]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/perf_event_intel_ds.c
perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt thres...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE 24
12
13 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE PAGE_SIZE
15 #define PEBS_FIXUP_SIZE PAGE_SIZE
16
17 /*
18 * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21 u32 flags, ip;
22 u32 ax, bc, cx, dx;
23 u32 si, di, bp, sp;
24 };
25
26 */
27
28 union intel_x86_pebs_dse {
29 u64 val;
30 struct {
31 unsigned int ld_dse:4;
32 unsigned int ld_stlb_miss:1;
33 unsigned int ld_locked:1;
34 unsigned int ld_reserved:26;
35 };
36 struct {
37 unsigned int st_l1d_hit:1;
38 unsigned int st_reserved1:3;
39 unsigned int st_stlb_miss:1;
40 unsigned int st_locked:1;
41 unsigned int st_reserved2:26;
42 };
43 };
44
45
46 /*
47 * Map PEBS Load Latency Data Source encodings to generic
48 * memory data source information
49 */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56 OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
57 OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
58 OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
59 OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
60 OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
61 OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
62 OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
63 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
64 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65 OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
66 OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
67 OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68 OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69 OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
70 OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75 union intel_x86_pebs_dse dse;
76 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78 dse.val = status;
79
80 /*
81 * bit 4: TLB access
82 * 1 = stored missed 2nd level TLB
83 *
84 * so it either hit the walker or the OS
85 * otherwise hit 2nd level TLB
86 */
87 if (dse.st_stlb_miss)
88 val |= P(TLB, MISS);
89 else
90 val |= P(TLB, HIT);
91
92 /*
93 * bit 0: hit L1 data cache
94 * if not set, then all we know is that
95 * it missed L1D
96 */
97 if (dse.st_l1d_hit)
98 val |= P(LVL, HIT);
99 else
100 val |= P(LVL, MISS);
101
102 /*
103 * bit 5: Locked prefix
104 */
105 if (dse.st_locked)
106 val |= P(LOCK, LOCKED);
107
108 return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113 union perf_mem_data_src dse;
114
115 dse.val = PERF_MEM_NA;
116
117 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118 dse.mem_op = PERF_MEM_OP_STORE;
119 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120 dse.mem_op = PERF_MEM_OP_LOAD;
121
122 /*
123 * L1 info only valid for following events:
124 *
125 * MEM_UOPS_RETIRED.STLB_MISS_STORES
126 * MEM_UOPS_RETIRED.LOCK_STORES
127 * MEM_UOPS_RETIRED.SPLIT_STORES
128 * MEM_UOPS_RETIRED.ALL_STORES
129 */
130 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131 if (status & 1)
132 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133 else
134 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135 }
136 return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141 union intel_x86_pebs_dse dse;
142 u64 val;
143 int model = boot_cpu_data.x86_model;
144 int fam = boot_cpu_data.x86;
145
146 dse.val = status;
147
148 /*
149 * use the mapping table for bit 0-3
150 */
151 val = pebs_data_source[dse.ld_dse];
152
153 /*
154 * Nehalem models do not support TLB, Lock infos
155 */
156 if (fam == 0x6 && (model == 26 || model == 30
157 || model == 31 || model == 46)) {
158 val |= P(TLB, NA) | P(LOCK, NA);
159 return val;
160 }
161 /*
162 * bit 4: TLB access
163 * 0 = did not miss 2nd level TLB
164 * 1 = missed 2nd level TLB
165 */
166 if (dse.ld_stlb_miss)
167 val |= P(TLB, MISS) | P(TLB, L2);
168 else
169 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171 /*
172 * bit 5: locked prefix
173 */
174 if (dse.ld_locked)
175 val |= P(LOCK, LOCKED);
176
177 return val;
178 }
179
180 struct pebs_record_core {
181 u64 flags, ip;
182 u64 ax, bx, cx, dx;
183 u64 si, di, bp, sp;
184 u64 r8, r9, r10, r11;
185 u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189 u64 flags, ip;
190 u64 ax, bx, cx, dx;
191 u64 si, di, bp, sp;
192 u64 r8, r9, r10, r11;
193 u64 r12, r13, r14, r15;
194 u64 status, dla, dse, lat;
195 };
196
197 /*
198 * Same as pebs_record_nhm, with two additional fields.
199 */
200 struct pebs_record_hsw {
201 u64 flags, ip;
202 u64 ax, bx, cx, dx;
203 u64 si, di, bp, sp;
204 u64 r8, r9, r10, r11;
205 u64 r12, r13, r14, r15;
206 u64 status, dla, dse, lat;
207 u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211 struct {
212 u32 cycles_last_block : 32,
213 hle_abort : 1,
214 rtm_abort : 1,
215 instruction_abort : 1,
216 non_instruction_abort : 1,
217 retry : 1,
218 data_conflict : 1,
219 capacity_writes : 1,
220 capacity_reads : 1;
221 };
222 u64 value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
226
227 void init_debug_store_on_cpu(int cpu)
228 {
229 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
230
231 if (!ds)
232 return;
233
234 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
235 (u32)((u64)(unsigned long)ds),
236 (u32)((u64)(unsigned long)ds >> 32));
237 }
238
239 void fini_debug_store_on_cpu(int cpu)
240 {
241 if (!per_cpu(cpu_hw_events, cpu).ds)
242 return;
243
244 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
245 }
246
247 static DEFINE_PER_CPU(void *, insn_buffer);
248
249 static int alloc_pebs_buffer(int cpu)
250 {
251 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
252 int node = cpu_to_node(cpu);
253 int max;
254 void *buffer, *ibuffer;
255
256 if (!x86_pmu.pebs)
257 return 0;
258
259 buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
260 if (unlikely(!buffer))
261 return -ENOMEM;
262
263 /*
264 * HSW+ already provides us the eventing ip; no need to allocate this
265 * buffer then.
266 */
267 if (x86_pmu.intel_cap.pebs_format < 2) {
268 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
269 if (!ibuffer) {
270 kfree(buffer);
271 return -ENOMEM;
272 }
273 per_cpu(insn_buffer, cpu) = ibuffer;
274 }
275
276 max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
277
278 ds->pebs_buffer_base = (u64)(unsigned long)buffer;
279 ds->pebs_index = ds->pebs_buffer_base;
280 ds->pebs_absolute_maximum = ds->pebs_buffer_base +
281 max * x86_pmu.pebs_record_size;
282
283 return 0;
284 }
285
286 static void release_pebs_buffer(int cpu)
287 {
288 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
289
290 if (!ds || !x86_pmu.pebs)
291 return;
292
293 kfree(per_cpu(insn_buffer, cpu));
294 per_cpu(insn_buffer, cpu) = NULL;
295
296 kfree((void *)(unsigned long)ds->pebs_buffer_base);
297 ds->pebs_buffer_base = 0;
298 }
299
300 static int alloc_bts_buffer(int cpu)
301 {
302 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
303 int node = cpu_to_node(cpu);
304 int max, thresh;
305 void *buffer;
306
307 if (!x86_pmu.bts)
308 return 0;
309
310 buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
311 if (unlikely(!buffer)) {
312 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
313 return -ENOMEM;
314 }
315
316 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
317 thresh = max / 16;
318
319 ds->bts_buffer_base = (u64)(unsigned long)buffer;
320 ds->bts_index = ds->bts_buffer_base;
321 ds->bts_absolute_maximum = ds->bts_buffer_base +
322 max * BTS_RECORD_SIZE;
323 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
324 thresh * BTS_RECORD_SIZE;
325
326 return 0;
327 }
328
329 static void release_bts_buffer(int cpu)
330 {
331 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
332
333 if (!ds || !x86_pmu.bts)
334 return;
335
336 kfree((void *)(unsigned long)ds->bts_buffer_base);
337 ds->bts_buffer_base = 0;
338 }
339
340 static int alloc_ds_buffer(int cpu)
341 {
342 int node = cpu_to_node(cpu);
343 struct debug_store *ds;
344
345 ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
346 if (unlikely(!ds))
347 return -ENOMEM;
348
349 per_cpu(cpu_hw_events, cpu).ds = ds;
350
351 return 0;
352 }
353
354 static void release_ds_buffer(int cpu)
355 {
356 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
357
358 if (!ds)
359 return;
360
361 per_cpu(cpu_hw_events, cpu).ds = NULL;
362 kfree(ds);
363 }
364
365 void release_ds_buffers(void)
366 {
367 int cpu;
368
369 if (!x86_pmu.bts && !x86_pmu.pebs)
370 return;
371
372 get_online_cpus();
373 for_each_online_cpu(cpu)
374 fini_debug_store_on_cpu(cpu);
375
376 for_each_possible_cpu(cpu) {
377 release_pebs_buffer(cpu);
378 release_bts_buffer(cpu);
379 release_ds_buffer(cpu);
380 }
381 put_online_cpus();
382 }
383
384 void reserve_ds_buffers(void)
385 {
386 int bts_err = 0, pebs_err = 0;
387 int cpu;
388
389 x86_pmu.bts_active = 0;
390 x86_pmu.pebs_active = 0;
391
392 if (!x86_pmu.bts && !x86_pmu.pebs)
393 return;
394
395 if (!x86_pmu.bts)
396 bts_err = 1;
397
398 if (!x86_pmu.pebs)
399 pebs_err = 1;
400
401 get_online_cpus();
402
403 for_each_possible_cpu(cpu) {
404 if (alloc_ds_buffer(cpu)) {
405 bts_err = 1;
406 pebs_err = 1;
407 }
408
409 if (!bts_err && alloc_bts_buffer(cpu))
410 bts_err = 1;
411
412 if (!pebs_err && alloc_pebs_buffer(cpu))
413 pebs_err = 1;
414
415 if (bts_err && pebs_err)
416 break;
417 }
418
419 if (bts_err) {
420 for_each_possible_cpu(cpu)
421 release_bts_buffer(cpu);
422 }
423
424 if (pebs_err) {
425 for_each_possible_cpu(cpu)
426 release_pebs_buffer(cpu);
427 }
428
429 if (bts_err && pebs_err) {
430 for_each_possible_cpu(cpu)
431 release_ds_buffer(cpu);
432 } else {
433 if (x86_pmu.bts && !bts_err)
434 x86_pmu.bts_active = 1;
435
436 if (x86_pmu.pebs && !pebs_err)
437 x86_pmu.pebs_active = 1;
438
439 for_each_online_cpu(cpu)
440 init_debug_store_on_cpu(cpu);
441 }
442
443 put_online_cpus();
444 }
445
446 /*
447 * BTS
448 */
449
450 struct event_constraint bts_constraint =
451 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
452
453 void intel_pmu_enable_bts(u64 config)
454 {
455 unsigned long debugctlmsr;
456
457 debugctlmsr = get_debugctlmsr();
458
459 debugctlmsr |= DEBUGCTLMSR_TR;
460 debugctlmsr |= DEBUGCTLMSR_BTS;
461 if (config & ARCH_PERFMON_EVENTSEL_INT)
462 debugctlmsr |= DEBUGCTLMSR_BTINT;
463
464 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
465 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
466
467 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
468 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
469
470 update_debugctlmsr(debugctlmsr);
471 }
472
473 void intel_pmu_disable_bts(void)
474 {
475 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
476 unsigned long debugctlmsr;
477
478 if (!cpuc->ds)
479 return;
480
481 debugctlmsr = get_debugctlmsr();
482
483 debugctlmsr &=
484 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
485 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
486
487 update_debugctlmsr(debugctlmsr);
488 }
489
490 int intel_pmu_drain_bts_buffer(void)
491 {
492 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
493 struct debug_store *ds = cpuc->ds;
494 struct bts_record {
495 u64 from;
496 u64 to;
497 u64 flags;
498 };
499 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
500 struct bts_record *at, *top;
501 struct perf_output_handle handle;
502 struct perf_event_header header;
503 struct perf_sample_data data;
504 struct pt_regs regs;
505
506 if (!event)
507 return 0;
508
509 if (!x86_pmu.bts_active)
510 return 0;
511
512 at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
513 top = (struct bts_record *)(unsigned long)ds->bts_index;
514
515 if (top <= at)
516 return 0;
517
518 memset(&regs, 0, sizeof(regs));
519
520 ds->bts_index = ds->bts_buffer_base;
521
522 perf_sample_data_init(&data, 0, event->hw.last_period);
523
524 /*
525 * Prepare a generic sample, i.e. fill in the invariant fields.
526 * We will overwrite the from and to address before we output
527 * the sample.
528 */
529 perf_prepare_sample(&header, &data, event, &regs);
530
531 if (perf_output_begin(&handle, event, header.size * (top - at)))
532 return 1;
533
534 for (; at < top; at++) {
535 data.ip = at->from;
536 data.addr = at->to;
537
538 perf_output_sample(&handle, &header, &data, event);
539 }
540
541 perf_output_end(&handle);
542
543 /* There's new data available. */
544 event->hw.interrupts++;
545 event->pending_kill = POLL_IN;
546 return 1;
547 }
548
549 /*
550 * PEBS
551 */
552 struct event_constraint intel_core2_pebs_event_constraints[] = {
553 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
554 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
555 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
556 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
557 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
558 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
559 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
560 EVENT_CONSTRAINT_END
561 };
562
563 struct event_constraint intel_atom_pebs_event_constraints[] = {
564 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
565 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
566 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
567 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
568 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
569 EVENT_CONSTRAINT_END
570 };
571
572 struct event_constraint intel_slm_pebs_event_constraints[] = {
573 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
574 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
575 /* Allow all events as PEBS with no flags */
576 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
577 EVENT_CONSTRAINT_END
578 };
579
580 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
581 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
582 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
583 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
584 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
585 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
586 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
587 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
588 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
589 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
590 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
591 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
592 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
593 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
594 EVENT_CONSTRAINT_END
595 };
596
597 struct event_constraint intel_westmere_pebs_event_constraints[] = {
598 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
599 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
600 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
601 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
602 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
603 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
604 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
605 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
606 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
607 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
608 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
609 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
610 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
611 EVENT_CONSTRAINT_END
612 };
613
614 struct event_constraint intel_snb_pebs_event_constraints[] = {
615 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
616 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
617 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
618 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
619 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
620 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
621 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
622 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
623 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
624 /* Allow all events as PEBS with no flags */
625 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
626 EVENT_CONSTRAINT_END
627 };
628
629 struct event_constraint intel_ivb_pebs_event_constraints[] = {
630 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
631 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
632 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
633 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
634 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
635 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
636 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
637 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
638 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
639 /* Allow all events as PEBS with no flags */
640 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
641 EVENT_CONSTRAINT_END
642 };
643
644 struct event_constraint intel_hsw_pebs_event_constraints[] = {
645 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
646 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
647 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
648 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
649 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
650 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
651 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
652 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
653 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
654 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
655 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
656 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
657 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
658 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
659 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
660 /* Allow all events as PEBS with no flags */
661 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
662 EVENT_CONSTRAINT_END
663 };
664
665 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
666 {
667 struct event_constraint *c;
668
669 if (!event->attr.precise_ip)
670 return NULL;
671
672 if (x86_pmu.pebs_constraints) {
673 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
674 if ((event->hw.config & c->cmask) == c->code) {
675 event->hw.flags |= c->flags;
676 return c;
677 }
678 }
679 }
680
681 return &emptyconstraint;
682 }
683
684 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
685 {
686 return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
687 }
688
689 void intel_pmu_pebs_enable(struct perf_event *event)
690 {
691 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
692 struct hw_perf_event *hwc = &event->hw;
693 struct debug_store *ds = cpuc->ds;
694 bool first_pebs;
695 u64 threshold;
696
697 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
698
699 first_pebs = !pebs_is_enabled(cpuc);
700 cpuc->pebs_enabled |= 1ULL << hwc->idx;
701
702 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
703 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
704 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
705 cpuc->pebs_enabled |= 1ULL << 63;
706
707 /*
708 * When the event is constrained enough we can use a larger
709 * threshold and run the event with less frequent PMI.
710 */
711 if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
712 threshold = ds->pebs_absolute_maximum -
713 x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
714 } else {
715 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
716 }
717
718 /* Use auto-reload if possible to save a MSR write in the PMI */
719 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
720 ds->pebs_event_reset[hwc->idx] =
721 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
722 }
723
724 if (first_pebs || ds->pebs_interrupt_threshold > threshold)
725 ds->pebs_interrupt_threshold = threshold;
726 }
727
728 void intel_pmu_pebs_disable(struct perf_event *event)
729 {
730 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
731 struct hw_perf_event *hwc = &event->hw;
732
733 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
734
735 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
736 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
737 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
738 cpuc->pebs_enabled &= ~(1ULL << 63);
739
740 if (cpuc->enabled)
741 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
742
743 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
744 }
745
746 void intel_pmu_pebs_enable_all(void)
747 {
748 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
749
750 if (cpuc->pebs_enabled)
751 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
752 }
753
754 void intel_pmu_pebs_disable_all(void)
755 {
756 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
757
758 if (cpuc->pebs_enabled)
759 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
760 }
761
762 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
763 {
764 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
765 unsigned long from = cpuc->lbr_entries[0].from;
766 unsigned long old_to, to = cpuc->lbr_entries[0].to;
767 unsigned long ip = regs->ip;
768 int is_64bit = 0;
769 void *kaddr;
770 int size;
771
772 /*
773 * We don't need to fixup if the PEBS assist is fault like
774 */
775 if (!x86_pmu.intel_cap.pebs_trap)
776 return 1;
777
778 /*
779 * No LBR entry, no basic block, no rewinding
780 */
781 if (!cpuc->lbr_stack.nr || !from || !to)
782 return 0;
783
784 /*
785 * Basic blocks should never cross user/kernel boundaries
786 */
787 if (kernel_ip(ip) != kernel_ip(to))
788 return 0;
789
790 /*
791 * unsigned math, either ip is before the start (impossible) or
792 * the basic block is larger than 1 page (sanity)
793 */
794 if ((ip - to) > PEBS_FIXUP_SIZE)
795 return 0;
796
797 /*
798 * We sampled a branch insn, rewind using the LBR stack
799 */
800 if (ip == to) {
801 set_linear_ip(regs, from);
802 return 1;
803 }
804
805 size = ip - to;
806 if (!kernel_ip(ip)) {
807 int bytes;
808 u8 *buf = this_cpu_read(insn_buffer);
809
810 /* 'size' must fit our buffer, see above */
811 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
812 if (bytes != 0)
813 return 0;
814
815 kaddr = buf;
816 } else {
817 kaddr = (void *)to;
818 }
819
820 do {
821 struct insn insn;
822
823 old_to = to;
824
825 #ifdef CONFIG_X86_64
826 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
827 #endif
828 insn_init(&insn, kaddr, size, is_64bit);
829 insn_get_length(&insn);
830 /*
831 * Make sure there was not a problem decoding the
832 * instruction and getting the length. This is
833 * doubly important because we have an infinite
834 * loop if insn.length=0.
835 */
836 if (!insn.length)
837 break;
838
839 to += insn.length;
840 kaddr += insn.length;
841 size -= insn.length;
842 } while (to < ip);
843
844 if (to == ip) {
845 set_linear_ip(regs, old_to);
846 return 1;
847 }
848
849 /*
850 * Even though we decoded the basic block, the instruction stream
851 * never matched the given IP, either the TO or the IP got corrupted.
852 */
853 return 0;
854 }
855
856 static inline u64 intel_hsw_weight(struct pebs_record_hsw *pebs)
857 {
858 if (pebs->tsx_tuning) {
859 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
860 return tsx.cycles_last_block;
861 }
862 return 0;
863 }
864
865 static inline u64 intel_hsw_transaction(struct pebs_record_hsw *pebs)
866 {
867 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
868
869 /* For RTM XABORTs also log the abort code from AX */
870 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
871 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
872 return txn;
873 }
874
875 static void setup_pebs_sample_data(struct perf_event *event,
876 struct pt_regs *iregs, void *__pebs,
877 struct perf_sample_data *data,
878 struct pt_regs *regs)
879 {
880 #define PERF_X86_EVENT_PEBS_HSW_PREC \
881 (PERF_X86_EVENT_PEBS_ST_HSW | \
882 PERF_X86_EVENT_PEBS_LD_HSW | \
883 PERF_X86_EVENT_PEBS_NA_HSW)
884 /*
885 * We cast to the biggest pebs_record but are careful not to
886 * unconditionally access the 'extra' entries.
887 */
888 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
889 struct pebs_record_hsw *pebs = __pebs;
890 u64 sample_type;
891 int fll, fst, dsrc;
892 int fl = event->hw.flags;
893
894 if (pebs == NULL)
895 return;
896
897 sample_type = event->attr.sample_type;
898 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
899
900 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
901 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
902
903 perf_sample_data_init(data, 0, event->hw.last_period);
904
905 data->period = event->hw.last_period;
906
907 /*
908 * Use latency for weight (only avail with PEBS-LL)
909 */
910 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
911 data->weight = pebs->lat;
912
913 /*
914 * data.data_src encodes the data source
915 */
916 if (dsrc) {
917 u64 val = PERF_MEM_NA;
918 if (fll)
919 val = load_latency_data(pebs->dse);
920 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
921 val = precise_datala_hsw(event, pebs->dse);
922 else if (fst)
923 val = precise_store_data(pebs->dse);
924 data->data_src.val = val;
925 }
926
927 /*
928 * We use the interrupt regs as a base because the PEBS record
929 * does not contain a full regs set, specifically it seems to
930 * lack segment descriptors, which get used by things like
931 * user_mode().
932 *
933 * In the simple case fix up only the IP and BP,SP regs, for
934 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
935 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
936 */
937 *regs = *iregs;
938 regs->flags = pebs->flags;
939 set_linear_ip(regs, pebs->ip);
940 regs->bp = pebs->bp;
941 regs->sp = pebs->sp;
942
943 if (sample_type & PERF_SAMPLE_REGS_INTR) {
944 regs->ax = pebs->ax;
945 regs->bx = pebs->bx;
946 regs->cx = pebs->cx;
947 regs->dx = pebs->dx;
948 regs->si = pebs->si;
949 regs->di = pebs->di;
950 regs->bp = pebs->bp;
951 regs->sp = pebs->sp;
952
953 regs->flags = pebs->flags;
954 #ifndef CONFIG_X86_32
955 regs->r8 = pebs->r8;
956 regs->r9 = pebs->r9;
957 regs->r10 = pebs->r10;
958 regs->r11 = pebs->r11;
959 regs->r12 = pebs->r12;
960 regs->r13 = pebs->r13;
961 regs->r14 = pebs->r14;
962 regs->r15 = pebs->r15;
963 #endif
964 }
965
966 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
967 regs->ip = pebs->real_ip;
968 regs->flags |= PERF_EFLAGS_EXACT;
969 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
970 regs->flags |= PERF_EFLAGS_EXACT;
971 else
972 regs->flags &= ~PERF_EFLAGS_EXACT;
973
974 if ((sample_type & PERF_SAMPLE_ADDR) &&
975 x86_pmu.intel_cap.pebs_format >= 1)
976 data->addr = pebs->dla;
977
978 if (x86_pmu.intel_cap.pebs_format >= 2) {
979 /* Only set the TSX weight when no memory weight. */
980 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
981 data->weight = intel_hsw_weight(pebs);
982
983 if (sample_type & PERF_SAMPLE_TRANSACTION)
984 data->txn = intel_hsw_transaction(pebs);
985 }
986
987 if (has_branch_stack(event))
988 data->br_stack = &cpuc->lbr_stack;
989 }
990
991 static inline void *
992 get_next_pebs_record_by_bit(void *base, void *top, int bit)
993 {
994 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
995 void *at;
996 u64 pebs_status;
997
998 if (base == NULL)
999 return NULL;
1000
1001 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1002 struct pebs_record_nhm *p = at;
1003
1004 if (test_bit(bit, (unsigned long *)&p->status)) {
1005
1006 if (p->status == (1 << bit))
1007 return at;
1008
1009 /* clear non-PEBS bit and re-check */
1010 pebs_status = p->status & cpuc->pebs_enabled;
1011 pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1012 if (pebs_status == (1 << bit))
1013 return at;
1014 }
1015 }
1016 return NULL;
1017 }
1018
1019 static void __intel_pmu_pebs_event(struct perf_event *event,
1020 struct pt_regs *iregs,
1021 void *base, void *top,
1022 int bit, int count)
1023 {
1024 struct perf_sample_data data;
1025 struct pt_regs regs;
1026 int i;
1027 void *at = get_next_pebs_record_by_bit(base, top, bit);
1028
1029 if (!intel_pmu_save_and_restart(event) &&
1030 !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1031 return;
1032
1033 if (count > 1) {
1034 for (i = 0; i < count - 1; i++) {
1035 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1036 perf_event_output(event, &data, &regs);
1037 at += x86_pmu.pebs_record_size;
1038 at = get_next_pebs_record_by_bit(at, top, bit);
1039 }
1040 }
1041
1042 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1043
1044 /*
1045 * All but the last records are processed.
1046 * The last one is left to be able to call the overflow handler.
1047 */
1048 if (perf_event_overflow(event, &data, &regs)) {
1049 x86_pmu_stop(event, 0);
1050 return;
1051 }
1052
1053 }
1054
1055 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1056 {
1057 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1058 struct debug_store *ds = cpuc->ds;
1059 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1060 struct pebs_record_core *at, *top;
1061 int n;
1062
1063 if (!x86_pmu.pebs_active)
1064 return;
1065
1066 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1067 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1068
1069 /*
1070 * Whatever else happens, drain the thing
1071 */
1072 ds->pebs_index = ds->pebs_buffer_base;
1073
1074 if (!test_bit(0, cpuc->active_mask))
1075 return;
1076
1077 WARN_ON_ONCE(!event);
1078
1079 if (!event->attr.precise_ip)
1080 return;
1081
1082 n = (top - at) / x86_pmu.pebs_record_size;
1083 if (n <= 0)
1084 return;
1085
1086 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1087 }
1088
1089 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1090 {
1091 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1092 struct debug_store *ds = cpuc->ds;
1093 struct perf_event *event;
1094 void *base, *at, *top;
1095 int bit;
1096 short counts[MAX_PEBS_EVENTS] = {};
1097
1098 if (!x86_pmu.pebs_active)
1099 return;
1100
1101 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1102 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1103
1104 ds->pebs_index = ds->pebs_buffer_base;
1105
1106 if (unlikely(base >= top))
1107 return;
1108
1109 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1110 struct pebs_record_nhm *p = at;
1111
1112 bit = find_first_bit((unsigned long *)&p->status,
1113 x86_pmu.max_pebs_events);
1114 if (bit >= x86_pmu.max_pebs_events)
1115 continue;
1116 if (!test_bit(bit, cpuc->active_mask))
1117 continue;
1118 /*
1119 * The PEBS hardware does not deal well with the situation
1120 * when events happen near to each other and multiple bits
1121 * are set. But it should happen rarely.
1122 *
1123 * If these events include one PEBS and multiple non-PEBS
1124 * events, it doesn't impact PEBS record. The record will
1125 * be handled normally. (slow path)
1126 *
1127 * If these events include two or more PEBS events, the
1128 * records for the events can be collapsed into a single
1129 * one, and it's not possible to reconstruct all events
1130 * that caused the PEBS record. It's called collision.
1131 * If collision happened, the record will be dropped.
1132 *
1133 */
1134 if (p->status != (1 << bit)) {
1135 u64 pebs_status;
1136
1137 /* slow path */
1138 pebs_status = p->status & cpuc->pebs_enabled;
1139 pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1140 if (pebs_status != (1 << bit))
1141 continue;
1142 }
1143 counts[bit]++;
1144 }
1145
1146 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1147 if (counts[bit] == 0)
1148 continue;
1149 event = cpuc->events[bit];
1150 WARN_ON_ONCE(!event);
1151 WARN_ON_ONCE(!event->attr.precise_ip);
1152
1153 __intel_pmu_pebs_event(event, iregs, base, top, bit, counts[bit]);
1154 }
1155 }
1156
1157 /*
1158 * BTS, PEBS probe and setup
1159 */
1160
1161 void __init intel_ds_init(void)
1162 {
1163 /*
1164 * No support for 32bit formats
1165 */
1166 if (!boot_cpu_has(X86_FEATURE_DTES64))
1167 return;
1168
1169 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1170 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1171 if (x86_pmu.pebs) {
1172 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1173 int format = x86_pmu.intel_cap.pebs_format;
1174
1175 switch (format) {
1176 case 0:
1177 printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1178 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1179 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1180 break;
1181
1182 case 1:
1183 printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1184 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1185 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1186 break;
1187
1188 case 2:
1189 pr_cont("PEBS fmt2%c, ", pebs_type);
1190 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1191 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1192 break;
1193
1194 default:
1195 printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1196 x86_pmu.pebs = 0;
1197 }
1198 }
1199 }
1200
1201 void perf_restore_debug_store(void)
1202 {
1203 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1204
1205 if (!x86_pmu.bts && !x86_pmu.pebs)
1206 return;
1207
1208 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1209 }