]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/cpu/perf_event_intel_lbr.c
Merge remote-tracking branch 'spi/topic/core' into spi-next
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / cpu / perf_event_intel_lbr.c
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 enum {
11 LBR_FORMAT_32 = 0x00,
12 LBR_FORMAT_LIP = 0x01,
13 LBR_FORMAT_EIP = 0x02,
14 LBR_FORMAT_EIP_FLAGS = 0x03,
15 LBR_FORMAT_EIP_FLAGS2 = 0x04,
16 LBR_FORMAT_INFO = 0x05,
17 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO,
18 };
19
20 static enum {
21 LBR_EIP_FLAGS = 1,
22 LBR_TSX = 2,
23 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
24 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
25 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
26 };
27
28 /*
29 * Intel LBR_SELECT bits
30 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
31 *
32 * Hardware branch filter (not available on all CPUs)
33 */
34 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
35 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
36 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
37 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
38 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
39 #define LBR_RETURN_BIT 5 /* do not capture near returns */
40 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
41 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
42 #define LBR_FAR_BIT 8 /* do not capture far branches */
43 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
44
45 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
46 #define LBR_USER (1 << LBR_USER_BIT)
47 #define LBR_JCC (1 << LBR_JCC_BIT)
48 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
49 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
50 #define LBR_RETURN (1 << LBR_RETURN_BIT)
51 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
52 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
53 #define LBR_FAR (1 << LBR_FAR_BIT)
54 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
55
56 #define LBR_PLM (LBR_KERNEL | LBR_USER)
57
58 #define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */
59 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
60 #define LBR_IGN 0 /* ignored */
61
62 #define LBR_ANY \
63 (LBR_JCC |\
64 LBR_REL_CALL |\
65 LBR_IND_CALL |\
66 LBR_RETURN |\
67 LBR_REL_JMP |\
68 LBR_IND_JMP |\
69 LBR_FAR)
70
71 #define LBR_FROM_FLAG_MISPRED (1ULL << 63)
72 #define LBR_FROM_FLAG_IN_TX (1ULL << 62)
73 #define LBR_FROM_FLAG_ABORT (1ULL << 61)
74
75 /*
76 * x86control flow change classification
77 * x86control flow changes include branches, interrupts, traps, faults
78 */
79 enum {
80 X86_BR_NONE = 0, /* unknown */
81
82 X86_BR_USER = 1 << 0, /* branch target is user */
83 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
84
85 X86_BR_CALL = 1 << 2, /* call */
86 X86_BR_RET = 1 << 3, /* return */
87 X86_BR_SYSCALL = 1 << 4, /* syscall */
88 X86_BR_SYSRET = 1 << 5, /* syscall return */
89 X86_BR_INT = 1 << 6, /* sw interrupt */
90 X86_BR_IRET = 1 << 7, /* return from interrupt */
91 X86_BR_JCC = 1 << 8, /* conditional */
92 X86_BR_JMP = 1 << 9, /* jump */
93 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
94 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
95 X86_BR_ABORT = 1 << 12,/* transaction abort */
96 X86_BR_IN_TX = 1 << 13,/* in transaction */
97 X86_BR_NO_TX = 1 << 14,/* not in transaction */
98 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
99 X86_BR_CALL_STACK = 1 << 16,/* call stack */
100 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
101 };
102
103 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
104 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
105
106 #define X86_BR_ANY \
107 (X86_BR_CALL |\
108 X86_BR_RET |\
109 X86_BR_SYSCALL |\
110 X86_BR_SYSRET |\
111 X86_BR_INT |\
112 X86_BR_IRET |\
113 X86_BR_JCC |\
114 X86_BR_JMP |\
115 X86_BR_IRQ |\
116 X86_BR_ABORT |\
117 X86_BR_IND_CALL |\
118 X86_BR_IND_JMP |\
119 X86_BR_ZERO_CALL)
120
121 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
122
123 #define X86_BR_ANY_CALL \
124 (X86_BR_CALL |\
125 X86_BR_IND_CALL |\
126 X86_BR_ZERO_CALL |\
127 X86_BR_SYSCALL |\
128 X86_BR_IRQ |\
129 X86_BR_INT)
130
131 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
132
133 /*
134 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
135 * otherwise it becomes near impossible to get a reliable stack.
136 */
137
138 static void __intel_pmu_lbr_enable(bool pmi)
139 {
140 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
141 u64 debugctl, lbr_select = 0, orig_debugctl;
142
143 /*
144 * No need to unfreeze manually, as v4 can do that as part
145 * of the GLOBAL_STATUS ack.
146 */
147 if (pmi && x86_pmu.version >= 4)
148 return;
149
150 /*
151 * No need to reprogram LBR_SELECT in a PMI, as it
152 * did not change.
153 */
154 if (cpuc->lbr_sel)
155 lbr_select = cpuc->lbr_sel->config;
156 if (!pmi)
157 wrmsrl(MSR_LBR_SELECT, lbr_select);
158
159 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
160 orig_debugctl = debugctl;
161 debugctl |= DEBUGCTLMSR_LBR;
162 /*
163 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
164 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
165 * may cause superfluous increase/decrease of LBR_TOS.
166 */
167 if (!(lbr_select & LBR_CALL_STACK))
168 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
169 if (orig_debugctl != debugctl)
170 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
171 }
172
173 static void __intel_pmu_lbr_disable(void)
174 {
175 u64 debugctl;
176
177 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
178 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
179 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
180 }
181
182 static void intel_pmu_lbr_reset_32(void)
183 {
184 int i;
185
186 for (i = 0; i < x86_pmu.lbr_nr; i++)
187 wrmsrl(x86_pmu.lbr_from + i, 0);
188 }
189
190 static void intel_pmu_lbr_reset_64(void)
191 {
192 int i;
193
194 for (i = 0; i < x86_pmu.lbr_nr; i++) {
195 wrmsrl(x86_pmu.lbr_from + i, 0);
196 wrmsrl(x86_pmu.lbr_to + i, 0);
197 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
198 wrmsrl(MSR_LBR_INFO_0 + i, 0);
199 }
200 }
201
202 void intel_pmu_lbr_reset(void)
203 {
204 if (!x86_pmu.lbr_nr)
205 return;
206
207 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
208 intel_pmu_lbr_reset_32();
209 else
210 intel_pmu_lbr_reset_64();
211 }
212
213 /*
214 * TOS = most recently recorded branch
215 */
216 static inline u64 intel_pmu_lbr_tos(void)
217 {
218 u64 tos;
219
220 rdmsrl(x86_pmu.lbr_tos, tos);
221 return tos;
222 }
223
224 enum {
225 LBR_NONE,
226 LBR_VALID,
227 };
228
229 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
230 {
231 int i;
232 unsigned lbr_idx, mask;
233 u64 tos;
234
235 if (task_ctx->lbr_callstack_users == 0 ||
236 task_ctx->lbr_stack_state == LBR_NONE) {
237 intel_pmu_lbr_reset();
238 return;
239 }
240
241 mask = x86_pmu.lbr_nr - 1;
242 tos = task_ctx->tos;
243 for (i = 0; i < tos; i++) {
244 lbr_idx = (tos - i) & mask;
245 wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
246 wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
247 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
248 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
249 }
250 wrmsrl(x86_pmu.lbr_tos, tos);
251 task_ctx->lbr_stack_state = LBR_NONE;
252 }
253
254 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
255 {
256 int i;
257 unsigned lbr_idx, mask;
258 u64 tos;
259
260 if (task_ctx->lbr_callstack_users == 0) {
261 task_ctx->lbr_stack_state = LBR_NONE;
262 return;
263 }
264
265 mask = x86_pmu.lbr_nr - 1;
266 tos = intel_pmu_lbr_tos();
267 for (i = 0; i < tos; i++) {
268 lbr_idx = (tos - i) & mask;
269 rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
270 rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
271 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
272 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
273 }
274 task_ctx->tos = tos;
275 task_ctx->lbr_stack_state = LBR_VALID;
276 }
277
278 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
279 {
280 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
281 struct x86_perf_task_context *task_ctx;
282
283 /*
284 * If LBR callstack feature is enabled and the stack was saved when
285 * the task was scheduled out, restore the stack. Otherwise flush
286 * the LBR stack.
287 */
288 task_ctx = ctx ? ctx->task_ctx_data : NULL;
289 if (task_ctx) {
290 if (sched_in) {
291 __intel_pmu_lbr_restore(task_ctx);
292 cpuc->lbr_context = ctx;
293 } else {
294 __intel_pmu_lbr_save(task_ctx);
295 }
296 return;
297 }
298
299 /*
300 * When sampling the branck stack in system-wide, it may be
301 * necessary to flush the stack on context switch. This happens
302 * when the branch stack does not tag its entries with the pid
303 * of the current task. Otherwise it becomes impossible to
304 * associate a branch entry with a task. This ambiguity is more
305 * likely to appear when the branch stack supports priv level
306 * filtering and the user sets it to monitor only at the user
307 * level (which could be a useful measurement in system-wide
308 * mode). In that case, the risk is high of having a branch
309 * stack with branch from multiple tasks.
310 */
311 if (sched_in) {
312 intel_pmu_lbr_reset();
313 cpuc->lbr_context = ctx;
314 }
315 }
316
317 static inline bool branch_user_callstack(unsigned br_sel)
318 {
319 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
320 }
321
322 void intel_pmu_lbr_enable(struct perf_event *event)
323 {
324 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
325 struct x86_perf_task_context *task_ctx;
326
327 if (!x86_pmu.lbr_nr)
328 return;
329
330 /*
331 * Reset the LBR stack if we changed task context to
332 * avoid data leaks.
333 */
334 if (event->ctx->task && cpuc->lbr_context != event->ctx) {
335 intel_pmu_lbr_reset();
336 cpuc->lbr_context = event->ctx;
337 }
338 cpuc->br_sel = event->hw.branch_reg.reg;
339
340 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
341 event->ctx->task_ctx_data) {
342 task_ctx = event->ctx->task_ctx_data;
343 task_ctx->lbr_callstack_users++;
344 }
345
346 cpuc->lbr_users++;
347 perf_sched_cb_inc(event->ctx->pmu);
348 }
349
350 void intel_pmu_lbr_disable(struct perf_event *event)
351 {
352 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
353 struct x86_perf_task_context *task_ctx;
354
355 if (!x86_pmu.lbr_nr)
356 return;
357
358 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
359 event->ctx->task_ctx_data) {
360 task_ctx = event->ctx->task_ctx_data;
361 task_ctx->lbr_callstack_users--;
362 }
363
364 cpuc->lbr_users--;
365 WARN_ON_ONCE(cpuc->lbr_users < 0);
366 perf_sched_cb_dec(event->ctx->pmu);
367
368 if (cpuc->enabled && !cpuc->lbr_users) {
369 __intel_pmu_lbr_disable();
370 /* avoid stale pointer */
371 cpuc->lbr_context = NULL;
372 }
373 }
374
375 void intel_pmu_lbr_enable_all(bool pmi)
376 {
377 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
378
379 if (cpuc->lbr_users)
380 __intel_pmu_lbr_enable(pmi);
381 }
382
383 void intel_pmu_lbr_disable_all(void)
384 {
385 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
386
387 if (cpuc->lbr_users)
388 __intel_pmu_lbr_disable();
389 }
390
391 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
392 {
393 unsigned long mask = x86_pmu.lbr_nr - 1;
394 u64 tos = intel_pmu_lbr_tos();
395 int i;
396
397 for (i = 0; i < x86_pmu.lbr_nr; i++) {
398 unsigned long lbr_idx = (tos - i) & mask;
399 union {
400 struct {
401 u32 from;
402 u32 to;
403 };
404 u64 lbr;
405 } msr_lastbranch;
406
407 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
408
409 cpuc->lbr_entries[i].from = msr_lastbranch.from;
410 cpuc->lbr_entries[i].to = msr_lastbranch.to;
411 cpuc->lbr_entries[i].mispred = 0;
412 cpuc->lbr_entries[i].predicted = 0;
413 cpuc->lbr_entries[i].reserved = 0;
414 }
415 cpuc->lbr_stack.nr = i;
416 }
417
418 /*
419 * Due to lack of segmentation in Linux the effective address (offset)
420 * is the same as the linear address, allowing us to merge the LIP and EIP
421 * LBR formats.
422 */
423 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
424 {
425 unsigned long mask = x86_pmu.lbr_nr - 1;
426 int lbr_format = x86_pmu.intel_cap.lbr_format;
427 u64 tos = intel_pmu_lbr_tos();
428 int i;
429 int out = 0;
430 int num = x86_pmu.lbr_nr;
431
432 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
433 num = tos;
434
435 for (i = 0; i < num; i++) {
436 unsigned long lbr_idx = (tos - i) & mask;
437 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
438 int skip = 0;
439 u16 cycles = 0;
440 int lbr_flags = lbr_desc[lbr_format];
441
442 rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
443 rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
444
445 if (lbr_format == LBR_FORMAT_INFO) {
446 u64 info;
447
448 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
449 mis = !!(info & LBR_INFO_MISPRED);
450 pred = !mis;
451 in_tx = !!(info & LBR_INFO_IN_TX);
452 abort = !!(info & LBR_INFO_ABORT);
453 cycles = (info & LBR_INFO_CYCLES);
454 }
455 if (lbr_flags & LBR_EIP_FLAGS) {
456 mis = !!(from & LBR_FROM_FLAG_MISPRED);
457 pred = !mis;
458 skip = 1;
459 }
460 if (lbr_flags & LBR_TSX) {
461 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
462 abort = !!(from & LBR_FROM_FLAG_ABORT);
463 skip = 3;
464 }
465 from = (u64)((((s64)from) << skip) >> skip);
466
467 /*
468 * Some CPUs report duplicated abort records,
469 * with the second entry not having an abort bit set.
470 * Skip them here. This loop runs backwards,
471 * so we need to undo the previous record.
472 * If the abort just happened outside the window
473 * the extra entry cannot be removed.
474 */
475 if (abort && x86_pmu.lbr_double_abort && out > 0)
476 out--;
477
478 cpuc->lbr_entries[out].from = from;
479 cpuc->lbr_entries[out].to = to;
480 cpuc->lbr_entries[out].mispred = mis;
481 cpuc->lbr_entries[out].predicted = pred;
482 cpuc->lbr_entries[out].in_tx = in_tx;
483 cpuc->lbr_entries[out].abort = abort;
484 cpuc->lbr_entries[out].cycles = cycles;
485 cpuc->lbr_entries[out].reserved = 0;
486 out++;
487 }
488 cpuc->lbr_stack.nr = out;
489 }
490
491 void intel_pmu_lbr_read(void)
492 {
493 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
494
495 if (!cpuc->lbr_users)
496 return;
497
498 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
499 intel_pmu_lbr_read_32(cpuc);
500 else
501 intel_pmu_lbr_read_64(cpuc);
502
503 intel_pmu_lbr_filter(cpuc);
504 }
505
506 /*
507 * SW filter is used:
508 * - in case there is no HW filter
509 * - in case the HW filter has errata or limitations
510 */
511 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
512 {
513 u64 br_type = event->attr.branch_sample_type;
514 int mask = 0;
515
516 if (br_type & PERF_SAMPLE_BRANCH_USER)
517 mask |= X86_BR_USER;
518
519 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
520 mask |= X86_BR_KERNEL;
521
522 /* we ignore BRANCH_HV here */
523
524 if (br_type & PERF_SAMPLE_BRANCH_ANY)
525 mask |= X86_BR_ANY;
526
527 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
528 mask |= X86_BR_ANY_CALL;
529
530 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
531 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
532
533 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
534 mask |= X86_BR_IND_CALL;
535
536 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
537 mask |= X86_BR_ABORT;
538
539 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
540 mask |= X86_BR_IN_TX;
541
542 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
543 mask |= X86_BR_NO_TX;
544
545 if (br_type & PERF_SAMPLE_BRANCH_COND)
546 mask |= X86_BR_JCC;
547
548 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
549 if (!x86_pmu_has_lbr_callstack())
550 return -EOPNOTSUPP;
551 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
552 return -EINVAL;
553 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
554 X86_BR_CALL_STACK;
555 }
556
557 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
558 mask |= X86_BR_IND_JMP;
559
560 if (br_type & PERF_SAMPLE_BRANCH_CALL)
561 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
562 /*
563 * stash actual user request into reg, it may
564 * be used by fixup code for some CPU
565 */
566 event->hw.branch_reg.reg = mask;
567 return 0;
568 }
569
570 /*
571 * setup the HW LBR filter
572 * Used only when available, may not be enough to disambiguate
573 * all branches, may need the help of the SW filter
574 */
575 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
576 {
577 struct hw_perf_event_extra *reg;
578 u64 br_type = event->attr.branch_sample_type;
579 u64 mask = 0, v;
580 int i;
581
582 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
583 if (!(br_type & (1ULL << i)))
584 continue;
585
586 v = x86_pmu.lbr_sel_map[i];
587 if (v == LBR_NOT_SUPP)
588 return -EOPNOTSUPP;
589
590 if (v != LBR_IGN)
591 mask |= v;
592 }
593 reg = &event->hw.branch_reg;
594 reg->idx = EXTRA_REG_LBR;
595
596 /*
597 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
598 * in suppress mode. So LBR_SELECT should be set to
599 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
600 */
601 reg->config = mask ^ x86_pmu.lbr_sel_mask;
602
603 return 0;
604 }
605
606 int intel_pmu_setup_lbr_filter(struct perf_event *event)
607 {
608 int ret = 0;
609
610 /*
611 * no LBR on this PMU
612 */
613 if (!x86_pmu.lbr_nr)
614 return -EOPNOTSUPP;
615
616 /*
617 * setup SW LBR filter
618 */
619 ret = intel_pmu_setup_sw_lbr_filter(event);
620 if (ret)
621 return ret;
622
623 /*
624 * setup HW LBR filter, if any
625 */
626 if (x86_pmu.lbr_sel_map)
627 ret = intel_pmu_setup_hw_lbr_filter(event);
628
629 return ret;
630 }
631
632 /*
633 * return the type of control flow change at address "from"
634 * intruction is not necessarily a branch (in case of interrupt).
635 *
636 * The branch type returned also includes the priv level of the
637 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
638 *
639 * If a branch type is unknown OR the instruction cannot be
640 * decoded (e.g., text page not present), then X86_BR_NONE is
641 * returned.
642 */
643 static int branch_type(unsigned long from, unsigned long to, int abort)
644 {
645 struct insn insn;
646 void *addr;
647 int bytes_read, bytes_left;
648 int ret = X86_BR_NONE;
649 int ext, to_plm, from_plm;
650 u8 buf[MAX_INSN_SIZE];
651 int is64 = 0;
652
653 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
654 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
655
656 /*
657 * maybe zero if lbr did not fill up after a reset by the time
658 * we get a PMU interrupt
659 */
660 if (from == 0 || to == 0)
661 return X86_BR_NONE;
662
663 if (abort)
664 return X86_BR_ABORT | to_plm;
665
666 if (from_plm == X86_BR_USER) {
667 /*
668 * can happen if measuring at the user level only
669 * and we interrupt in a kernel thread, e.g., idle.
670 */
671 if (!current->mm)
672 return X86_BR_NONE;
673
674 /* may fail if text not present */
675 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
676 MAX_INSN_SIZE);
677 bytes_read = MAX_INSN_SIZE - bytes_left;
678 if (!bytes_read)
679 return X86_BR_NONE;
680
681 addr = buf;
682 } else {
683 /*
684 * The LBR logs any address in the IP, even if the IP just
685 * faulted. This means userspace can control the from address.
686 * Ensure we don't blindy read any address by validating it is
687 * a known text address.
688 */
689 if (kernel_text_address(from)) {
690 addr = (void *)from;
691 /*
692 * Assume we can get the maximum possible size
693 * when grabbing kernel data. This is not
694 * _strictly_ true since we could possibly be
695 * executing up next to a memory hole, but
696 * it is very unlikely to be a problem.
697 */
698 bytes_read = MAX_INSN_SIZE;
699 } else {
700 return X86_BR_NONE;
701 }
702 }
703
704 /*
705 * decoder needs to know the ABI especially
706 * on 64-bit systems running 32-bit apps
707 */
708 #ifdef CONFIG_X86_64
709 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
710 #endif
711 insn_init(&insn, addr, bytes_read, is64);
712 insn_get_opcode(&insn);
713 if (!insn.opcode.got)
714 return X86_BR_ABORT;
715
716 switch (insn.opcode.bytes[0]) {
717 case 0xf:
718 switch (insn.opcode.bytes[1]) {
719 case 0x05: /* syscall */
720 case 0x34: /* sysenter */
721 ret = X86_BR_SYSCALL;
722 break;
723 case 0x07: /* sysret */
724 case 0x35: /* sysexit */
725 ret = X86_BR_SYSRET;
726 break;
727 case 0x80 ... 0x8f: /* conditional */
728 ret = X86_BR_JCC;
729 break;
730 default:
731 ret = X86_BR_NONE;
732 }
733 break;
734 case 0x70 ... 0x7f: /* conditional */
735 ret = X86_BR_JCC;
736 break;
737 case 0xc2: /* near ret */
738 case 0xc3: /* near ret */
739 case 0xca: /* far ret */
740 case 0xcb: /* far ret */
741 ret = X86_BR_RET;
742 break;
743 case 0xcf: /* iret */
744 ret = X86_BR_IRET;
745 break;
746 case 0xcc ... 0xce: /* int */
747 ret = X86_BR_INT;
748 break;
749 case 0xe8: /* call near rel */
750 insn_get_immediate(&insn);
751 if (insn.immediate1.value == 0) {
752 /* zero length call */
753 ret = X86_BR_ZERO_CALL;
754 break;
755 }
756 case 0x9a: /* call far absolute */
757 ret = X86_BR_CALL;
758 break;
759 case 0xe0 ... 0xe3: /* loop jmp */
760 ret = X86_BR_JCC;
761 break;
762 case 0xe9 ... 0xeb: /* jmp */
763 ret = X86_BR_JMP;
764 break;
765 case 0xff: /* call near absolute, call far absolute ind */
766 insn_get_modrm(&insn);
767 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
768 switch (ext) {
769 case 2: /* near ind call */
770 case 3: /* far ind call */
771 ret = X86_BR_IND_CALL;
772 break;
773 case 4:
774 case 5:
775 ret = X86_BR_IND_JMP;
776 break;
777 }
778 break;
779 default:
780 ret = X86_BR_NONE;
781 }
782 /*
783 * interrupts, traps, faults (and thus ring transition) may
784 * occur on any instructions. Thus, to classify them correctly,
785 * we need to first look at the from and to priv levels. If they
786 * are different and to is in the kernel, then it indicates
787 * a ring transition. If the from instruction is not a ring
788 * transition instr (syscall, systenter, int), then it means
789 * it was a irq, trap or fault.
790 *
791 * we have no way of detecting kernel to kernel faults.
792 */
793 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
794 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
795 ret = X86_BR_IRQ;
796
797 /*
798 * branch priv level determined by target as
799 * is done by HW when LBR_SELECT is implemented
800 */
801 if (ret != X86_BR_NONE)
802 ret |= to_plm;
803
804 return ret;
805 }
806
807 /*
808 * implement actual branch filter based on user demand.
809 * Hardware may not exactly satisfy that request, thus
810 * we need to inspect opcodes. Mismatched branches are
811 * discarded. Therefore, the number of branches returned
812 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
813 */
814 static void
815 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
816 {
817 u64 from, to;
818 int br_sel = cpuc->br_sel;
819 int i, j, type;
820 bool compress = false;
821
822 /* if sampling all branches, then nothing to filter */
823 if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
824 return;
825
826 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
827
828 from = cpuc->lbr_entries[i].from;
829 to = cpuc->lbr_entries[i].to;
830
831 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
832 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
833 if (cpuc->lbr_entries[i].in_tx)
834 type |= X86_BR_IN_TX;
835 else
836 type |= X86_BR_NO_TX;
837 }
838
839 /* if type does not correspond, then discard */
840 if (type == X86_BR_NONE || (br_sel & type) != type) {
841 cpuc->lbr_entries[i].from = 0;
842 compress = true;
843 }
844 }
845
846 if (!compress)
847 return;
848
849 /* remove all entries with from=0 */
850 for (i = 0; i < cpuc->lbr_stack.nr; ) {
851 if (!cpuc->lbr_entries[i].from) {
852 j = i;
853 while (++j < cpuc->lbr_stack.nr)
854 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
855 cpuc->lbr_stack.nr--;
856 if (!cpuc->lbr_entries[i].from)
857 continue;
858 }
859 i++;
860 }
861 }
862
863 /*
864 * Map interface branch filters onto LBR filters
865 */
866 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
867 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
868 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
869 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
870 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
871 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
872 | LBR_IND_JMP | LBR_FAR,
873 /*
874 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
875 */
876 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
877 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
878 /*
879 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
880 */
881 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
882 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
883 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
884 };
885
886 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
887 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
888 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
889 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
890 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
891 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
892 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
893 | LBR_FAR,
894 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
895 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
896 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
897 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
898 };
899
900 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
901 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
902 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
903 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
904 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
905 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
906 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
907 | LBR_FAR,
908 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
909 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
910 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
911 | LBR_RETURN | LBR_CALL_STACK,
912 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
913 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
914 };
915
916 /* core */
917 void __init intel_pmu_lbr_init_core(void)
918 {
919 x86_pmu.lbr_nr = 4;
920 x86_pmu.lbr_tos = MSR_LBR_TOS;
921 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
922 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
923
924 /*
925 * SW branch filter usage:
926 * - compensate for lack of HW filter
927 */
928 pr_cont("4-deep LBR, ");
929 }
930
931 /* nehalem/westmere */
932 void __init intel_pmu_lbr_init_nhm(void)
933 {
934 x86_pmu.lbr_nr = 16;
935 x86_pmu.lbr_tos = MSR_LBR_TOS;
936 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
937 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
938
939 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
940 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
941
942 /*
943 * SW branch filter usage:
944 * - workaround LBR_SEL errata (see above)
945 * - support syscall, sysret capture.
946 * That requires LBR_FAR but that means far
947 * jmp need to be filtered out
948 */
949 pr_cont("16-deep LBR, ");
950 }
951
952 /* sandy bridge */
953 void __init intel_pmu_lbr_init_snb(void)
954 {
955 x86_pmu.lbr_nr = 16;
956 x86_pmu.lbr_tos = MSR_LBR_TOS;
957 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
958 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
959
960 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
961 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
962
963 /*
964 * SW branch filter usage:
965 * - support syscall, sysret capture.
966 * That requires LBR_FAR but that means far
967 * jmp need to be filtered out
968 */
969 pr_cont("16-deep LBR, ");
970 }
971
972 /* haswell */
973 void intel_pmu_lbr_init_hsw(void)
974 {
975 x86_pmu.lbr_nr = 16;
976 x86_pmu.lbr_tos = MSR_LBR_TOS;
977 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
978 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
979
980 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
981 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
982
983 pr_cont("16-deep LBR, ");
984 }
985
986 /* skylake */
987 __init void intel_pmu_lbr_init_skl(void)
988 {
989 x86_pmu.lbr_nr = 32;
990 x86_pmu.lbr_tos = MSR_LBR_TOS;
991 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
992 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
993
994 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
995 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
996
997 /*
998 * SW branch filter usage:
999 * - support syscall, sysret capture.
1000 * That requires LBR_FAR but that means far
1001 * jmp need to be filtered out
1002 */
1003 pr_cont("32-deep LBR, ");
1004 }
1005
1006 /* atom */
1007 void __init intel_pmu_lbr_init_atom(void)
1008 {
1009 /*
1010 * only models starting at stepping 10 seems
1011 * to have an operational LBR which can freeze
1012 * on PMU interrupt
1013 */
1014 if (boot_cpu_data.x86_model == 28
1015 && boot_cpu_data.x86_mask < 10) {
1016 pr_cont("LBR disabled due to erratum");
1017 return;
1018 }
1019
1020 x86_pmu.lbr_nr = 8;
1021 x86_pmu.lbr_tos = MSR_LBR_TOS;
1022 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1023 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1024
1025 /*
1026 * SW branch filter usage:
1027 * - compensate for lack of HW filter
1028 */
1029 pr_cont("8-deep LBR, ");
1030 }