_ULL(33)
669 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
670 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
671 #define HSW_SNOOP_HITM BIT_ULL(36)
672 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
673 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
674 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
675 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
676 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
677 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
678 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
679 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
680 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
681 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
682 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
683
684 #define BDW_L3_MISS_LOCAL BIT(26)
685 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
686 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
687 HSW_L3_MISS_REMOTE_HOP2P)
688
689
690 static __initconst const u64 hsw_hw_cache_event_ids
691 [PERF_COUNT_HW_CACHE_MAX]
692 [PERF_COUNT_HW_CACHE_OP_MAX]
693 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
694 {
695 [ C(L1D ) ] = {
696 [ C(OP_READ) ] = {
697 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
698 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
699 },
700 [ C(OP_WRITE) ] = {
701 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
702 [ C(RESULT_MISS) ] = 0x0,
703 },
704 [ C(OP_PREFETCH) ] = {
705 [ C(RESULT_ACCESS) ] = 0x0,
706 [ C(RESULT_MISS) ] = 0x0,
707 },
708 },
709 [ C(L1I ) ] = {
710 [ C(OP_READ) ] = {
711 [ C(RESULT_ACCESS) ] = 0x0,
712 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
713 },
714 [ C(OP_WRITE) ] = {
715 [ C(RESULT_ACCESS) ] = -1,
716 [ C(RESULT_MISS) ] = -1,
717 },
718 [ C(OP_PREFETCH) ] = {
719 [ C(RESULT_ACCESS) ] = 0x0,
720 [ C(RESULT_MISS) ] = 0x0,
721 },
722 },
723 [ C(LL ) ] = {
724 [ C(OP_READ) ] = {
725 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
726 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
727 },
728 [ C(OP_WRITE) ] = {
729 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
730 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
731 },
732 [ C(OP_PREFETCH) ] = {
733 [ C(RESULT_ACCESS) ] = 0x0,
734 [ C(RESULT_MISS) ] = 0x0,
735 },
736 },
737 [ C(DTLB) ] = {
738 [ C(OP_READ) ] = {
739 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
740 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
741 },
742 [ C(OP_WRITE) ] = {
743 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
744 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
745 },
746 [ C(OP_PREFETCH) ] = {
747 [ C(RESULT_ACCESS) ] = 0x0,
748 [ C(RESULT_MISS) ] = 0x0,
749 },
750 },
751 [ C(ITLB) ] = {
752 [ C(OP_READ) ] = {
753 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
754 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
755 },
756 [ C(OP_WRITE) ] = {
757 [ C(RESULT_ACCESS) ] = -1,
758 [ C(RESULT_MISS) ] = -1,
759 },
760 [ C(OP_PREFETCH) ] = {
761 [ C(RESULT_ACCESS) ] = -1,
762 [ C(RESULT_MISS) ] = -1,
763 },
764 },
765 [ C(BPU ) ] = {
766 [ C(OP_READ) ] = {
767 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
768 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
769 },
770 [ C(OP_WRITE) ] = {
771 [ C(RESULT_ACCESS) ] = -1,
772 [ C(RESULT_MISS) ] = -1,
773 },
774 [ C(OP_PREFETCH) ] = {
775 [ C(RESULT_ACCESS) ] = -1,
776 [ C(RESULT_MISS) ] = -1,
777 },
778 },
779 [ C(NODE) ] = {
780 [ C(OP_READ) ] = {
781 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
782 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
783 },
784 [ C(OP_WRITE) ] = {
785 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
786 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
787 },
788 [ C(OP_PREFETCH) ] = {
789 [ C(RESULT_ACCESS) ] = 0x0,
790 [ C(RESULT_MISS) ] = 0x0,
791 },
792 },
793 };
794
795 static __initconst const u64 hsw_hw_cache_extra_regs
796 [PERF_COUNT_HW_CACHE_MAX]
797 [PERF_COUNT_HW_CACHE_OP_MAX]
798 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
799 {
800 [ C(LL ) ] = {
801 [ C(OP_READ) ] = {
802 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
803 HSW_LLC_ACCESS,
804 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
805 HSW_L3_MISS|HSW_ANY_SNOOP,
806 },
807 [ C(OP_WRITE) ] = {
808 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
809 HSW_LLC_ACCESS,
810 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
811 HSW_L3_MISS|HSW_ANY_SNOOP,
812 },
813 [ C(OP_PREFETCH) ] = {
814 [ C(RESULT_ACCESS) ] = 0x0,
815 [ C(RESULT_MISS) ] = 0x0,
816 },
817 },
818 [ C(NODE) ] = {
819 [ C(OP_READ) ] = {
820 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
821 HSW_L3_MISS_LOCAL_DRAM|
822 HSW_SNOOP_DRAM,
823 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
824 HSW_L3_MISS_REMOTE|
825 HSW_SNOOP_DRAM,
826 },
827 [ C(OP_WRITE) ] = {
828 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
829 HSW_L3_MISS_LOCAL_DRAM|
830 HSW_SNOOP_DRAM,
831 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
832 HSW_L3_MISS_REMOTE|
833 HSW_SNOOP_DRAM,
834 },
835 [ C(OP_PREFETCH) ] = {
836 [ C(RESULT_ACCESS) ] = 0x0,
837 [ C(RESULT_MISS) ] = 0x0,
838 },
839 },
840 };
841
842 static __initconst const u64 westmere_hw_cache_event_ids
843 [PERF_COUNT_HW_CACHE_MAX]
844 [PERF_COUNT_HW_CACHE_OP_MAX]
845 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
846 {
847 [ C(L1D) ] = {
848 [ C(OP_READ) ] = {
849 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
850 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
851 },
852 [ C(OP_WRITE) ] = {
853 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
854 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
855 },
856 [ C(OP_PREFETCH) ] = {
857 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
858 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
859 },
860 },
861 [ C(L1I ) ] = {
862 [ C(OP_READ) ] = {
863 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
864 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
865 },
866 [ C(OP_WRITE) ] = {
867 [ C(RESULT_ACCESS) ] = -1,
868 [ C(RESULT_MISS) ] = -1,
869 },
870 [ C(OP_PREFETCH) ] = {
871 [ C(RESULT_ACCESS) ] = 0x0,
872 [ C(RESULT_MISS) ] = 0x0,
873 },
874 },
875 [ C(LL ) ] = {
876 [ C(OP_READ) ] = {
877 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
878 [ C(RESULT_ACCESS) ] = 0x01b7,
879 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
880 [ C(RESULT_MISS) ] = 0x01b7,
881 },
882 /*
883 * Use RFO, not WRITEBACK, because a write miss would typically occur
884 * on RFO.
885 */
886 [ C(OP_WRITE) ] = {
887 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
888 [ C(RESULT_ACCESS) ] = 0x01b7,
889 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
890 [ C(RESULT_MISS) ] = 0x01b7,
891 },
892 [ C(OP_PREFETCH) ] = {
893 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
894 [ C(RESULT_ACCESS) ] = 0x01b7,
895 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
896 [ C(RESULT_MISS) ] = 0x01b7,
897 },
898 },
899 [ C(DTLB) ] = {
900 [ C(OP_READ) ] = {
901 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
902 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
903 },
904 [ C(OP_WRITE) ] = {
905 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
906 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
907 },
908 [ C(OP_PREFETCH) ] = {
909 [ C(RESULT_ACCESS) ] = 0x0,
910 [ C(RESULT_MISS) ] = 0x0,
911 },
912 },
913 [ C(ITLB) ] = {
914 [ C(OP_READ) ] = {
915 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
916 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
917 },
918 [ C(OP_WRITE) ] = {
919 [ C(RESULT_ACCESS) ] = -1,
920 [ C(RESULT_MISS) ] = -1,
921 },
922 [ C(OP_PREFETCH) ] = {
923 [ C(RESULT_ACCESS) ] = -1,
924 [ C(RESULT_MISS) ] = -1,
925 },
926 },
927 [ C(BPU ) ] = {
928 [ C(OP_READ) ] = {
929 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
930 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
931 },
932 [ C(OP_WRITE) ] = {
933 [ C(RESULT_ACCESS) ] = -1,
934 [ C(RESULT_MISS) ] = -1,
935 },
936 [ C(OP_PREFETCH) ] = {
937 [ C(RESULT_ACCESS) ] = -1,
938 [ C(RESULT_MISS) ] = -1,
939 },
940 },
941 [ C(NODE) ] = {
942 [ C(OP_READ) ] = {
943 [ C(RESULT_ACCESS) ] = 0x01b7,
944 [ C(RESULT_MISS) ] = 0x01b7,
945 },
946 [ C(OP_WRITE) ] = {
947 [ C(RESULT_ACCESS) ] = 0x01b7,
948 [ C(RESULT_MISS) ] = 0x01b7,
949 },
950 [ C(OP_PREFETCH) ] = {
951 [ C(RESULT_ACCESS) ] = 0x01b7,
952 [ C(RESULT_MISS) ] = 0x01b7,
953 },
954 },
955 };
956
957 /*
958 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
959 * See IA32 SDM Vol 3B 30.6.1.3
960 */
961
962 #define NHM_DMND_DATA_RD (1 << 0)
963 #define NHM_DMND_RFO (1 << 1)
964 #define NHM_DMND_IFETCH (1 << 2)
965 #define NHM_DMND_WB (1 << 3)
966 #define NHM_PF_DATA_RD (1 << 4)
967 #define NHM_PF_DATA_RFO (1 << 5)
968 #define NHM_PF_IFETCH (1 << 6)
969 #define NHM_OFFCORE_OTHER (1 << 7)
970 #define NHM_UNCORE_HIT (1 << 8)
971 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
972 #define NHM_OTHER_CORE_HITM (1 << 10)
973 /* reserved */
974 #define NHM_REMOTE_CACHE_FWD (1 << 12)
975 #define NHM_REMOTE_DRAM (1 << 13)
976 #define NHM_LOCAL_DRAM (1 << 14)
977 #define NHM_NON_DRAM (1 << 15)
978
979 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
980 #define NHM_REMOTE (NHM_REMOTE_DRAM)
981
982 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
983 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
984 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
985
986 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
987 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
988 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
989
990 static __initconst const u64 nehalem_hw_cache_extra_regs
991 [PERF_COUNT_HW_CACHE_MAX]
992 [PERF_COUNT_HW_CACHE_OP_MAX]
993 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
994 {
995 [ C(LL ) ] = {
996 [ C(OP_READ) ] = {
997 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
998 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
999 },
1000 [ C(OP_WRITE) ] = {
1001 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1002 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1003 },
1004 [ C(OP_PREFETCH) ] = {
1005 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1006 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1007 },
1008 },
1009 [ C(NODE) ] = {
1010 [ C(OP_READ) ] = {
1011 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1012 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1013 },
1014 [ C(OP_WRITE) ] = {
1015 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1016 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1017 },
1018 [ C(OP_PREFETCH) ] = {
1019 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1020 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1021 },
1022 },
1023 };
1024
1025 static __initconst const u64 nehalem_hw_cache_event_ids
1026 [PERF_COUNT_HW_CACHE_MAX]
1027 [PERF_COUNT_HW_CACHE_OP_MAX]
1028 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1029 {
1030 [ C(L1D) ] = {
1031 [ C(OP_READ) ] = {
1032 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1033 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1034 },
1035 [ C(OP_WRITE) ] = {
1036 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1037 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1038 },
1039 [ C(OP_PREFETCH) ] = {
1040 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1041 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1042 },
1043 },
1044 [ C(L1I ) ] = {
1045 [ C(OP_READ) ] = {
1046 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1047 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1048 },
1049 [ C(OP_WRITE) ] = {
1050 [ C(RESULT_ACCESS) ] = -1,
1051 [ C(RESULT_MISS) ] = -1,
1052 },
1053 [ C(OP_PREFETCH) ] = {
1054 [ C(RESULT_ACCESS) ] = 0x0,
1055 [ C(RESULT_MISS) ] = 0x0,
1056 },
1057 },
1058 [ C(LL ) ] = {
1059 [ C(OP_READ) ] = {
1060 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1061 [ C(RESULT_ACCESS) ] = 0x01b7,
1062 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1063 [ C(RESULT_MISS) ] = 0x01b7,
1064 },
1065 /*
1066 * Use RFO, not WRITEBACK, because a write miss would typically occur
1067 * on RFO.
1068 */
1069 [ C(OP_WRITE) ] = {
1070 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1071 [ C(RESULT_ACCESS) ] = 0x01b7,
1072 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1073 [ C(RESULT_MISS) ] = 0x01b7,
1074 },
1075 [ C(OP_PREFETCH) ] = {
1076 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1077 [ C(RESULT_ACCESS) ] = 0x01b7,
1078 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1079 [ C(RESULT_MISS) ] = 0x01b7,
1080 },
1081 },
1082 [ C(DTLB) ] = {
1083 [ C(OP_READ) ] = {
1084 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1085 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1086 },
1087 [ C(OP_WRITE) ] = {
1088 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1089 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1090 },
1091 [ C(OP_PREFETCH) ] = {
1092 [ C(RESULT_ACCESS) ] = 0x0,
1093 [ C(RESULT_MISS) ] = 0x0,
1094 },
1095 },
1096 [ C(ITLB) ] = {
1097 [ C(OP_READ) ] = {
1098 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1099 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1100 },
1101 [ C(OP_WRITE) ] = {
1102 [ C(RESULT_ACCESS) ] = -1,
1103 [ C(RESULT_MISS) ] = -1,
1104 },
1105 [ C(OP_PREFETCH) ] = {
1106 [ C(RESULT_ACCESS) ] = -1,
1107 [ C(RESULT_MISS) ] = -1,
1108 },
1109 },
1110 [ C(BPU ) ] = {
1111 [ C(OP_READ) ] = {
1112 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1113 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1114 },
1115 [ C(OP_WRITE) ] = {
1116 [ C(RESULT_ACCESS) ] = -1,
1117 [ C(RESULT_MISS) ] = -1,
1118 },
1119 [ C(OP_PREFETCH) ] = {
1120 [ C(RESULT_ACCESS) ] = -1,
1121 [ C(RESULT_MISS) ] = -1,
1122 },
1123 },
1124 [ C(NODE) ] = {
1125 [ C(OP_READ) ] = {
1126 [ C(RESULT_ACCESS) ] = 0x01b7,
1127 [ C(RESULT_MISS) ] = 0x01b7,
1128 },
1129 [ C(OP_WRITE) ] = {
1130 [ C(RESULT_ACCESS) ] = 0x01b7,
1131 [ C(RESULT_MISS) ] = 0x01b7,
1132 },
1133 [ C(OP_PREFETCH) ] = {
1134 [ C(RESULT_ACCESS) ] = 0x01b7,
1135 [ C(RESULT_MISS) ] = 0x01b7,
1136 },
1137 },
1138 };
1139
1140 static __initconst const u64 core2_hw_cache_event_ids
1141 [PERF_COUNT_HW_CACHE_MAX]
1142 [PERF_COUNT_HW_CACHE_OP_MAX]
1143 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1144 {
1145 [ C(L1D) ] = {
1146 [ C(OP_READ) ] = {
1147 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1148 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1149 },
1150 [ C(OP_WRITE) ] = {
1151 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1152 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1153 },
1154 [ C(OP_PREFETCH) ] = {
1155 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1156 [ C(RESULT_MISS) ] = 0,
1157 },
1158 },
1159 [ C(L1I ) ] = {
1160 [ C(OP_READ) ] = {
1161 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1162 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1163 },
1164 [ C(OP_WRITE) ] = {
1165 [ C(RESULT_ACCESS) ] = -1,
1166 [ C(RESULT_MISS) ] = -1,
1167 },
1168 [ C(OP_PREFETCH) ] = {
1169 [ C(RESULT_ACCESS) ] = 0,
1170 [ C(RESULT_MISS) ] = 0,
1171 },
1172 },
1173 [ C(LL ) ] = {
1174 [ C(OP_READ) ] = {
1175 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1176 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1177 },
1178 [ C(OP_WRITE) ] = {
1179 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1180 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1181 },
1182 [ C(OP_PREFETCH) ] = {
1183 [ C(RESULT_ACCESS) ] = 0,
1184 [ C(RESULT_MISS) ] = 0,
1185 },
1186 },
1187 [ C(DTLB) ] = {
1188 [ C(OP_READ) ] = {
1189 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1190 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1191 },
1192 [ C(OP_WRITE) ] = {
1193 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1194 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1195 },
1196 [ C(OP_PREFETCH) ] = {
1197 [ C(RESULT_ACCESS) ] = 0,
1198 [ C(RESULT_MISS) ] = 0,
1199 },
1200 },
1201 [ C(ITLB) ] = {
1202 [ C(OP_READ) ] = {
1203 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1204 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1205 },
1206 [ C(OP_WRITE) ] = {
1207 [ C(RESULT_ACCESS) ] = -1,
1208 [ C(RESULT_MISS) ] = -1,
1209 },
1210 [ C(OP_PREFETCH) ] = {
1211 [ C(RESULT_ACCESS) ] = -1,
1212 [ C(RESULT_MISS) ] = -1,
1213 },
1214 },
1215 [ C(BPU ) ] = {
1216 [ C(OP_READ) ] = {
1217 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1218 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1219 },
1220 [ C(OP_WRITE) ] = {
1221 [ C(RESULT_ACCESS) ] = -1,
1222 [ C(RESULT_MISS) ] = -1,
1223 },
1224 [ C(OP_PREFETCH) ] = {
1225 [ C(RESULT_ACCESS) ] = -1,
1226 [ C(RESULT_MISS) ] = -1,
1227 },
1228 },
1229 };
1230
1231 static __initconst const u64 atom_hw_cache_event_ids
1232 [PERF_COUNT_HW_CACHE_MAX]
1233 [PERF_COUNT_HW_CACHE_OP_MAX]
1234 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1235 {
1236 [ C(L1D) ] = {
1237 [ C(OP_READ) ] = {
1238 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1239 [ C(RESULT_MISS) ] = 0,
1240 },
1241 [ C(OP_WRITE) ] = {
1242 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1243 [ C(RESULT_MISS) ] = 0,
1244 },
1245 [ C(OP_PREFETCH) ] = {
1246 [ C(RESULT_ACCESS) ] = 0x0,
1247 [ C(RESULT_MISS) ] = 0,
1248 },
1249 },
1250 [ C(L1I ) ] = {
1251 [ C(OP_READ) ] = {
1252 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1253 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1254 },
1255 [ C(OP_WRITE) ] = {
1256 [ C(RESULT_ACCESS) ] = -1,
1257 [ C(RESULT_MISS) ] = -1,
1258 },
1259 [ C(OP_PREFETCH) ] = {
1260 [ C(RESULT_ACCESS) ] = 0,
1261 [ C(RESULT_MISS) ] = 0,
1262 },
1263 },
1264 [ C(LL ) ] = {
1265 [ C(OP_READ) ] = {
1266 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1267 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1268 },
1269 [ C(OP_WRITE) ] = {
1270 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1271 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1272 },
1273 [ C(OP_PREFETCH) ] = {
1274 [ C(RESULT_ACCESS) ] = 0,
1275 [ C(RESULT_MISS) ] = 0,
1276 },
1277 },
1278 [ C(DTLB) ] = {
1279 [ C(OP_READ) ] = {
1280 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1281 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1282 },
1283 [ C(OP_WRITE) ] = {
1284 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1285 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1286 },
1287 [ C(OP_PREFETCH) ] = {
1288 [ C(RESULT_ACCESS) ] = 0,
1289 [ C(RESULT_MISS) ] = 0,
1290 },
1291 },
1292 [ C(ITLB) ] = {
1293 [ C(OP_READ) ] = {
1294 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1295 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1296 },
1297 [ C(OP_WRITE) ] = {
1298 [ C(RESULT_ACCESS) ] = -1,
1299 [ C(RESULT_MISS) ] = -1,
1300 },
1301 [ C(OP_PREFETCH) ] = {
1302 [ C(RESULT_ACCESS) ] = -1,
1303 [ C(RESULT_MISS) ] = -1,
1304 },
1305 },
1306 [ C(BPU ) ] = {
1307 [ C(OP_READ) ] = {
1308 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1309 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1310 },
1311 [ C(OP_WRITE) ] = {
1312 [ C(RESULT_ACCESS) ] = -1,
1313 [ C(RESULT_MISS) ] = -1,
1314 },
1315 [ C(OP_PREFETCH) ] = {
1316 [ C(RESULT_ACCESS) ] = -1,
1317 [ C(RESULT_MISS) ] = -1,
1318 },
1319 },
1320 };
1321
1322 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1323 {
1324 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1325 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1326 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1327 EVENT_EXTRA_END
1328 };
1329
1330 #define SLM_DMND_READ SNB_DMND_DATA_RD
1331 #define SLM_DMND_WRITE SNB_DMND_RFO
1332 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1333
1334 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1335 #define SLM_LLC_ACCESS SNB_RESP_ANY
1336 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1337
1338 static __initconst const u64 slm_hw_cache_extra_regs
1339 [PERF_COUNT_HW_CACHE_MAX]
1340 [PERF_COUNT_HW_CACHE_OP_MAX]
1341 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1342 {
1343 [ C(LL ) ] = {
1344 [ C(OP_READ) ] = {
1345 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1346 [ C(RESULT_MISS) ] = 0,
1347 },
1348 [ C(OP_WRITE) ] = {
1349 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1350 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1351 },
1352 [ C(OP_PREFETCH) ] = {
1353 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1354 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1355 },
1356 },
1357 };
1358
1359 static __initconst const u64 slm_hw_cache_event_ids
1360 [PERF_COUNT_HW_CACHE_MAX]
1361 [PERF_COUNT_HW_CACHE_OP_MAX]
1362 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1363 {
1364 [ C(L1D) ] = {
1365 [ C(OP_READ) ] = {
1366 [ C(RESULT_ACCESS) ] = 0,
1367 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1368 },
1369 [ C(OP_WRITE) ] = {
1370 [ C(RESULT_ACCESS) ] = 0,
1371 [ C(RESULT_MISS) ] = 0,
1372 },
1373 [ C(OP_PREFETCH) ] = {
1374 [ C(RESULT_ACCESS) ] = 0,
1375 [ C(RESULT_MISS) ] = 0,
1376 },
1377 },
1378 [ C(L1I ) ] = {
1379 [ C(OP_READ) ] = {
1380 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1381 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1382 },
1383 [ C(OP_WRITE) ] = {
1384 [ C(RESULT_ACCESS) ] = -1,
1385 [ C(RESULT_MISS) ] = -1,
1386 },
1387 [ C(OP_PREFETCH) ] = {
1388 [ C(RESULT_ACCESS) ] = 0,
1389 [ C(RESULT_MISS) ] = 0,
1390 },
1391 },
1392 [ C(LL ) ] = {
1393 [ C(OP_READ) ] = {
1394 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1395 [ C(RESULT_ACCESS) ] = 0x01b7,
1396 [ C(RESULT_MISS) ] = 0,
1397 },
1398 [ C(OP_WRITE) ] = {
1399 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1400 [ C(RESULT_ACCESS) ] = 0x01b7,
1401 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1402 [ C(RESULT_MISS) ] = 0x01b7,
1403 },
1404 [ C(OP_PREFETCH) ] = {
1405 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1406 [ C(RESULT_ACCESS) ] = 0x01b7,
1407 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1408 [ C(RESULT_MISS) ] = 0x01b7,
1409 },
1410 },
1411 [ C(DTLB) ] = {
1412 [ C(OP_READ) ] = {
1413 [ C(RESULT_ACCESS) ] = 0,
1414 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1415 },
1416 [ C(OP_WRITE) ] = {
1417 [ C(RESULT_ACCESS) ] = 0,
1418 [ C(RESULT_MISS) ] = 0,
1419 },
1420 [ C(OP_PREFETCH) ] = {
1421 [ C(RESULT_ACCESS) ] = 0,
1422 [ C(RESULT_MISS) ] = 0,
1423 },
1424 },
1425 [ C(ITLB) ] = {
1426 [ C(OP_READ) ] = {
1427 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1428 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1429 },
1430 [ C(OP_WRITE) ] = {
1431 [ C(RESULT_ACCESS) ] = -1,
1432 [ C(RESULT_MISS) ] = -1,
1433 },
1434 [ C(OP_PREFETCH) ] = {
1435 [ C(RESULT_ACCESS) ] = -1,
1436 [ C(RESULT_MISS) ] = -1,
1437 },
1438 },
1439 [ C(BPU ) ] = {
1440 [ C(OP_READ) ] = {
1441 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1442 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1443 },
1444 [ C(OP_WRITE) ] = {
1445 [ C(RESULT_ACCESS) ] = -1,
1446 [ C(RESULT_MISS) ] = -1,
1447 },
1448 [ C(OP_PREFETCH) ] = {
1449 [ C(RESULT_ACCESS) ] = -1,
1450 [ C(RESULT_MISS) ] = -1,
1451 },
1452 },
1453 };
1454
1455 /*
1456 * Use from PMIs where the LBRs are already disabled.
1457 */
1458 static void __intel_pmu_disable_all(void)
1459 {
1460 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1461
1462 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1463
1464 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1465 intel_pmu_disable_bts();
1466 else
1467 intel_bts_disable_local();
1468
1469 intel_pmu_pebs_disable_all();
1470 }
1471
1472 static void intel_pmu_disable_all(void)
1473 {
1474 __intel_pmu_disable_all();
1475 intel_pmu_lbr_disable_all();
1476 }
1477
1478 static void __intel_pmu_enable_all(int added, bool pmi)
1479 {
1480 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1481
1482 intel_pmu_pebs_enable_all();
1483 intel_pmu_lbr_enable_all(pmi);
1484 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1485 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1486
1487 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1488 struct perf_event *event =
1489 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1490
1491 if (WARN_ON_ONCE(!event))
1492 return;
1493
1494 intel_pmu_enable_bts(event->hw.config);
1495 } else
1496 intel_bts_enable_local();
1497 }
1498
1499 static void intel_pmu_enable_all(int added)
1500 {
1501 __intel_pmu_enable_all(added, false);
1502 }
1503
1504 /*
1505 * Workaround for:
1506 * Intel Errata AAK100 (model 26)
1507 * Intel Errata AAP53 (model 30)
1508 * Intel Errata BD53 (model 44)
1509 *
1510 * The official story:
1511 * These chips need to be 'reset' when adding counters by programming the
1512 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1513 * in sequence on the same PMC or on different PMCs.
1514 *
1515 * In practise it appears some of these events do in fact count, and
1516 * we need to programm all 4 events.
1517 */
1518 static void intel_pmu_nhm_workaround(void)
1519 {
1520 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1521 static const unsigned long nhm_magic[4] = {
1522 0x4300B5,
1523 0x4300D2,
1524 0x4300B1,
1525 0x4300B1
1526 };
1527 struct perf_event *event;
1528 int i;
1529
1530 /*
1531 * The Errata requires below steps:
1532 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1533 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1534 * the corresponding PMCx;
1535 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1536 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1537 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1538 */
1539
1540 /*
1541 * The real steps we choose are a little different from above.
1542 * A) To reduce MSR operations, we don't run step 1) as they
1543 * are already cleared before this function is called;
1544 * B) Call x86_perf_event_update to save PMCx before configuring
1545 * PERFEVTSELx with magic number;
1546 * C) With step 5), we do clear only when the PERFEVTSELx is
1547 * not used currently.
1548 * D) Call x86_perf_event_set_period to restore PMCx;
1549 */
1550
1551 /* We always operate 4 pairs of PERF Counters */
1552 for (i = 0; i < 4; i++) {
1553 event = cpuc->events[i];
1554 if (event)
1555 x86_perf_event_update(event);
1556 }
1557
1558 for (i = 0; i < 4; i++) {
1559 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1560 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1561 }
1562
1563 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1564 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1565
1566 for (i = 0; i < 4; i++) {
1567 event = cpuc->events[i];
1568
1569 if (event) {
1570 x86_perf_event_set_period(event);
1571 __x86_pmu_enable_event(&event->hw,
1572 ARCH_PERFMON_EVENTSEL_ENABLE);
1573 } else
1574 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1575 }
1576 }
1577
1578 static void intel_pmu_nhm_enable_all(int added)
1579 {
1580 if (added)
1581 intel_pmu_nhm_workaround();
1582 intel_pmu_enable_all(added);
1583 }
1584
1585 static inline u64 intel_pmu_get_status(void)
1586 {
1587 u64 status;
1588
1589 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1590
1591 return status;
1592 }
1593
1594 static inline void intel_pmu_ack_status(u64 ack)
1595 {
1596 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1597 }
1598
1599 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1600 {
1601 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1602 u64 ctrl_val, mask;
1603
1604 mask = 0xfULL << (idx * 4);
1605
1606 rdmsrl(hwc->config_base, ctrl_val);
1607 ctrl_val &= ~mask;
1608 wrmsrl(hwc->config_base, ctrl_val);
1609 }
1610
1611 static inline bool event_is_checkpointed(struct perf_event *event)
1612 {
1613 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1614 }
1615
1616 static void intel_pmu_disable_event(struct perf_event *event)
1617 {
1618 struct hw_perf_event *hwc = &event->hw;
1619 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1620
1621 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1622 intel_pmu_disable_bts();
1623 intel_pmu_drain_bts_buffer();
1624 return;
1625 }
1626
1627 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1628 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1629 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1630
1631 /*
1632 * must disable before any actual event
1633 * because any event may be combined with LBR
1634 */
1635 if (needs_branch_stack(event))
1636 intel_pmu_lbr_disable(event);
1637
1638 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1639 intel_pmu_disable_fixed(hwc);
1640 return;
1641 }
1642
1643 x86_pmu_disable_event(event);
1644
1645 if (unlikely(event->attr.precise_ip))
1646 intel_pmu_pebs_disable(event);
1647 }
1648
1649 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1650 {
1651 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1652 u64 ctrl_val, bits, mask;
1653
1654 /*
1655 * Enable IRQ generation (0x8),
1656 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1657 * if requested:
1658 */
1659 bits = 0x8ULL;
1660 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1661 bits |= 0x2;
1662 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1663 bits |= 0x1;
1664
1665 /*
1666 * ANY bit is supported in v3 and up
1667 */
1668 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1669 bits |= 0x4;
1670
1671 bits <<= (idx * 4);
1672 mask = 0xfULL << (idx * 4);
1673
1674 rdmsrl(hwc->config_base, ctrl_val);
1675 ctrl_val &= ~mask;
1676 ctrl_val |= bits;
1677 wrmsrl(hwc->config_base, ctrl_val);
1678 }
1679
1680 static void intel_pmu_enable_event(struct perf_event *event)
1681 {
1682 struct hw_perf_event *hwc = &event->hw;
1683 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1684
1685 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1686 if (!__this_cpu_read(cpu_hw_events.enabled))
1687 return;
1688
1689 intel_pmu_enable_bts(hwc->config);
1690 return;
1691 }
1692 /*
1693 * must enabled before any actual event
1694 * because any event may be combined with LBR
1695 */
1696 if (needs_branch_stack(event))
1697 intel_pmu_lbr_enable(event);
1698
1699 if (event->attr.exclude_host)
1700 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1701 if (event->attr.exclude_guest)
1702 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1703
1704 if (unlikely(event_is_checkpointed(event)))
1705 cpuc->intel_cp_status |= (1ull << hwc->idx);
1706
1707 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1708 intel_pmu_enable_fixed(hwc);
1709 return;
1710 }
1711
1712 if (unlikely(event->attr.precise_ip))
1713 intel_pmu_pebs_enable(event);
1714
1715 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1716 }
1717
1718 /*
1719 * Save and restart an expired event. Called by NMI contexts,
1720 * so it has to be careful about preempting normal event ops:
1721 */
1722 int intel_pmu_save_and_restart(struct perf_event *event)
1723 {
1724 x86_perf_event_update(event);
1725 /*
1726 * For a checkpointed counter always reset back to 0. This
1727 * avoids a situation where the counter overflows, aborts the
1728 * transaction and is then set back to shortly before the
1729 * overflow, and overflows and aborts again.
1730 */
1731 if (unlikely(event_is_checkpointed(event))) {
1732 /* No race with NMIs because the counter should not be armed */
1733 wrmsrl(event->hw.event_base, 0);
1734 local64_set(&event->hw.prev_count, 0);
1735 }
1736 return x86_perf_event_set_period(event);
1737 }
1738
1739 static void intel_pmu_reset(void)
1740 {
1741 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1742 unsigned long flags;
1743 int idx;
1744
1745 if (!x86_pmu.num_counters)
1746 return;
1747
1748 local_irq_save(flags);
1749
1750 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1751
1752 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1753 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1754 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1755 }
1756 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1757 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1758
1759 if (ds)
1760 ds->bts_index = ds->bts_buffer_base;
1761
1762 /* Ack all overflows and disable fixed counters */
1763 if (x86_pmu.version >= 2) {
1764 intel_pmu_ack_status(intel_pmu_get_status());
1765 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1766 }
1767
1768 /* Reset LBRs and LBR freezing */
1769 if (x86_pmu.lbr_nr) {
1770 update_debugctlmsr(get_debugctlmsr() &
1771 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1772 }
1773
1774 local_irq_restore(flags);
1775 }
1776
1777 /*
1778 * This handler is triggered by the local APIC, so the APIC IRQ handling
1779 * rules apply:
1780 */
1781 static int intel_pmu_handle_irq(struct pt_regs *regs)
1782 {
1783 struct perf_sample_data data;
1784 struct cpu_hw_events *cpuc;
1785 int bit, loops;
1786 u64 status;
1787 int handled;
1788
1789 cpuc = this_cpu_ptr(&cpu_hw_events);
1790
1791 /*
1792 * No known reason to not always do late ACK,
1793 * but just in case do it opt-in.
1794 */
1795 if (!x86_pmu.late_ack)
1796 apic_write(APIC_LVTPC, APIC_DM_NMI);
1797 __intel_pmu_disable_all();
1798 handled = intel_pmu_drain_bts_buffer();
1799 handled += intel_bts_interrupt();
1800 status = intel_pmu_get_status();
1801 if (!status)
1802 goto done;
1803
1804 loops = 0;
1805 again:
1806 intel_pmu_lbr_read();
1807 intel_pmu_ack_status(status);
1808 if (++loops > 100) {
1809 static bool warned = false;
1810 if (!warned) {
1811 WARN(1, "perfevents: irq loop stuck!\n");
1812 perf_event_print_debug();
1813 warned = true;
1814 }
1815 intel_pmu_reset();
1816 goto done;
1817 }
1818
1819 inc_irq_stat(apic_perf_irqs);
1820
1821
1822 /*
1823 * Ignore a range of extra bits in status that do not indicate
1824 * overflow by themselves.
1825 */
1826 status &= ~(GLOBAL_STATUS_COND_CHG |
1827 GLOBAL_STATUS_ASIF |
1828 GLOBAL_STATUS_LBRS_FROZEN);
1829 if (!status)
1830 goto done;
1831
1832 /*
1833 * PEBS overflow sets bit 62 in the global status register
1834 */
1835 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1836 handled++;
1837 x86_pmu.drain_pebs(regs);
1838 }
1839
1840 /*
1841 * Intel PT
1842 */
1843 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1844 handled++;
1845 intel_pt_interrupt();
1846 }
1847
1848 /*
1849 * Checkpointed counters can lead to 'spurious' PMIs because the
1850 * rollback caused by the PMI will have cleared the overflow status
1851 * bit. Therefore always force probe these counters.
1852 */
1853 status |= cpuc->intel_cp_status;
1854
1855 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1856 struct perf_event *event = cpuc->events[bit];
1857
1858 handled++;
1859
1860 if (!test_bit(bit, cpuc->active_mask))
1861 continue;
1862
1863 if (!intel_pmu_save_and_restart(event))
1864 continue;
1865
1866 perf_sample_data_init(&data, 0, event->hw.last_period);
1867
1868 if (has_branch_stack(event))
1869 data.br_stack = &cpuc->lbr_stack;
1870
1871 if (perf_event_overflow(event, &data, regs))
1872 x86_pmu_stop(event, 0);
1873 }
1874
1875 /*
1876 * Repeat if there is more work to be done:
1877 */
1878 status = intel_pmu_get_status();
1879 if (status)
1880 goto again;
1881
1882 done:
1883 __intel_pmu_enable_all(0, true);
1884 /*
1885 * Only unmask the NMI after the overflow counters
1886 * have been reset. This avoids spurious NMIs on
1887 * Haswell CPUs.
1888 */
1889 if (x86_pmu.late_ack)
1890 apic_write(APIC_LVTPC, APIC_DM_NMI);
1891 return handled;
1892 }
1893
1894 static struct event_constraint *
1895 intel_bts_constraints(struct perf_event *event)
1896 {
1897 struct hw_perf_event *hwc = &event->hw;
1898 unsigned int hw_event, bts_event;
1899
1900 if (event->attr.freq)
1901 return NULL;
1902
1903 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1904 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1905
1906 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1907 return &bts_constraint;
1908
1909 return NULL;
1910 }
1911
1912 static int intel_alt_er(int idx, u64 config)
1913 {
1914 int alt_idx;
1915 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1916 return idx;
1917
1918 if (idx == EXTRA_REG_RSP_0)
1919 alt_idx = EXTRA_REG_RSP_1;
1920
1921 if (idx == EXTRA_REG_RSP_1)
1922 alt_idx = EXTRA_REG_RSP_0;
1923
1924 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1925 return idx;
1926
1927 return alt_idx;
1928 }
1929
1930 static void intel_fixup_er(struct perf_event *event, int idx)
1931 {
1932 event->hw.extra_reg.idx = idx;
1933
1934 if (idx == EXTRA_REG_RSP_0) {
1935 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1936 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1937 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1938 } else if (idx == EXTRA_REG_RSP_1) {
1939 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1940 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1941 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1942 }
1943 }
1944
1945 /*
1946 * manage allocation of shared extra msr for certain events
1947 *
1948 * sharing can be:
1949 * per-cpu: to be shared between the various events on a single PMU
1950 * per-core: per-cpu + shared by HT threads
1951 */
1952 static struct event_constraint *
1953 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1954 struct perf_event *event,
1955 struct hw_perf_event_extra *reg)
1956 {
1957 struct event_constraint *c = &emptyconstraint;
1958 struct er_account *era;
1959 unsigned long flags;
1960 int idx = reg->idx;
1961
1962 /*
1963 * reg->alloc can be set due to existing state, so for fake cpuc we
1964 * need to ignore this, otherwise we might fail to allocate proper fake
1965 * state for this extra reg constraint. Also see the comment below.
1966 */
1967 if (reg->alloc && !cpuc->is_fake)
1968 return NULL; /* call x86_get_event_constraint() */
1969
1970 again:
1971 era = &cpuc->shared_regs->regs[idx];
1972 /*
1973 * we use spin_lock_irqsave() to avoid lockdep issues when
1974 * passing a fake cpuc
1975 */
1976 raw_spin_lock_irqsave(&era->lock, flags);
1977
1978 if (!atomic_read(&era->ref) || era->config == reg->config) {
1979
1980 /*
1981 * If its a fake cpuc -- as per validate_{group,event}() we
1982 * shouldn't touch event state and we can avoid doing so
1983 * since both will only call get_event_constraints() once
1984 * on each event, this avoids the need for reg->alloc.
1985 *
1986 * Not doing the ER fixup will only result in era->reg being
1987 * wrong, but since we won't actually try and program hardware
1988 * this isn't a problem either.
1989 */
1990 if (!cpuc->is_fake) {
1991 if (idx != reg->idx)
1992 intel_fixup_er(event, idx);
1993
1994 /*
1995 * x86_schedule_events() can call get_event_constraints()
1996 * multiple times on events in the case of incremental
1997 * scheduling(). reg->alloc ensures we only do the ER
1998 * allocation once.
1999 */
2000 reg->alloc = 1;
2001 }
2002
2003 /* lock in msr value */
2004 era->config = reg->config;
2005 era->reg = reg->reg;
2006
2007 /* one more user */
2008 atomic_inc(&era->ref);
2009
2010 /*
2011 * need to call x86_get_event_constraint()
2012 * to check if associated event has constraints
2013 */
2014 c = NULL;
2015 } else {
2016 idx = intel_alt_er(idx, reg->config);
2017 if (idx != reg->idx) {
2018 raw_spin_unlock_irqrestore(&era->lock, flags);
2019 goto again;
2020 }
2021 }
2022 raw_spin_unlock_irqrestore(&era->lock, flags);
2023
2024 return c;
2025 }
2026
2027 static void
2028 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2029 struct hw_perf_event_extra *reg)
2030 {
2031 struct er_account *era;
2032
2033 /*
2034 * Only put constraint if extra reg was actually allocated. Also takes
2035 * care of event which do not use an extra shared reg.
2036 *
2037 * Also, if this is a fake cpuc we shouldn't touch any event state
2038 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2039 * either since it'll be thrown out.
2040 */
2041 if (!reg->alloc || cpuc->is_fake)
2042 return;
2043
2044 era = &cpuc->shared_regs->regs[reg->idx];
2045
2046 /* one fewer user */
2047 atomic_dec(&era->ref);
2048
2049 /* allocate again next time */
2050 reg->alloc = 0;
2051 }
2052
2053 static struct event_constraint *
2054 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2055 struct perf_event *event)
2056 {
2057 struct event_constraint *c = NULL, *d;
2058 struct hw_perf_event_extra *xreg, *breg;
2059
2060 xreg = &event->hw.extra_reg;
2061 if (xreg->idx != EXTRA_REG_NONE) {
2062 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2063 if (c == &emptyconstraint)
2064 return c;
2065 }
2066 breg = &event->hw.branch_reg;
2067 if (breg->idx != EXTRA_REG_NONE) {
2068 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2069 if (d == &emptyconstraint) {
2070 __intel_shared_reg_put_constraints(cpuc, xreg);
2071 c = d;
2072 }
2073 }
2074 return c;
2075 }
2076
2077 struct event_constraint *
2078 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2079 struct perf_event *event)
2080 {
2081 struct event_constraint *c;
2082
2083 if (x86_pmu.event_constraints) {
2084 for_each_event_constraint(c, x86_pmu.event_constraints) {
2085 if ((event->hw.config & c->cmask) == c->code) {
2086 event->hw.flags |= c->flags;
2087 return c;
2088 }
2089 }
2090 }
2091
2092 return &unconstrained;
2093 }
2094
2095 static struct event_constraint *
2096 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2097 struct perf_event *event)
2098 {
2099 struct event_constraint *c;
2100
2101 c = intel_bts_constraints(event);
2102 if (c)
2103 return c;
2104
2105 c = intel_shared_regs_constraints(cpuc, event);
2106 if (c)
2107 return c;
2108
2109 c = intel_pebs_constraints(event);
2110 if (c)
2111 return c;
2112
2113 return x86_get_event_constraints(cpuc, idx, event);
2114 }
2115
2116 static void
2117 intel_start_scheduling(struct cpu_hw_events *cpuc)
2118 {
2119 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2120 struct intel_excl_states *xl;
2121 int tid = cpuc->excl_thread_id;
2122
2123 /*
2124 * nothing needed if in group validation mode
2125 */
2126 if (cpuc->is_fake || !is_ht_workaround_enabled())
2127 return;
2128
2129 /*
2130 * no exclusion needed
2131 */
2132 if (WARN_ON_ONCE(!excl_cntrs))
2133 return;
2134
2135 xl = &excl_cntrs->states[tid];
2136
2137 xl->sched_started = true;
2138 /*
2139 * lock shared state until we are done scheduling
2140 * in stop_event_scheduling()
2141 * makes scheduling appear as a transaction
2142 */
2143 raw_spin_lock(&excl_cntrs->lock);
2144 }
2145
2146 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2147 {
2148 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2149 struct event_constraint *c = cpuc->event_constraint[idx];
2150 struct intel_excl_states *xl;
2151 int tid = cpuc->excl_thread_id;
2152
2153 if (cpuc->is_fake || !is_ht_workaround_enabled())
2154 return;
2155
2156 if (WARN_ON_ONCE(!excl_cntrs))
2157 return;
2158
2159 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2160 return;
2161
2162 xl = &excl_cntrs->states[tid];
2163
2164 lockdep_assert_held(&excl_cntrs->lock);
2165
2166 if (c->flags & PERF_X86_EVENT_EXCL)
2167 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2168 else
2169 xl->state[cntr] = INTEL_EXCL_SHARED;
2170 }
2171
2172 static void
2173 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2174 {
2175 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2176 struct intel_excl_states *xl;
2177 int tid = cpuc->excl_thread_id;
2178
2179 /*
2180 * nothing needed if in group validation mode
2181 */
2182 if (cpuc->is_fake || !is_ht_workaround_enabled())
2183 return;
2184 /*
2185 * no exclusion needed
2186 */
2187 if (WARN_ON_ONCE(!excl_cntrs))
2188 return;
2189
2190 xl = &excl_cntrs->states[tid];
2191
2192 xl->sched_started = false;
2193 /*
2194 * release shared state lock (acquired in intel_start_scheduling())
2195 */
2196 raw_spin_unlock(&excl_cntrs->lock);
2197 }
2198
2199 static struct event_constraint *
2200 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2201 int idx, struct event_constraint *c)
2202 {
2203 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2204 struct intel_excl_states *xlo;
2205 int tid = cpuc->excl_thread_id;
2206 int is_excl, i;
2207
2208 /*
2209 * validating a group does not require
2210 * enforcing cross-thread exclusion
2211 */
2212 if (cpuc->is_fake || !is_ht_workaround_enabled())
2213 return c;
2214
2215 /*
2216 * no exclusion needed
2217 */
2218 if (WARN_ON_ONCE(!excl_cntrs))
2219 return c;
2220
2221 /*
2222 * because we modify the constraint, we need
2223 * to make a copy. Static constraints come
2224 * from static const tables.
2225 *
2226 * only needed when constraint has not yet
2227 * been cloned (marked dynamic)
2228 */
2229 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2230 struct event_constraint *cx;
2231
2232 /*
2233 * grab pre-allocated constraint entry
2234 */
2235 cx = &cpuc->constraint_list[idx];
2236
2237 /*
2238 * initialize dynamic constraint
2239 * with static constraint
2240 */
2241 *cx = *c;
2242
2243 /*
2244 * mark constraint as dynamic, so we
2245 * can free it later on
2246 */
2247 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2248 c = cx;
2249 }
2250
2251 /*
2252 * From here on, the constraint is dynamic.
2253 * Either it was just allocated above, or it
2254 * was allocated during a earlier invocation
2255 * of this function
2256 */
2257
2258 /*
2259 * state of sibling HT
2260 */
2261 xlo = &excl_cntrs->states[tid ^ 1];
2262
2263 /*
2264 * event requires exclusive counter access
2265 * across HT threads
2266 */
2267 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2268 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2269 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2270 if (!cpuc->n_excl++)
2271 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2272 }
2273
2274 /*
2275 * Modify static constraint with current dynamic
2276 * state of thread
2277 *
2278 * EXCLUSIVE: sibling counter measuring exclusive event
2279 * SHARED : sibling counter measuring non-exclusive event
2280 * UNUSED : sibling counter unused
2281 */
2282 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2283 /*
2284 * exclusive event in sibling counter
2285 * our corresponding counter cannot be used
2286 * regardless of our event
2287 */
2288 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2289 __clear_bit(i, c->idxmsk);
2290 /*
2291 * if measuring an exclusive event, sibling
2292 * measuring non-exclusive, then counter cannot
2293 * be used
2294 */
2295 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2296 __clear_bit(i, c->idxmsk);
2297 }
2298
2299 /*
2300 * recompute actual bit weight for scheduling algorithm
2301 */
2302 c->weight = hweight64(c->idxmsk64);
2303
2304 /*
2305 * if we return an empty mask, then switch
2306 * back to static empty constraint to avoid
2307 * the cost of freeing later on
2308 */
2309 if (c->weight == 0)
2310 c = &emptyconstraint;
2311
2312 return c;
2313 }
2314
2315 static struct event_constraint *
2316 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2317 struct perf_event *event)
2318 {
2319 struct event_constraint *c1 = cpuc->event_constraint[idx];
2320 struct event_constraint *c2;
2321
2322 /*
2323 * first time only
2324 * - static constraint: no change across incremental scheduling calls
2325 * - dynamic constraint: handled by intel_get_excl_constraints()
2326 */
2327 c2 = __intel_get_event_constraints(cpuc, idx, event);
2328 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2329 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2330 c1->weight = c2->weight;
2331 c2 = c1;
2332 }
2333
2334 if (cpuc->excl_cntrs)
2335 return intel_get_excl_constraints(cpuc, event, idx, c2);
2336
2337 return c2;
2338 }
2339
2340 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2341 struct perf_event *event)
2342 {
2343 struct hw_perf_event *hwc = &event->hw;
2344 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2345 int tid = cpuc->excl_thread_id;
2346 struct intel_excl_states *xl;
2347
2348 /*
2349 * nothing needed if in group validation mode
2350 */
2351 if (cpuc->is_fake)
2352 return;
2353
2354 if (WARN_ON_ONCE(!excl_cntrs))
2355 return;
2356
2357 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2358 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2359 if (!--cpuc->n_excl)
2360 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2361 }
2362
2363 /*
2364 * If event was actually assigned, then mark the counter state as
2365 * unused now.
2366 */
2367 if (hwc->idx >= 0) {
2368 xl = &excl_cntrs->states[tid];
2369
2370 /*
2371 * put_constraint may be called from x86_schedule_events()
2372 * which already has the lock held so here make locking
2373 * conditional.
2374 */
2375 if (!xl->sched_started)
2376 raw_spin_lock(&excl_cntrs->lock);
2377
2378 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2379
2380 if (!xl->sched_started)
2381 raw_spin_unlock(&excl_cntrs->lock);
2382 }
2383 }
2384
2385 static void
2386 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2387 struct perf_event *event)
2388 {
2389 struct hw_perf_event_extra *reg;
2390
2391 reg = &event->hw.extra_reg;
2392 if (reg->idx != EXTRA_REG_NONE)
2393 __intel_shared_reg_put_constraints(cpuc, reg);
2394
2395 reg = &event->hw.branch_reg;
2396 if (reg->idx != EXTRA_REG_NONE)
2397 __intel_shared_reg_put_constraints(cpuc, reg);
2398 }
2399
2400 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2401 struct perf_event *event)
2402 {
2403 intel_put_shared_regs_event_constraints(cpuc, event);
2404
2405 /*
2406 * is PMU has exclusive counter restrictions, then
2407 * all events are subject to and must call the
2408 * put_excl_constraints() routine
2409 */
2410 if (cpuc->excl_cntrs)
2411 intel_put_excl_constraints(cpuc, event);
2412 }
2413
2414 static void intel_pebs_aliases_core2(struct perf_event *event)
2415 {
2416 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2417 /*
2418 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2419 * (0x003c) so that we can use it with PEBS.
2420 *
2421 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2422 * PEBS capable. However we can use INST_RETIRED.ANY_P
2423 * (0x00c0), which is a PEBS capable event, to get the same
2424 * count.
2425 *
2426 * INST_RETIRED.ANY_P counts the number of cycles that retires
2427 * CNTMASK instructions. By setting CNTMASK to a value (16)
2428 * larger than the maximum number of instructions that can be
2429 * retired per cycle (4) and then inverting the condition, we
2430 * count all cycles that retire 16 or less instructions, which
2431 * is every cycle.
2432 *
2433 * Thereby we gain a PEBS capable cycle counter.
2434 */
2435 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2436
2437 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2438 event->hw.config = alt_config;
2439 }
2440 }
2441
2442 static void intel_pebs_aliases_snb(struct perf_event *event)
2443 {
2444 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2445 /*
2446 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2447 * (0x003c) so that we can use it with PEBS.
2448 *
2449 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2450 * PEBS capable. However we can use UOPS_RETIRED.ALL
2451 * (0x01c2), which is a PEBS capable event, to get the same
2452 * count.
2453 *
2454 * UOPS_RETIRED.ALL counts the number of cycles that retires
2455 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2456 * larger than the maximum number of micro-ops that can be
2457 * retired per cycle (4) and then inverting the condition, we
2458 * count all cycles that retire 16 or less micro-ops, which
2459 * is every cycle.
2460 *
2461 * Thereby we gain a PEBS capable cycle counter.
2462 */
2463 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2464
2465 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2466 event->hw.config = alt_config;
2467 }
2468 }
2469
2470 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2471 {
2472 unsigned long flags = x86_pmu.free_running_flags;
2473
2474 if (event->attr.use_clockid)
2475 flags &= ~PERF_SAMPLE_TIME;
2476 return flags;
2477 }
2478
2479 static int intel_pmu_hw_config(struct perf_event *event)
2480 {
2481 int ret = x86_pmu_hw_config(event);
2482
2483 if (ret)
2484 return ret;
2485
2486 if (event->attr.precise_ip) {
2487 if (!event->attr.freq) {
2488 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2489 if (!(event->attr.sample_type &
2490 ~intel_pmu_free_running_flags(event)))
2491 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2492 }
2493 if (x86_pmu.pebs_aliases)
2494 x86_pmu.pebs_aliases(event);
2495 }
2496
2497 if (needs_branch_stack(event)) {
2498 ret = intel_pmu_setup_lbr_filter(event);
2499 if (ret)
2500 return ret;
2501
2502 /*
2503 * BTS is set up earlier in this path, so don't account twice
2504 */
2505 if (!intel_pmu_has_bts(event)) {
2506 /* disallow lbr if conflicting events are present */
2507 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2508 return -EBUSY;
2509
2510 event->destroy = hw_perf_lbr_event_destroy;
2511 }
2512 }
2513
2514 if (event->attr.type != PERF_TYPE_RAW)
2515 return 0;
2516
2517 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2518 return 0;
2519
2520 if (x86_pmu.version < 3)
2521 return -EINVAL;
2522
2523 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2524 return -EACCES;
2525
2526 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2527
2528 return 0;
2529 }
2530
2531 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2532 {
2533 if (x86_pmu.guest_get_msrs)
2534 return x86_pmu.guest_get_msrs(nr);
2535 *nr = 0;
2536 return NULL;
2537 }
2538 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2539
2540 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2541 {
2542 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2543 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2544
2545 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2546 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2547 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2548 /*
2549 * If PMU counter has PEBS enabled it is not enough to disable counter
2550 * on a guest entry since PEBS memory write can overshoot guest entry
2551 * and corrupt guest memory. Disabling PEBS solves the problem.
2552 */
2553 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2554 arr[1].host = cpuc->pebs_enabled;
2555 arr[1].guest = 0;
2556
2557 *nr = 2;
2558 return arr;
2559 }
2560
2561 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2562 {
2563 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2564 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2565 int idx;
2566
2567 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2568 struct perf_event *event = cpuc->events[idx];
2569
2570 arr[idx].msr = x86_pmu_config_addr(idx);
2571 arr[idx].host = arr[idx].guest = 0;
2572
2573 if (!test_bit(idx, cpuc->active_mask))
2574 continue;
2575
2576 arr[idx].host = arr[idx].guest =
2577 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2578
2579 if (event->attr.exclude_host)
2580 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2581 else if (event->attr.exclude_guest)
2582 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2583 }
2584
2585 *nr = x86_pmu.num_counters;
2586 return arr;
2587 }
2588
2589 static void core_pmu_enable_event(struct perf_event *event)
2590 {
2591 if (!event->attr.exclude_host)
2592 x86_pmu_enable_event(event);
2593 }
2594
2595 static void core_pmu_enable_all(int added)
2596 {
2597 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2598 int idx;
2599
2600 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2601 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2602
2603 if (!test_bit(idx, cpuc->active_mask) ||
2604 cpuc->events[idx]->attr.exclude_host)
2605 continue;
2606
2607 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2608 }
2609 }
2610
2611 static int hsw_hw_config(struct perf_event *event)
2612 {
2613 int ret = intel_pmu_hw_config(event);
2614
2615 if (ret)
2616 return ret;
2617 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2618 return 0;
2619 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2620
2621 /*
2622 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2623 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2624 * this combination.
2625 */
2626 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2627 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2628 event->attr.precise_ip > 0))
2629 return -EOPNOTSUPP;
2630
2631 if (event_is_checkpointed(event)) {
2632 /*
2633 * Sampling of checkpointed events can cause situations where
2634 * the CPU constantly aborts because of a overflow, which is
2635 * then checkpointed back and ignored. Forbid checkpointing
2636 * for sampling.
2637 *
2638 * But still allow a long sampling period, so that perf stat
2639 * from KVM works.
2640 */
2641 if (event->attr.sample_period > 0 &&
2642 event->attr.sample_period < 0x7fffffff)
2643 return -EOPNOTSUPP;
2644 }
2645 return 0;
2646 }
2647
2648 static struct event_constraint counter2_constraint =
2649 EVENT_CONSTRAINT(0, 0x4, 0);
2650
2651 static struct event_constraint *
2652 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2653 struct perf_event *event)
2654 {
2655 struct event_constraint *c;
2656
2657 c = intel_get_event_constraints(cpuc, idx, event);
2658
2659 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2660 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2661 if (c->idxmsk64 & (1U << 2))
2662 return &counter2_constraint;
2663 return &emptyconstraint;
2664 }
2665
2666 return c;
2667 }
2668
2669 /*
2670 * Broadwell:
2671 *
2672 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2673 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2674 * the two to enforce a minimum period of 128 (the smallest value that has bits
2675 * 0-5 cleared and >= 100).
2676 *
2677 * Because of how the code in x86_perf_event_set_period() works, the truncation
2678 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2679 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2680 *
2681 * Therefore the effective (average) period matches the requested period,
2682 * despite coarser hardware granularity.
2683 */
2684 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2685 {
2686 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2687 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2688 if (left < 128)
2689 left = 128;
2690 left &= ~0x3fu;
2691 }
2692 return left;
2693 }
2694
2695 PMU_FORMAT_ATTR(event, "config:0-7" );
2696 PMU_FORMAT_ATTR(umask, "config:8-15" );
2697 PMU_FORMAT_ATTR(edge, "config:18" );
2698 PMU_FORMAT_ATTR(pc, "config:19" );
2699 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2700 PMU_FORMAT_ATTR(inv, "config:23" );
2701 PMU_FORMAT_ATTR(cmask, "config:24-31" );
2702 PMU_FORMAT_ATTR(in_tx, "config:32");
2703 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2704
2705 static struct attribute *intel_arch_formats_attr[] = {
2706 &format_attr_event.attr,
2707 &format_attr_umask.attr,
2708 &format_attr_edge.attr,
2709 &format_attr_pc.attr,
2710 &format_attr_inv.attr,
2711 &format_attr_cmask.attr,
2712 NULL,
2713 };
2714
2715 ssize_t intel_event_sysfs_show(char *page, u64 config)
2716 {
2717 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2718
2719 return x86_event_sysfs_show(page, config, event);
2720 }
2721
2722 struct intel_shared_regs *allocate_shared_regs(int cpu)
2723 {
2724 struct intel_shared_regs *regs;
2725 int i;
2726
2727 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2728 GFP_KERNEL, cpu_to_node(cpu));
2729 if (regs) {
2730 /*
2731 * initialize the locks to keep lockdep happy
2732 */
2733 for (i = 0; i < EXTRA_REG_MAX; i++)
2734 raw_spin_lock_init(&regs->regs[i].lock);
2735
2736 regs->core_id = -1;
2737 }
2738 return regs;
2739 }
2740
2741 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2742 {
2743 struct intel_excl_cntrs *c;
2744
2745 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2746 GFP_KERNEL, cpu_to_node(cpu));
2747 if (c) {
2748 raw_spin_lock_init(&c->lock);
2749 c->core_id = -1;
2750 }
2751 return c;
2752 }
2753
2754 static int intel_pmu_cpu_prepare(int cpu)
2755 {
2756 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2757
2758 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2759 cpuc->shared_regs = allocate_shared_regs(cpu);
2760 if (!cpuc->shared_regs)
2761 goto err;
2762 }
2763
2764 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2765 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2766
2767 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2768 if (!cpuc->constraint_list)
2769 goto err_shared_regs;
2770
2771 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2772 if (!cpuc->excl_cntrs)
2773 goto err_constraint_list;
2774
2775 cpuc->excl_thread_id = 0;
2776 }
2777
2778 return NOTIFY_OK;
2779
2780 err_constraint_list:
2781 kfree(cpuc->constraint_list);
2782 cpuc->constraint_list = NULL;
2783
2784 err_shared_regs:
2785 kfree(cpuc->shared_regs);
2786 cpuc->shared_regs = NULL;
2787
2788 err:
2789 return NOTIFY_BAD;
2790 }
2791
2792 static void intel_pmu_cpu_starting(int cpu)
2793 {
2794 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2795 int core_id = topology_core_id(cpu);
2796 int i;
2797
2798 init_debug_store_on_cpu(cpu);
2799 /*
2800 * Deal with CPUs that don't clear their LBRs on power-up.
2801 */
2802 intel_pmu_lbr_reset();
2803
2804 cpuc->lbr_sel = NULL;
2805
2806 if (!cpuc->shared_regs)
2807 return;
2808
2809 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2810 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2811
2812 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2813 struct intel_shared_regs *pc;
2814
2815 pc = per_cpu(cpu_hw_events, i).shared_regs;
2816 if (pc && pc->core_id == core_id) {
2817 *onln = cpuc->shared_regs;
2818 cpuc->shared_regs = pc;
2819 break;
2820 }
2821 }
2822 cpuc->shared_regs->core_id = core_id;
2823 cpuc->shared_regs->refcnt++;
2824 }
2825
2826 if (x86_pmu.lbr_sel_map)
2827 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2828
2829 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2830 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2831 struct intel_excl_cntrs *c;
2832
2833 c = per_cpu(cpu_hw_events, i).excl_cntrs;
2834 if (c && c->core_id == core_id) {
2835 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2836 cpuc->excl_cntrs = c;
2837 cpuc->excl_thread_id = 1;
2838 break;
2839 }
2840 }
2841 cpuc->excl_cntrs->core_id = core_id;
2842 cpuc->excl_cntrs->refcnt++;
2843 }
2844 }
2845
2846 static void free_excl_cntrs(int cpu)
2847 {
2848 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2849 struct intel_excl_cntrs *c;
2850
2851 c = cpuc->excl_cntrs;
2852 if (c) {
2853 if (c->core_id == -1 || --c->refcnt == 0)
2854 kfree(c);
2855 cpuc->excl_cntrs = NULL;
2856 kfree(cpuc->constraint_list);
2857 cpuc->constraint_list = NULL;
2858 }
2859 }
2860
2861 static void intel_pmu_cpu_dying(int cpu)
2862 {
2863 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2864 struct intel_shared_regs *pc;
2865
2866 pc = cpuc->shared_regs;
2867 if (pc) {
2868 if (pc->core_id == -1 || --pc->refcnt == 0)
2869 kfree(pc);
2870 cpuc->shared_regs = NULL;
2871 }
2872
2873 free_excl_cntrs(cpu);
2874
2875 fini_debug_store_on_cpu(cpu);
2876 }
2877
2878 static void intel_pmu_sched_task(struct perf_event_context *ctx,
2879 bool sched_in)
2880 {
2881 if (x86_pmu.pebs_active)
2882 intel_pmu_pebs_sched_task(ctx, sched_in);
2883 if (x86_pmu.lbr_nr)
2884 intel_pmu_lbr_sched_task(ctx, sched_in);
2885 }
2886
2887 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2888
2889 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2890
2891 static struct attribute *intel_arch3_formats_attr[] = {
2892 &format_attr_event.attr,
2893 &format_attr_umask.attr,
2894 &format_attr_edge.attr,
2895 &format_attr_pc.attr,
2896 &format_attr_any.attr,
2897 &format_attr_inv.attr,
2898 &format_attr_cmask.attr,
2899 &format_attr_in_tx.attr,
2900 &format_attr_in_tx_cp.attr,
2901
2902 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2903 &format_attr_ldlat.attr, /* PEBS load latency */
2904 NULL,
2905 };
2906
2907 static __initconst const struct x86_pmu core_pmu = {
2908 .name = "core",
2909 .handle_irq = x86_pmu_handle_irq,
2910 .disable_all = x86_pmu_disable_all,
2911 .enable_all = core_pmu_enable_all,
2912 .enable = core_pmu_enable_event,
2913 .disable = x86_pmu_disable_event,
2914 .hw_config = x86_pmu_hw_config,
2915 .schedule_events = x86_schedule_events,
2916 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2917 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2918 .event_map = intel_pmu_event_map,
2919 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2920 .apic = 1,
2921 .free_running_flags = PEBS_FREERUNNING_FLAGS,
2922
2923 /*
2924 * Intel PMCs cannot be accessed sanely above 32-bit width,
2925 * so we install an artificial 1<<31 period regardless of
2926 * the generic event period:
2927 */
2928 .max_period = (1ULL<<31) - 1,
2929 .get_event_constraints = intel_get_event_constraints,
2930 .put_event_constraints = intel_put_event_constraints,
2931 .event_constraints = intel_core_event_constraints,
2932 .guest_get_msrs = core_guest_get_msrs,
2933 .format_attrs = intel_arch_formats_attr,
2934 .events_sysfs_show = intel_event_sysfs_show,
2935
2936 /*
2937 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2938 * together with PMU version 1 and thus be using core_pmu with
2939 * shared_regs. We need following callbacks here to allocate
2940 * it properly.
2941 */
2942 .cpu_prepare = intel_pmu_cpu_prepare,
2943 .cpu_starting = intel_pmu_cpu_starting,
2944 .cpu_dying = intel_pmu_cpu_dying,
2945 };
2946
2947 static __initconst const struct x86_pmu intel_pmu = {
2948 .name = "Intel",
2949 .handle_irq = intel_pmu_handle_irq,
2950 .disable_all = intel_pmu_disable_all,
2951 .enable_all = intel_pmu_enable_all,
2952 .enable = intel_pmu_enable_event,
2953 .disable = intel_pmu_disable_event,
2954 .hw_config = intel_pmu_hw_config,
2955 .schedule_events = x86_schedule_events,
2956 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2957 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2958 .event_map = intel_pmu_event_map,
2959 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2960 .apic = 1,
2961 .free_running_flags = PEBS_FREERUNNING_FLAGS,
2962 /*
2963 * Intel PMCs cannot be accessed sanely above 32 bit width,
2964 * so we install an artificial 1<<31 period regardless of
2965 * the generic event period:
2966 */
2967 .max_period = (1ULL << 31) - 1,
2968 .get_event_constraints = intel_get_event_constraints,
2969 .put_event_constraints = intel_put_event_constraints,
2970 .pebs_aliases = intel_pebs_aliases_core2,
2971
2972 .format_attrs = intel_arch3_formats_attr,
2973 .events_sysfs_show = intel_event_sysfs_show,
2974
2975 .cpu_prepare = intel_pmu_cpu_prepare,
2976 .cpu_starting = intel_pmu_cpu_starting,
2977 .cpu_dying = intel_pmu_cpu_dying,
2978 .guest_get_msrs = intel_guest_get_msrs,
2979 .sched_task = intel_pmu_sched_task,
2980 };
2981
2982 static __init void intel_clovertown_quirk(void)
2983 {
2984 /*
2985 * PEBS is unreliable due to:
2986 *
2987 * AJ67 - PEBS may experience CPL leaks
2988 * AJ68 - PEBS PMI may be delayed by one event
2989 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2990 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2991 *
2992 * AJ67 could be worked around by restricting the OS/USR flags.
2993 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2994 *
2995 * AJ106 could possibly be worked around by not allowing LBR
2996 * usage from PEBS, including the fixup.
2997 * AJ68 could possibly be worked around by always programming
2998 * a pebs_event_reset[0] value and coping with the lost events.
2999 *
3000 * But taken together it might just make sense to not enable PEBS on
3001 * these chips.
3002 */
3003 pr_warn("PEBS disabled due to CPU errata\n");
3004 x86_pmu.pebs = 0;
3005 x86_pmu.pebs_constraints = NULL;
3006 }
3007
3008 static int intel_snb_pebs_broken(int cpu)
3009 {
3010 u32 rev = UINT_MAX; /* default to broken for unknown models */
3011
3012 switch (cpu_data(cpu).x86_model) {
3013 case 42: /* SNB */
3014 rev = 0x28;
3015 break;
3016
3017 case 45: /* SNB-EP */
3018 switch (cpu_data(cpu).x86_mask) {
3019 case 6: rev = 0x618; break;
3020 case 7: rev = 0x70c; break;
3021 }
3022 }
3023
3024 return (cpu_data(cpu).microcode < rev);
3025 }
3026
3027 static void intel_snb_check_microcode(void)
3028 {
3029 int pebs_broken = 0;
3030 int cpu;
3031
3032 get_online_cpus();
3033 for_each_online_cpu(cpu) {
3034 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3035 break;
3036 }
3037 put_online_cpus();
3038
3039 if (pebs_broken == x86_pmu.pebs_broken)
3040 return;
3041
3042 /*
3043 * Serialized by the microcode lock..
3044 */
3045 if (x86_pmu.pebs_broken) {
3046 pr_info("PEBS enabled due to microcode update\n");
3047 x86_pmu.pebs_broken = 0;
3048 } else {
3049 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3050 x86_pmu.pebs_broken = 1;
3051 }
3052 }
3053
3054 /*
3055 * Under certain circumstances, access certain MSR may cause #GP.
3056 * The function tests if the input MSR can be safely accessed.
3057 */
3058 static bool check_msr(unsigned long msr, u64 mask)
3059 {
3060 u64 val_old, val_new, val_tmp;
3061
3062 /*
3063 * Read the current value, change it and read it back to see if it
3064 * matches, this is needed to detect certain hardware emulators
3065 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3066 */
3067 if (rdmsrl_safe(msr, &val_old))
3068 return false;
3069
3070 /*
3071 * Only change the bits which can be updated by wrmsrl.
3072 */
3073 val_tmp = val_old ^ mask;
3074 if (wrmsrl_safe(msr, val_tmp) ||
3075 rdmsrl_safe(msr, &val_new))
3076 return false;
3077
3078 if (val_new != val_tmp)
3079 return false;
3080
3081 /* Here it's sure that the MSR can be safely accessed.
3082 * Restore the old value and return.
3083 */
3084 wrmsrl(msr, val_old);
3085
3086 return true;
3087 }
3088
3089 static __init void intel_sandybridge_quirk(void)
3090 {
3091 x86_pmu.check_microcode = intel_snb_check_microcode;
3092 intel_snb_check_microcode();
3093 }
3094
3095 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3096 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3097 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3098 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3099 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3100 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3101 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3102 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3103 };
3104
3105 static __init void intel_arch_events_quirk(void)
3106 {
3107 int bit;
3108
3109 /* disable event that reported as not presend by cpuid */
3110 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3111 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3112 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3113 intel_arch_events_map[bit].name);
3114 }
3115 }
3116
3117 static __init void intel_nehalem_quirk(void)
3118 {
3119 union cpuid10_ebx ebx;
3120
3121 ebx.full = x86_pmu.events_maskl;
3122 if (ebx.split.no_branch_misses_retired) {
3123 /*
3124 * Erratum AAJ80 detected, we work it around by using
3125 * the BR_MISP_EXEC.ANY event. This will over-count
3126 * branch-misses, but it's still much better than the
3127 * architectural event which is often completely bogus:
3128 */
3129 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3130 ebx.split.no_branch_misses_retired = 0;
3131 x86_pmu.events_maskl = ebx.full;
3132 pr_info("CPU erratum AAJ80 worked around\n");
3133 }
3134 }
3135
3136 /*
3137 * enable software workaround for errata:
3138 * SNB: BJ122
3139 * IVB: BV98
3140 * HSW: HSD29
3141 *
3142 * Only needed when HT is enabled. However detecting
3143 * if HT is enabled is difficult (model specific). So instead,
3144 * we enable the workaround in the early boot, and verify if
3145 * it is needed in a later initcall phase once we have valid
3146 * topology information to check if HT is actually enabled
3147 */
3148 static __init void intel_ht_bug(void)
3149 {
3150 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3151
3152 x86_pmu.start_scheduling = intel_start_scheduling;
3153 x86_pmu.commit_scheduling = intel_commit_scheduling;
3154 x86_pmu.stop_scheduling = intel_stop_scheduling;
3155 }
3156
3157 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3158 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
3159
3160 /* Haswell special events */
3161 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3162 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3163 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3164 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3165 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3166 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3167 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3168 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3169 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3170 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3171 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3172 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
3173
3174 static struct attribute *hsw_events_attrs[] = {
3175 EVENT_PTR(tx_start),
3176 EVENT_PTR(tx_commit),
3177 EVENT_PTR(tx_abort),
3178 EVENT_PTR(tx_capacity),
3179 EVENT_PTR(tx_conflict),
3180 EVENT_PTR(el_start),
3181 EVENT_PTR(el_commit),
3182 EVENT_PTR(el_abort),
3183 EVENT_PTR(el_capacity),
3184 EVENT_PTR(el_conflict),
3185 EVENT_PTR(cycles_t),
3186 EVENT_PTR(cycles_ct),
3187 EVENT_PTR(mem_ld_hsw),
3188 EVENT_PTR(mem_st_hsw),
3189 NULL
3190 };
3191
3192 __init int intel_pmu_init(void)
3193 {
3194 union cpuid10_edx edx;
3195 union cpuid10_eax eax;
3196 union cpuid10_ebx ebx;
3197 struct event_constraint *c;
3198 unsigned int unused;
3199 struct extra_reg *er;
3200 int version, i;
3201
3202 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3203 switch (boot_cpu_data.x86) {
3204 case 0x6:
3205 return p6_pmu_init();
3206 case 0xb:
3207 return knc_pmu_init();
3208 case 0xf:
3209 return p4_pmu_init();
3210 }
3211 return -ENODEV;
3212 }
3213
3214 /*
3215 * Check whether the Architectural PerfMon supports
3216 * Branch Misses Retired hw_event or not.
3217 */
3218 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3219 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3220 return -ENODEV;
3221
3222 version = eax.split.version_id;
3223 if (version < 2)
3224 x86_pmu = core_pmu;
3225 else
3226 x86_pmu = intel_pmu;
3227
3228 x86_pmu.version = version;
3229 x86_pmu.num_counters = eax.split.num_counters;
3230 x86_pmu.cntval_bits = eax.split.bit_width;
3231 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
3232
3233 x86_pmu.events_maskl = ebx.full;
3234 x86_pmu.events_mask_len = eax.split.mask_length;
3235
3236 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3237
3238 /*
3239 * Quirk: v2 perfmon does not report fixed-purpose events, so
3240 * assume at least 3 events:
3241 */
3242 if (version > 1)
3243 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3244
3245 if (boot_cpu_has(X86_FEATURE_PDCM)) {
3246 u64 capabilities;
3247
3248 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3249 x86_pmu.intel_cap.capabilities = capabilities;
3250 }
3251
3252 intel_ds_init();
3253
3254 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3255
3256 /*
3257 * Install the hw-cache-events table:
3258 */
3259 switch (boot_cpu_data.x86_model) {
3260 case 14: /* 65nm Core "Yonah" */
3261 pr_cont("Core events, ");
3262 break;
3263
3264 case 15: /* 65nm Core2 "Merom" */
3265 x86_add_quirk(intel_clovertown_quirk);
3266 case 22: /* 65nm Core2 "Merom-L" */
3267 case 23: /* 45nm Core2 "Penryn" */
3268 case 29: /* 45nm Core2 "Dunnington (MP) */
3269 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3270 sizeof(hw_cache_event_ids));
3271
3272 intel_pmu_lbr_init_core();
3273
3274 x86_pmu.event_constraints = intel_core2_event_constraints;
3275 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3276 pr_cont("Core2 events, ");
3277 break;
3278
3279 case 30: /* 45nm Nehalem */
3280 case 26: /* 45nm Nehalem-EP */
3281 case 46: /* 45nm Nehalem-EX */
3282 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3283 sizeof(hw_cache_event_ids));
3284 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3285 sizeof(hw_cache_extra_regs));
3286
3287 intel_pmu_lbr_init_nhm();
3288
3289 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3290 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3291 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3292 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3293
3294 x86_pmu.cpu_events = nhm_events_attrs;
3295
3296 /* UOPS_ISSUED.STALLED_CYCLES */
3297 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3298 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3299 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3300 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3301 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3302
3303 x86_add_quirk(intel_nehalem_quirk);
3304
3305 pr_cont("Nehalem events, ");
3306 break;
3307
3308 case 28: /* 45nm Atom "Pineview" */
3309 case 38: /* 45nm Atom "Lincroft" */
3310 case 39: /* 32nm Atom "Penwell" */
3311 case 53: /* 32nm Atom "Cloverview" */
3312 case 54: /* 32nm Atom "Cedarview" */
3313 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3314 sizeof(hw_cache_event_ids));
3315
3316 intel_pmu_lbr_init_atom();
3317
3318 x86_pmu.event_constraints = intel_gen_event_constraints;
3319 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3320 pr_cont("Atom events, ");
3321 break;
3322
3323 case 55: /* 22nm Atom "Silvermont" */
3324 case 76: /* 14nm Atom "Airmont" */
3325 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3326 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3327 sizeof(hw_cache_event_ids));
3328 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3329 sizeof(hw_cache_extra_regs));
3330
3331 intel_pmu_lbr_init_atom();
3332
3333 x86_pmu.event_constraints = intel_slm_event_constraints;
3334 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3335 x86_pmu.extra_regs = intel_slm_extra_regs;
3336 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3337 pr_cont("Silvermont events, ");
3338 break;
3339
3340 case 37: /* 32nm Westmere */
3341 case 44: /* 32nm Westmere-EP */
3342 case 47: /* 32nm Westmere-EX */
3343 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3344 sizeof(hw_cache_event_ids));
3345 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3346 sizeof(hw_cache_extra_regs));
3347
3348 intel_pmu_lbr_init_nhm();
3349
3350 x86_pmu.event_constraints = intel_westmere_event_constraints;
3351 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3352 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3353 x86_pmu.extra_regs = intel_westmere_extra_regs;
3354 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3355
3356 x86_pmu.cpu_events = nhm_events_attrs;
3357
3358 /* UOPS_ISSUED.STALLED_CYCLES */
3359 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3360 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3361 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3362 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3363 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3364
3365 pr_cont("Westmere events, ");
3366 break;
3367
3368 case 42: /* 32nm SandyBridge */
3369 case 45: /* 32nm SandyBridge-E/EN/EP */
3370 x86_add_quirk(intel_sandybridge_quirk);
3371 x86_add_quirk(intel_ht_bug);
3372 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3373 sizeof(hw_cache_event_ids));
3374 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3375 sizeof(hw_cache_extra_regs));
3376
3377 intel_pmu_lbr_init_snb();
3378
3379 x86_pmu.event_constraints = intel_snb_event_constraints;
3380 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3381 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3382 if (boot_cpu_data.x86_model == 45)
3383 x86_pmu.extra_regs = intel_snbep_extra_regs;
3384 else
3385 x86_pmu.extra_regs = intel_snb_extra_regs;
3386
3387
3388 /* all extra regs are per-cpu when HT is on */
3389 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3390 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3391
3392 x86_pmu.cpu_events = snb_events_attrs;
3393
3394 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3395 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3396 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3397 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3398 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3399 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3400
3401 pr_cont("SandyBridge events, ");
3402 break;
3403
3404 case 58: /* 22nm IvyBridge */
3405 case 62: /* 22nm IvyBridge-EP/EX */
3406 x86_add_quirk(intel_ht_bug);
3407 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3408 sizeof(hw_cache_event_ids));
3409 /* dTLB-load-misses on IVB is different than SNB */
3410 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3411
3412 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3413 sizeof(hw_cache_extra_regs));
3414
3415 intel_pmu_lbr_init_snb();
3416
3417 x86_pmu.event_constraints = intel_ivb_event_constraints;
3418 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3419 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3420 if (boot_cpu_data.x86_model == 62)
3421 x86_pmu.extra_regs = intel_snbep_extra_regs;
3422 else
3423 x86_pmu.extra_regs = intel_snb_extra_regs;
3424 /* all extra regs are per-cpu when HT is on */
3425 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3426 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3427
3428 x86_pmu.cpu_events = snb_events_attrs;
3429
3430 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3431 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3432 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3433
3434 pr_cont("IvyBridge events, ");
3435 break;
3436
3437
3438 case 60: /* 22nm Haswell Core */
3439 case 63: /* 22nm Haswell Server */
3440 case 69: /* 22nm Haswell ULT */
3441 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3442 x86_add_quirk(intel_ht_bug);
3443 x86_pmu.late_ack = true;
3444 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3445 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3446
3447 intel_pmu_lbr_init_hsw();
3448
3449 x86_pmu.event_constraints = intel_hsw_event_constraints;
3450 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3451 x86_pmu.extra_regs = intel_snbep_extra_regs;
3452 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3453 /* all extra regs are per-cpu when HT is on */
3454 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3455 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3456
3457 x86_pmu.hw_config = hsw_hw_config;
3458 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3459 x86_pmu.cpu_events = hsw_events_attrs;
3460 x86_pmu.lbr_double_abort = true;
3461 pr_cont("Haswell events, ");
3462 break;
3463
3464 case 61: /* 14nm Broadwell Core-M */
3465 case 86: /* 14nm Broadwell Xeon D */
3466 case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3467 case 79: /* 14nm Broadwell Server */
3468 x86_pmu.late_ack = true;
3469 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3470 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3471
3472 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3473 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3474 BDW_L3_MISS|HSW_SNOOP_DRAM;
3475 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3476 HSW_SNOOP_DRAM;
3477 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3478 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3479 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3480 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3481
3482 intel_pmu_lbr_init_hsw();
3483
3484 x86_pmu.event_constraints = intel_bdw_event_constraints;
3485 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3486 x86_pmu.extra_regs = intel_snbep_extra_regs;
3487 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3488 /* all extra regs are per-cpu when HT is on */
3489 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3490 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3491
3492 x86_pmu.hw_config = hsw_hw_config;
3493 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3494 x86_pmu.cpu_events = hsw_events_attrs;
3495 x86_pmu.limit_period = bdw_limit_period;
3496 pr_cont("Broadwell events, ");
3497 break;
3498
3499 case 78: /* 14nm Skylake Mobile */
3500 case 94: /* 14nm Skylake Desktop */
3501 x86_pmu.late_ack = true;
3502 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3503 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3504 intel_pmu_lbr_init_skl();
3505
3506 x86_pmu.event_constraints = intel_skl_event_constraints;
3507 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3508 x86_pmu.extra_regs = intel_skl_extra_regs;
3509 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3510 /* all extra regs are per-cpu when HT is on */
3511 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3512 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3513
3514 x86_pmu.hw_config = hsw_hw_config;
3515 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3516 x86_pmu.cpu_events = hsw_events_attrs;
3517 WARN_ON(!x86_pmu.format_attrs);
3518 x86_pmu.cpu_events = hsw_events_attrs;
3519 pr_cont("Skylake events, ");
3520 break;
3521
3522 default:
3523 switch (x86_pmu.version) {
3524 case 1:
3525 x86_pmu.event_constraints = intel_v1_event_constraints;
3526 pr_cont("generic architected perfmon v1, ");
3527 break;
3528 default:
3529 /*
3530 * default constraints for v2 and up
3531 */
3532 x86_pmu.event_constraints = intel_gen_event_constraints;
3533 pr_cont("generic architected perfmon, ");
3534 break;
3535 }
3536 }
3537
3538 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3539 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3540 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3541 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3542 }
3543 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3544
3545 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3546 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3547 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3548 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3549 }
3550
3551 x86_pmu.intel_ctrl |=
3552 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3553
3554 if (x86_pmu.event_constraints) {
3555 /*
3556 * event on fixed counter2 (REF_CYCLES) only works on this
3557 * counter, so do not extend mask to generic counters
3558 */
3559 for_each_event_constraint(c, x86_pmu.event_constraints) {
3560 if (c->cmask == FIXED_EVENT_FLAGS
3561 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3562 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3563 }
3564 c->idxmsk64 &=
3565 ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3566 c->weight = hweight64(c->idxmsk64);
3567 }
3568 }
3569
3570 /*
3571 * Access LBR MSR may cause #GP under certain circumstances.
3572 * E.g. KVM doesn't support LBR MSR
3573 * Check all LBT MSR here.
3574 * Disable LBR access if any LBR MSRs can not be accessed.
3575 */
3576 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3577 x86_pmu.lbr_nr = 0;
3578 for (i = 0; i < x86_pmu.lbr_nr; i++) {
3579 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3580 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3581 x86_pmu.lbr_nr = 0;
3582 }
3583
3584 /*
3585 * Access extra MSR may cause #GP under certain circumstances.
3586 * E.g. KVM doesn't support offcore event
3587 * Check all extra_regs here.
3588 */
3589 if (x86_pmu.extra_regs) {
3590 for (er = x86_pmu.extra_regs; er->msr; er++) {
3591 er->extra_msr_access = check_msr(er->msr, 0x11UL);
3592 /* Disable LBR select mapping */
3593 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3594 x86_pmu.lbr_sel_map = NULL;
3595 }
3596 }
3597
3598 /* Support full width counters using alternative MSR range */
3599 if (x86_pmu.intel_cap.full_width_write) {
3600 x86_pmu.max_period = x86_pmu.cntval_mask;
3601 x86_pmu.perfctr = MSR_IA32_PMC0;
3602 pr_cont("full-width counters, ");
3603 }
3604
3605 return 0;
3606 }
3607
3608 /*
3609 * HT bug: phase 2 init
3610 * Called once we have valid topology information to check
3611 * whether or not HT is enabled
3612 * If HT is off, then we disable the workaround
3613 */
3614 static __init int fixup_ht_bug(void)
3615 {
3616 int cpu = smp_processor_id();
3617 int w, c;
3618 /*
3619 * problem not present on this CPU model, nothing to do
3620 */
3621 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3622 return 0;
3623
3624 w = cpumask_weight(topology_sibling_cpumask(cpu));
3625 if (w > 1) {
3626 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3627 return 0;
3628 }
3629
3630 if (lockup_detector_suspend() != 0) {
3631 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3632 return 0;
3633 }
3634
3635 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3636
3637 x86_pmu.start_scheduling = NULL;
3638 x86_pmu.commit_scheduling = NULL;
3639 x86_pmu.stop_scheduling = NULL;
3640
3641 lockup_detector_resume();
3642
3643 get_online_cpus();
3644
3645 for_each_online_cpu(c) {
3646 free_excl_cntrs(c);
3647 }
3648
3649 put_online_cpus();
3650 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3651 return 0;
3652 }
3653 subsys_initcall(fixup_ht_bug)