]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/e820.c
Merge branch 'linus' into x86/mm
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / e820.c
1 /*
2 * Handle the memory map.
3 * The functions here do the job until bootmem takes over.
4 *
5 * Getting sanitize_e820_map() in sync with i386 version by applying change:
6 * - Provisions for empty E820 memory regions (reported by certain BIOSes).
7 * Alex Achenbach <xela@slit.de>, December 2002.
8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9 *
10 */
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/ioport.h>
16 #include <linux/string.h>
17 #include <linux/kexec.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/pfn.h>
21 #include <linux/suspend.h>
22 #include <linux/firmware-map.h>
23
24 #include <asm/pgtable.h>
25 #include <asm/page.h>
26 #include <asm/e820.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/trampoline.h>
30
31 /*
32 * The e820 map is the map that gets modified e.g. with command line parameters
33 * and that is also registered with modifications in the kernel resource tree
34 * with the iomem_resource as parent.
35 *
36 * The e820_saved is directly saved after the BIOS-provided memory map is
37 * copied. It doesn't get modified afterwards. It's registered for the
38 * /sys/firmware/memmap interface.
39 *
40 * That memory map is not modified and is used as base for kexec. The kexec'd
41 * kernel should get the same memory map as the firmware provides. Then the
42 * user can e.g. boot the original kernel with mem=1G while still booting the
43 * next kernel with full memory.
44 */
45 struct e820map e820;
46 struct e820map e820_saved;
47
48 /* For PCI or other memory-mapped resources */
49 unsigned long pci_mem_start = 0xaeedbabe;
50 #ifdef CONFIG_PCI
51 EXPORT_SYMBOL(pci_mem_start);
52 #endif
53
54 /*
55 * This function checks if any part of the range <start,end> is mapped
56 * with type.
57 */
58 int
59 e820_any_mapped(u64 start, u64 end, unsigned type)
60 {
61 int i;
62
63 for (i = 0; i < e820.nr_map; i++) {
64 struct e820entry *ei = &e820.map[i];
65
66 if (type && ei->type != type)
67 continue;
68 if (ei->addr >= end || ei->addr + ei->size <= start)
69 continue;
70 return 1;
71 }
72 return 0;
73 }
74 EXPORT_SYMBOL_GPL(e820_any_mapped);
75
76 /*
77 * This function checks if the entire range <start,end> is mapped with type.
78 *
79 * Note: this function only works correct if the e820 table is sorted and
80 * not-overlapping, which is the case
81 */
82 int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83 {
84 int i;
85
86 for (i = 0; i < e820.nr_map; i++) {
87 struct e820entry *ei = &e820.map[i];
88
89 if (type && ei->type != type)
90 continue;
91 /* is the region (part) in overlap with the current region ?*/
92 if (ei->addr >= end || ei->addr + ei->size <= start)
93 continue;
94
95 /* if the region is at the beginning of <start,end> we move
96 * start to the end of the region since it's ok until there
97 */
98 if (ei->addr <= start)
99 start = ei->addr + ei->size;
100 /*
101 * if start is now at or beyond end, we're done, full
102 * coverage
103 */
104 if (start >= end)
105 return 1;
106 }
107 return 0;
108 }
109
110 /*
111 * Add a memory region to the kernel e820 map.
112 */
113 static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
114 int type)
115 {
116 int x = e820x->nr_map;
117
118 if (x >= ARRAY_SIZE(e820x->map)) {
119 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
120 return;
121 }
122
123 e820x->map[x].addr = start;
124 e820x->map[x].size = size;
125 e820x->map[x].type = type;
126 e820x->nr_map++;
127 }
128
129 void __init e820_add_region(u64 start, u64 size, int type)
130 {
131 __e820_add_region(&e820, start, size, type);
132 }
133
134 static void __init e820_print_type(u32 type)
135 {
136 switch (type) {
137 case E820_RAM:
138 case E820_RESERVED_KERN:
139 printk(KERN_CONT "(usable)");
140 break;
141 case E820_RESERVED:
142 printk(KERN_CONT "(reserved)");
143 break;
144 case E820_ACPI:
145 printk(KERN_CONT "(ACPI data)");
146 break;
147 case E820_NVS:
148 printk(KERN_CONT "(ACPI NVS)");
149 break;
150 case E820_UNUSABLE:
151 printk(KERN_CONT "(unusable)");
152 break;
153 default:
154 printk(KERN_CONT "type %u", type);
155 break;
156 }
157 }
158
159 void __init e820_print_map(char *who)
160 {
161 int i;
162
163 for (i = 0; i < e820.nr_map; i++) {
164 printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
165 (unsigned long long) e820.map[i].addr,
166 (unsigned long long)
167 (e820.map[i].addr + e820.map[i].size));
168 e820_print_type(e820.map[i].type);
169 printk(KERN_CONT "\n");
170 }
171 }
172
173 /*
174 * Sanitize the BIOS e820 map.
175 *
176 * Some e820 responses include overlapping entries. The following
177 * replaces the original e820 map with a new one, removing overlaps,
178 * and resolving conflicting memory types in favor of highest
179 * numbered type.
180 *
181 * The input parameter biosmap points to an array of 'struct
182 * e820entry' which on entry has elements in the range [0, *pnr_map)
183 * valid, and which has space for up to max_nr_map entries.
184 * On return, the resulting sanitized e820 map entries will be in
185 * overwritten in the same location, starting at biosmap.
186 *
187 * The integer pointed to by pnr_map must be valid on entry (the
188 * current number of valid entries located at biosmap) and will
189 * be updated on return, with the new number of valid entries
190 * (something no more than max_nr_map.)
191 *
192 * The return value from sanitize_e820_map() is zero if it
193 * successfully 'sanitized' the map entries passed in, and is -1
194 * if it did nothing, which can happen if either of (1) it was
195 * only passed one map entry, or (2) any of the input map entries
196 * were invalid (start + size < start, meaning that the size was
197 * so big the described memory range wrapped around through zero.)
198 *
199 * Visually we're performing the following
200 * (1,2,3,4 = memory types)...
201 *
202 * Sample memory map (w/overlaps):
203 * ____22__________________
204 * ______________________4_
205 * ____1111________________
206 * _44_____________________
207 * 11111111________________
208 * ____________________33__
209 * ___________44___________
210 * __________33333_________
211 * ______________22________
212 * ___________________2222_
213 * _________111111111______
214 * _____________________11_
215 * _________________4______
216 *
217 * Sanitized equivalent (no overlap):
218 * 1_______________________
219 * _44_____________________
220 * ___1____________________
221 * ____22__________________
222 * ______11________________
223 * _________1______________
224 * __________3_____________
225 * ___________44___________
226 * _____________33_________
227 * _______________2________
228 * ________________1_______
229 * _________________4______
230 * ___________________2____
231 * ____________________33__
232 * ______________________4_
233 */
234
235 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
236 u32 *pnr_map)
237 {
238 struct change_member {
239 struct e820entry *pbios; /* pointer to original bios entry */
240 unsigned long long addr; /* address for this change point */
241 };
242 static struct change_member change_point_list[2*E820_X_MAX] __initdata;
243 static struct change_member *change_point[2*E820_X_MAX] __initdata;
244 static struct e820entry *overlap_list[E820_X_MAX] __initdata;
245 static struct e820entry new_bios[E820_X_MAX] __initdata;
246 struct change_member *change_tmp;
247 unsigned long current_type, last_type;
248 unsigned long long last_addr;
249 int chgidx, still_changing;
250 int overlap_entries;
251 int new_bios_entry;
252 int old_nr, new_nr, chg_nr;
253 int i;
254
255 /* if there's only one memory region, don't bother */
256 if (*pnr_map < 2)
257 return -1;
258
259 old_nr = *pnr_map;
260 BUG_ON(old_nr > max_nr_map);
261
262 /* bail out if we find any unreasonable addresses in bios map */
263 for (i = 0; i < old_nr; i++)
264 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
265 return -1;
266
267 /* create pointers for initial change-point information (for sorting) */
268 for (i = 0; i < 2 * old_nr; i++)
269 change_point[i] = &change_point_list[i];
270
271 /* record all known change-points (starting and ending addresses),
272 omitting those that are for empty memory regions */
273 chgidx = 0;
274 for (i = 0; i < old_nr; i++) {
275 if (biosmap[i].size != 0) {
276 change_point[chgidx]->addr = biosmap[i].addr;
277 change_point[chgidx++]->pbios = &biosmap[i];
278 change_point[chgidx]->addr = biosmap[i].addr +
279 biosmap[i].size;
280 change_point[chgidx++]->pbios = &biosmap[i];
281 }
282 }
283 chg_nr = chgidx;
284
285 /* sort change-point list by memory addresses (low -> high) */
286 still_changing = 1;
287 while (still_changing) {
288 still_changing = 0;
289 for (i = 1; i < chg_nr; i++) {
290 unsigned long long curaddr, lastaddr;
291 unsigned long long curpbaddr, lastpbaddr;
292
293 curaddr = change_point[i]->addr;
294 lastaddr = change_point[i - 1]->addr;
295 curpbaddr = change_point[i]->pbios->addr;
296 lastpbaddr = change_point[i - 1]->pbios->addr;
297
298 /*
299 * swap entries, when:
300 *
301 * curaddr > lastaddr or
302 * curaddr == lastaddr and curaddr == curpbaddr and
303 * lastaddr != lastpbaddr
304 */
305 if (curaddr < lastaddr ||
306 (curaddr == lastaddr && curaddr == curpbaddr &&
307 lastaddr != lastpbaddr)) {
308 change_tmp = change_point[i];
309 change_point[i] = change_point[i-1];
310 change_point[i-1] = change_tmp;
311 still_changing = 1;
312 }
313 }
314 }
315
316 /* create a new bios memory map, removing overlaps */
317 overlap_entries = 0; /* number of entries in the overlap table */
318 new_bios_entry = 0; /* index for creating new bios map entries */
319 last_type = 0; /* start with undefined memory type */
320 last_addr = 0; /* start with 0 as last starting address */
321
322 /* loop through change-points, determining affect on the new bios map */
323 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
324 /* keep track of all overlapping bios entries */
325 if (change_point[chgidx]->addr ==
326 change_point[chgidx]->pbios->addr) {
327 /*
328 * add map entry to overlap list (> 1 entry
329 * implies an overlap)
330 */
331 overlap_list[overlap_entries++] =
332 change_point[chgidx]->pbios;
333 } else {
334 /*
335 * remove entry from list (order independent,
336 * so swap with last)
337 */
338 for (i = 0; i < overlap_entries; i++) {
339 if (overlap_list[i] ==
340 change_point[chgidx]->pbios)
341 overlap_list[i] =
342 overlap_list[overlap_entries-1];
343 }
344 overlap_entries--;
345 }
346 /*
347 * if there are overlapping entries, decide which
348 * "type" to use (larger value takes precedence --
349 * 1=usable, 2,3,4,4+=unusable)
350 */
351 current_type = 0;
352 for (i = 0; i < overlap_entries; i++)
353 if (overlap_list[i]->type > current_type)
354 current_type = overlap_list[i]->type;
355 /*
356 * continue building up new bios map based on this
357 * information
358 */
359 if (current_type != last_type) {
360 if (last_type != 0) {
361 new_bios[new_bios_entry].size =
362 change_point[chgidx]->addr - last_addr;
363 /*
364 * move forward only if the new size
365 * was non-zero
366 */
367 if (new_bios[new_bios_entry].size != 0)
368 /*
369 * no more space left for new
370 * bios entries ?
371 */
372 if (++new_bios_entry >= max_nr_map)
373 break;
374 }
375 if (current_type != 0) {
376 new_bios[new_bios_entry].addr =
377 change_point[chgidx]->addr;
378 new_bios[new_bios_entry].type = current_type;
379 last_addr = change_point[chgidx]->addr;
380 }
381 last_type = current_type;
382 }
383 }
384 /* retain count for new bios entries */
385 new_nr = new_bios_entry;
386
387 /* copy new bios mapping into original location */
388 memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
389 *pnr_map = new_nr;
390
391 return 0;
392 }
393
394 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
395 {
396 while (nr_map) {
397 u64 start = biosmap->addr;
398 u64 size = biosmap->size;
399 u64 end = start + size;
400 u32 type = biosmap->type;
401
402 /* Overflow in 64 bits? Ignore the memory map. */
403 if (start > end)
404 return -1;
405
406 e820_add_region(start, size, type);
407
408 biosmap++;
409 nr_map--;
410 }
411 return 0;
412 }
413
414 /*
415 * Copy the BIOS e820 map into a safe place.
416 *
417 * Sanity-check it while we're at it..
418 *
419 * If we're lucky and live on a modern system, the setup code
420 * will have given us a memory map that we can use to properly
421 * set up memory. If we aren't, we'll fake a memory map.
422 */
423 static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
424 {
425 /* Only one memory region (or negative)? Ignore it */
426 if (nr_map < 2)
427 return -1;
428
429 return __append_e820_map(biosmap, nr_map);
430 }
431
432 static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
433 u64 size, unsigned old_type,
434 unsigned new_type)
435 {
436 u64 end;
437 unsigned int i;
438 u64 real_updated_size = 0;
439
440 BUG_ON(old_type == new_type);
441
442 if (size > (ULLONG_MAX - start))
443 size = ULLONG_MAX - start;
444
445 end = start + size;
446 printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
447 (unsigned long long) start,
448 (unsigned long long) end);
449 e820_print_type(old_type);
450 printk(KERN_CONT " ==> ");
451 e820_print_type(new_type);
452 printk(KERN_CONT "\n");
453
454 for (i = 0; i < e820x->nr_map; i++) {
455 struct e820entry *ei = &e820x->map[i];
456 u64 final_start, final_end;
457 u64 ei_end;
458
459 if (ei->type != old_type)
460 continue;
461
462 ei_end = ei->addr + ei->size;
463 /* totally covered by new range? */
464 if (ei->addr >= start && ei_end <= end) {
465 ei->type = new_type;
466 real_updated_size += ei->size;
467 continue;
468 }
469
470 /* new range is totally covered? */
471 if (ei->addr < start && ei_end > end) {
472 __e820_add_region(e820x, start, size, new_type);
473 __e820_add_region(e820x, end, ei_end - end, ei->type);
474 ei->size = start - ei->addr;
475 real_updated_size += size;
476 continue;
477 }
478
479 /* partially covered */
480 final_start = max(start, ei->addr);
481 final_end = min(end, ei_end);
482 if (final_start >= final_end)
483 continue;
484
485 __e820_add_region(e820x, final_start, final_end - final_start,
486 new_type);
487
488 real_updated_size += final_end - final_start;
489
490 /*
491 * left range could be head or tail, so need to update
492 * size at first.
493 */
494 ei->size -= final_end - final_start;
495 if (ei->addr < final_start)
496 continue;
497 ei->addr = final_end;
498 }
499 return real_updated_size;
500 }
501
502 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
503 unsigned new_type)
504 {
505 return __e820_update_range(&e820, start, size, old_type, new_type);
506 }
507
508 static u64 __init e820_update_range_saved(u64 start, u64 size,
509 unsigned old_type, unsigned new_type)
510 {
511 return __e820_update_range(&e820_saved, start, size, old_type,
512 new_type);
513 }
514
515 /* make e820 not cover the range */
516 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
517 int checktype)
518 {
519 int i;
520 u64 end;
521 u64 real_removed_size = 0;
522
523 if (size > (ULLONG_MAX - start))
524 size = ULLONG_MAX - start;
525
526 end = start + size;
527 printk(KERN_DEBUG "e820 remove range: %016Lx - %016Lx ",
528 (unsigned long long) start,
529 (unsigned long long) end);
530 e820_print_type(old_type);
531 printk(KERN_CONT "\n");
532
533 for (i = 0; i < e820.nr_map; i++) {
534 struct e820entry *ei = &e820.map[i];
535 u64 final_start, final_end;
536
537 if (checktype && ei->type != old_type)
538 continue;
539 /* totally covered? */
540 if (ei->addr >= start &&
541 (ei->addr + ei->size) <= (start + size)) {
542 real_removed_size += ei->size;
543 memset(ei, 0, sizeof(struct e820entry));
544 continue;
545 }
546 /* partially covered */
547 final_start = max(start, ei->addr);
548 final_end = min(start + size, ei->addr + ei->size);
549 if (final_start >= final_end)
550 continue;
551 real_removed_size += final_end - final_start;
552
553 ei->size -= final_end - final_start;
554 if (ei->addr < final_start)
555 continue;
556 ei->addr = final_end;
557 }
558 return real_removed_size;
559 }
560
561 void __init update_e820(void)
562 {
563 u32 nr_map;
564
565 nr_map = e820.nr_map;
566 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
567 return;
568 e820.nr_map = nr_map;
569 printk(KERN_INFO "modified physical RAM map:\n");
570 e820_print_map("modified");
571 }
572 static void __init update_e820_saved(void)
573 {
574 u32 nr_map;
575
576 nr_map = e820_saved.nr_map;
577 if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
578 return;
579 e820_saved.nr_map = nr_map;
580 }
581 #define MAX_GAP_END 0x100000000ull
582 /*
583 * Search for a gap in the e820 memory space from start_addr to end_addr.
584 */
585 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
586 unsigned long start_addr, unsigned long long end_addr)
587 {
588 unsigned long long last;
589 int i = e820.nr_map;
590 int found = 0;
591
592 last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
593
594 while (--i >= 0) {
595 unsigned long long start = e820.map[i].addr;
596 unsigned long long end = start + e820.map[i].size;
597
598 if (end < start_addr)
599 continue;
600
601 /*
602 * Since "last" is at most 4GB, we know we'll
603 * fit in 32 bits if this condition is true
604 */
605 if (last > end) {
606 unsigned long gap = last - end;
607
608 if (gap >= *gapsize) {
609 *gapsize = gap;
610 *gapstart = end;
611 found = 1;
612 }
613 }
614 if (start < last)
615 last = start;
616 }
617 return found;
618 }
619
620 /*
621 * Search for the biggest gap in the low 32 bits of the e820
622 * memory space. We pass this space to PCI to assign MMIO resources
623 * for hotplug or unconfigured devices in.
624 * Hopefully the BIOS let enough space left.
625 */
626 __init void e820_setup_gap(void)
627 {
628 unsigned long gapstart, gapsize;
629 int found;
630
631 gapstart = 0x10000000;
632 gapsize = 0x400000;
633 found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
634
635 #ifdef CONFIG_X86_64
636 if (!found) {
637 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
638 printk(KERN_ERR
639 "PCI: Warning: Cannot find a gap in the 32bit address range\n"
640 "PCI: Unassigned devices with 32bit resource registers may break!\n");
641 }
642 #endif
643
644 /*
645 * e820_reserve_resources_late protect stolen RAM already
646 */
647 pci_mem_start = gapstart;
648
649 printk(KERN_INFO
650 "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
651 pci_mem_start, gapstart, gapsize);
652 }
653
654 /**
655 * Because of the size limitation of struct boot_params, only first
656 * 128 E820 memory entries are passed to kernel via
657 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
658 * linked list of struct setup_data, which is parsed here.
659 */
660 void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
661 {
662 u32 map_len;
663 int entries;
664 struct e820entry *extmap;
665
666 entries = sdata->len / sizeof(struct e820entry);
667 map_len = sdata->len + sizeof(struct setup_data);
668 if (map_len > PAGE_SIZE)
669 sdata = early_ioremap(pa_data, map_len);
670 extmap = (struct e820entry *)(sdata->data);
671 __append_e820_map(extmap, entries);
672 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
673 if (map_len > PAGE_SIZE)
674 early_iounmap(sdata, map_len);
675 printk(KERN_INFO "extended physical RAM map:\n");
676 e820_print_map("extended");
677 }
678
679 #if defined(CONFIG_X86_64) || \
680 (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
681 /**
682 * Find the ranges of physical addresses that do not correspond to
683 * e820 RAM areas and mark the corresponding pages as nosave for
684 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
685 *
686 * This function requires the e820 map to be sorted and without any
687 * overlapping entries and assumes the first e820 area to be RAM.
688 */
689 void __init e820_mark_nosave_regions(unsigned long limit_pfn)
690 {
691 int i;
692 unsigned long pfn;
693
694 pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
695 for (i = 1; i < e820.nr_map; i++) {
696 struct e820entry *ei = &e820.map[i];
697
698 if (pfn < PFN_UP(ei->addr))
699 register_nosave_region(pfn, PFN_UP(ei->addr));
700
701 pfn = PFN_DOWN(ei->addr + ei->size);
702 if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
703 register_nosave_region(PFN_UP(ei->addr), pfn);
704
705 if (pfn >= limit_pfn)
706 break;
707 }
708 }
709 #endif
710
711 #ifdef CONFIG_HIBERNATION
712 /**
713 * Mark ACPI NVS memory region, so that we can save/restore it during
714 * hibernation and the subsequent resume.
715 */
716 static int __init e820_mark_nvs_memory(void)
717 {
718 int i;
719
720 for (i = 0; i < e820.nr_map; i++) {
721 struct e820entry *ei = &e820.map[i];
722
723 if (ei->type == E820_NVS)
724 hibernate_nvs_register(ei->addr, ei->size);
725 }
726
727 return 0;
728 }
729 core_initcall(e820_mark_nvs_memory);
730 #endif
731
732 /*
733 * Early reserved memory areas.
734 */
735 #define MAX_EARLY_RES 32
736
737 struct early_res {
738 u64 start, end;
739 char name[16];
740 char overlap_ok;
741 };
742 static struct early_res early_res[MAX_EARLY_RES] __initdata = {
743 { 0, PAGE_SIZE, "BIOS data page", 1 }, /* BIOS data page */
744 #if defined(CONFIG_X86_32) && defined(CONFIG_X86_TRAMPOLINE)
745 /*
746 * But first pinch a few for the stack/trampoline stuff
747 * FIXME: Don't need the extra page at 4K, but need to fix
748 * trampoline before removing it. (see the GDT stuff)
749 */
750 { PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE", 1 },
751 #endif
752
753 {}
754 };
755
756 static int __init find_overlapped_early(u64 start, u64 end)
757 {
758 int i;
759 struct early_res *r;
760
761 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
762 r = &early_res[i];
763 if (end > r->start && start < r->end)
764 break;
765 }
766
767 return i;
768 }
769
770 /*
771 * Drop the i-th range from the early reservation map,
772 * by copying any higher ranges down one over it, and
773 * clearing what had been the last slot.
774 */
775 static void __init drop_range(int i)
776 {
777 int j;
778
779 for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
780 ;
781
782 memmove(&early_res[i], &early_res[i + 1],
783 (j - 1 - i) * sizeof(struct early_res));
784
785 early_res[j - 1].end = 0;
786 }
787
788 /*
789 * Split any existing ranges that:
790 * 1) are marked 'overlap_ok', and
791 * 2) overlap with the stated range [start, end)
792 * into whatever portion (if any) of the existing range is entirely
793 * below or entirely above the stated range. Drop the portion
794 * of the existing range that overlaps with the stated range,
795 * which will allow the caller of this routine to then add that
796 * stated range without conflicting with any existing range.
797 */
798 static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
799 {
800 int i;
801 struct early_res *r;
802 u64 lower_start, lower_end;
803 u64 upper_start, upper_end;
804 char name[16];
805
806 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
807 r = &early_res[i];
808
809 /* Continue past non-overlapping ranges */
810 if (end <= r->start || start >= r->end)
811 continue;
812
813 /*
814 * Leave non-ok overlaps as is; let caller
815 * panic "Overlapping early reservations"
816 * when it hits this overlap.
817 */
818 if (!r->overlap_ok)
819 return;
820
821 /*
822 * We have an ok overlap. We will drop it from the early
823 * reservation map, and add back in any non-overlapping
824 * portions (lower or upper) as separate, overlap_ok,
825 * non-overlapping ranges.
826 */
827
828 /* 1. Note any non-overlapping (lower or upper) ranges. */
829 strncpy(name, r->name, sizeof(name) - 1);
830
831 lower_start = lower_end = 0;
832 upper_start = upper_end = 0;
833 if (r->start < start) {
834 lower_start = r->start;
835 lower_end = start;
836 }
837 if (r->end > end) {
838 upper_start = end;
839 upper_end = r->end;
840 }
841
842 /* 2. Drop the original ok overlapping range */
843 drop_range(i);
844
845 i--; /* resume for-loop on copied down entry */
846
847 /* 3. Add back in any non-overlapping ranges. */
848 if (lower_end)
849 reserve_early_overlap_ok(lower_start, lower_end, name);
850 if (upper_end)
851 reserve_early_overlap_ok(upper_start, upper_end, name);
852 }
853 }
854
855 static void __init __reserve_early(u64 start, u64 end, char *name,
856 int overlap_ok)
857 {
858 int i;
859 struct early_res *r;
860
861 i = find_overlapped_early(start, end);
862 if (i >= MAX_EARLY_RES)
863 panic("Too many early reservations");
864 r = &early_res[i];
865 if (r->end)
866 panic("Overlapping early reservations "
867 "%llx-%llx %s to %llx-%llx %s\n",
868 start, end - 1, name?name:"", r->start,
869 r->end - 1, r->name);
870 r->start = start;
871 r->end = end;
872 r->overlap_ok = overlap_ok;
873 if (name)
874 strncpy(r->name, name, sizeof(r->name) - 1);
875 }
876
877 /*
878 * A few early reservtations come here.
879 *
880 * The 'overlap_ok' in the name of this routine does -not- mean it
881 * is ok for these reservations to overlap an earlier reservation.
882 * Rather it means that it is ok for subsequent reservations to
883 * overlap this one.
884 *
885 * Use this entry point to reserve early ranges when you are doing
886 * so out of "Paranoia", reserving perhaps more memory than you need,
887 * just in case, and don't mind a subsequent overlapping reservation
888 * that is known to be needed.
889 *
890 * The drop_overlaps_that_are_ok() call here isn't really needed.
891 * It would be needed if we had two colliding 'overlap_ok'
892 * reservations, so that the second such would not panic on the
893 * overlap with the first. We don't have any such as of this
894 * writing, but might as well tolerate such if it happens in
895 * the future.
896 */
897 void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
898 {
899 drop_overlaps_that_are_ok(start, end);
900 __reserve_early(start, end, name, 1);
901 }
902
903 /*
904 * Most early reservations come here.
905 *
906 * We first have drop_overlaps_that_are_ok() drop any pre-existing
907 * 'overlap_ok' ranges, so that we can then reserve this memory
908 * range without risk of panic'ing on an overlapping overlap_ok
909 * early reservation.
910 */
911 void __init reserve_early(u64 start, u64 end, char *name)
912 {
913 if (start >= end)
914 return;
915
916 drop_overlaps_that_are_ok(start, end);
917 __reserve_early(start, end, name, 0);
918 }
919
920 void __init free_early(u64 start, u64 end)
921 {
922 struct early_res *r;
923 int i;
924
925 i = find_overlapped_early(start, end);
926 r = &early_res[i];
927 if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
928 panic("free_early on not reserved area: %llx-%llx!",
929 start, end - 1);
930
931 drop_range(i);
932 }
933
934 void __init early_res_to_bootmem(u64 start, u64 end)
935 {
936 int i, count;
937 u64 final_start, final_end;
938
939 count = 0;
940 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
941 count++;
942
943 printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
944 count, start, end);
945 for (i = 0; i < count; i++) {
946 struct early_res *r = &early_res[i];
947 printk(KERN_INFO " #%d [%010llx - %010llx] %16s", i,
948 r->start, r->end, r->name);
949 final_start = max(start, r->start);
950 final_end = min(end, r->end);
951 if (final_start >= final_end) {
952 printk(KERN_CONT "\n");
953 continue;
954 }
955 printk(KERN_CONT " ==> [%010llx - %010llx]\n",
956 final_start, final_end);
957 reserve_bootmem_generic(final_start, final_end - final_start,
958 BOOTMEM_DEFAULT);
959 }
960 }
961
962 /* Check for already reserved areas */
963 static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
964 {
965 int i;
966 u64 addr = *addrp;
967 int changed = 0;
968 struct early_res *r;
969 again:
970 i = find_overlapped_early(addr, addr + size);
971 r = &early_res[i];
972 if (i < MAX_EARLY_RES && r->end) {
973 *addrp = addr = round_up(r->end, align);
974 changed = 1;
975 goto again;
976 }
977 return changed;
978 }
979
980 /* Check for already reserved areas */
981 static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
982 {
983 int i;
984 u64 addr = *addrp, last;
985 u64 size = *sizep;
986 int changed = 0;
987 again:
988 last = addr + size;
989 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
990 struct early_res *r = &early_res[i];
991 if (last > r->start && addr < r->start) {
992 size = r->start - addr;
993 changed = 1;
994 goto again;
995 }
996 if (last > r->end && addr < r->end) {
997 addr = round_up(r->end, align);
998 size = last - addr;
999 changed = 1;
1000 goto again;
1001 }
1002 if (last <= r->end && addr >= r->start) {
1003 (*sizep)++;
1004 return 0;
1005 }
1006 }
1007 if (changed) {
1008 *addrp = addr;
1009 *sizep = size;
1010 }
1011 return changed;
1012 }
1013
1014 /*
1015 * Find a free area with specified alignment in a specific range.
1016 */
1017 u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
1018 {
1019 int i;
1020
1021 for (i = 0; i < e820.nr_map; i++) {
1022 struct e820entry *ei = &e820.map[i];
1023 u64 addr, last;
1024 u64 ei_last;
1025
1026 if (ei->type != E820_RAM)
1027 continue;
1028 addr = round_up(ei->addr, align);
1029 ei_last = ei->addr + ei->size;
1030 if (addr < start)
1031 addr = round_up(start, align);
1032 if (addr >= ei_last)
1033 continue;
1034 while (bad_addr(&addr, size, align) && addr+size <= ei_last)
1035 ;
1036 last = addr + size;
1037 if (last > ei_last)
1038 continue;
1039 if (last > end)
1040 continue;
1041 return addr;
1042 }
1043 return -1ULL;
1044 }
1045
1046 /*
1047 * Find next free range after *start
1048 */
1049 u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
1050 {
1051 int i;
1052
1053 for (i = 0; i < e820.nr_map; i++) {
1054 struct e820entry *ei = &e820.map[i];
1055 u64 addr, last;
1056 u64 ei_last;
1057
1058 if (ei->type != E820_RAM)
1059 continue;
1060 addr = round_up(ei->addr, align);
1061 ei_last = ei->addr + ei->size;
1062 if (addr < start)
1063 addr = round_up(start, align);
1064 if (addr >= ei_last)
1065 continue;
1066 *sizep = ei_last - addr;
1067 while (bad_addr_size(&addr, sizep, align) &&
1068 addr + *sizep <= ei_last)
1069 ;
1070 last = addr + *sizep;
1071 if (last > ei_last)
1072 continue;
1073 return addr;
1074 }
1075
1076 return -1ULL;
1077 }
1078
1079 /*
1080 * pre allocated 4k and reserved it in e820
1081 */
1082 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1083 {
1084 u64 size = 0;
1085 u64 addr;
1086 u64 start;
1087
1088 for (start = startt; ; start += size) {
1089 start = find_e820_area_size(start, &size, align);
1090 if (!(start + 1))
1091 return 0;
1092 if (size >= sizet)
1093 break;
1094 }
1095
1096 #ifdef CONFIG_X86_32
1097 if (start >= MAXMEM)
1098 return 0;
1099 if (start + size > MAXMEM)
1100 size = MAXMEM - start;
1101 #endif
1102
1103 addr = round_down(start + size - sizet, align);
1104 if (addr < start)
1105 return 0;
1106 e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1107 e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1108 printk(KERN_INFO "update e820 for early_reserve_e820\n");
1109 update_e820();
1110 update_e820_saved();
1111
1112 return addr;
1113 }
1114
1115 #ifdef CONFIG_X86_32
1116 # ifdef CONFIG_X86_PAE
1117 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT))
1118 # else
1119 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT))
1120 # endif
1121 #else /* CONFIG_X86_32 */
1122 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1123 #endif
1124
1125 /*
1126 * Find the highest page frame number we have available
1127 */
1128 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1129 {
1130 int i;
1131 unsigned long last_pfn = 0;
1132 unsigned long max_arch_pfn = MAX_ARCH_PFN;
1133
1134 for (i = 0; i < e820.nr_map; i++) {
1135 struct e820entry *ei = &e820.map[i];
1136 unsigned long start_pfn;
1137 unsigned long end_pfn;
1138
1139 if (ei->type != type)
1140 continue;
1141
1142 start_pfn = ei->addr >> PAGE_SHIFT;
1143 end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1144
1145 if (start_pfn >= limit_pfn)
1146 continue;
1147 if (end_pfn > limit_pfn) {
1148 last_pfn = limit_pfn;
1149 break;
1150 }
1151 if (end_pfn > last_pfn)
1152 last_pfn = end_pfn;
1153 }
1154
1155 if (last_pfn > max_arch_pfn)
1156 last_pfn = max_arch_pfn;
1157
1158 printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1159 last_pfn, max_arch_pfn);
1160 return last_pfn;
1161 }
1162 unsigned long __init e820_end_of_ram_pfn(void)
1163 {
1164 return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1165 }
1166
1167 unsigned long __init e820_end_of_low_ram_pfn(void)
1168 {
1169 return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1170 }
1171 /*
1172 * Finds an active region in the address range from start_pfn to last_pfn and
1173 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1174 */
1175 int __init e820_find_active_region(const struct e820entry *ei,
1176 unsigned long start_pfn,
1177 unsigned long last_pfn,
1178 unsigned long *ei_startpfn,
1179 unsigned long *ei_endpfn)
1180 {
1181 u64 align = PAGE_SIZE;
1182
1183 *ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1184 *ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1185
1186 /* Skip map entries smaller than a page */
1187 if (*ei_startpfn >= *ei_endpfn)
1188 return 0;
1189
1190 /* Skip if map is outside the node */
1191 if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1192 *ei_startpfn >= last_pfn)
1193 return 0;
1194
1195 /* Check for overlaps */
1196 if (*ei_startpfn < start_pfn)
1197 *ei_startpfn = start_pfn;
1198 if (*ei_endpfn > last_pfn)
1199 *ei_endpfn = last_pfn;
1200
1201 return 1;
1202 }
1203
1204 /* Walk the e820 map and register active regions within a node */
1205 void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1206 unsigned long last_pfn)
1207 {
1208 unsigned long ei_startpfn;
1209 unsigned long ei_endpfn;
1210 int i;
1211
1212 for (i = 0; i < e820.nr_map; i++)
1213 if (e820_find_active_region(&e820.map[i],
1214 start_pfn, last_pfn,
1215 &ei_startpfn, &ei_endpfn))
1216 add_active_range(nid, ei_startpfn, ei_endpfn);
1217 }
1218
1219 /*
1220 * Find the hole size (in bytes) in the memory range.
1221 * @start: starting address of the memory range to scan
1222 * @end: ending address of the memory range to scan
1223 */
1224 u64 __init e820_hole_size(u64 start, u64 end)
1225 {
1226 unsigned long start_pfn = start >> PAGE_SHIFT;
1227 unsigned long last_pfn = end >> PAGE_SHIFT;
1228 unsigned long ei_startpfn, ei_endpfn, ram = 0;
1229 int i;
1230
1231 for (i = 0; i < e820.nr_map; i++) {
1232 if (e820_find_active_region(&e820.map[i],
1233 start_pfn, last_pfn,
1234 &ei_startpfn, &ei_endpfn))
1235 ram += ei_endpfn - ei_startpfn;
1236 }
1237 return end - start - ((u64)ram << PAGE_SHIFT);
1238 }
1239
1240 static void early_panic(char *msg)
1241 {
1242 early_printk(msg);
1243 panic(msg);
1244 }
1245
1246 static int userdef __initdata;
1247
1248 /* "mem=nopentium" disables the 4MB page tables. */
1249 static int __init parse_memopt(char *p)
1250 {
1251 u64 mem_size;
1252
1253 if (!p)
1254 return -EINVAL;
1255
1256 #ifdef CONFIG_X86_32
1257 if (!strcmp(p, "nopentium")) {
1258 setup_clear_cpu_cap(X86_FEATURE_PSE);
1259 return 0;
1260 }
1261 #endif
1262
1263 userdef = 1;
1264 mem_size = memparse(p, &p);
1265 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1266
1267 return 0;
1268 }
1269 early_param("mem", parse_memopt);
1270
1271 static int __init parse_memmap_opt(char *p)
1272 {
1273 char *oldp;
1274 u64 start_at, mem_size;
1275
1276 if (!p)
1277 return -EINVAL;
1278
1279 if (!strncmp(p, "exactmap", 8)) {
1280 #ifdef CONFIG_CRASH_DUMP
1281 /*
1282 * If we are doing a crash dump, we still need to know
1283 * the real mem size before original memory map is
1284 * reset.
1285 */
1286 saved_max_pfn = e820_end_of_ram_pfn();
1287 #endif
1288 e820.nr_map = 0;
1289 userdef = 1;
1290 return 0;
1291 }
1292
1293 oldp = p;
1294 mem_size = memparse(p, &p);
1295 if (p == oldp)
1296 return -EINVAL;
1297
1298 userdef = 1;
1299 if (*p == '@') {
1300 start_at = memparse(p+1, &p);
1301 e820_add_region(start_at, mem_size, E820_RAM);
1302 } else if (*p == '#') {
1303 start_at = memparse(p+1, &p);
1304 e820_add_region(start_at, mem_size, E820_ACPI);
1305 } else if (*p == '$') {
1306 start_at = memparse(p+1, &p);
1307 e820_add_region(start_at, mem_size, E820_RESERVED);
1308 } else
1309 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1310
1311 return *p == '\0' ? 0 : -EINVAL;
1312 }
1313 early_param("memmap", parse_memmap_opt);
1314
1315 void __init finish_e820_parsing(void)
1316 {
1317 if (userdef) {
1318 u32 nr = e820.nr_map;
1319
1320 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1321 early_panic("Invalid user supplied memory map");
1322 e820.nr_map = nr;
1323
1324 printk(KERN_INFO "user-defined physical RAM map:\n");
1325 e820_print_map("user");
1326 }
1327 }
1328
1329 static inline const char *e820_type_to_string(int e820_type)
1330 {
1331 switch (e820_type) {
1332 case E820_RESERVED_KERN:
1333 case E820_RAM: return "System RAM";
1334 case E820_ACPI: return "ACPI Tables";
1335 case E820_NVS: return "ACPI Non-volatile Storage";
1336 case E820_UNUSABLE: return "Unusable memory";
1337 default: return "reserved";
1338 }
1339 }
1340
1341 /*
1342 * Mark e820 reserved areas as busy for the resource manager.
1343 */
1344 static struct resource __initdata *e820_res;
1345 void __init e820_reserve_resources(void)
1346 {
1347 int i;
1348 struct resource *res;
1349 u64 end;
1350
1351 res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
1352 e820_res = res;
1353 for (i = 0; i < e820.nr_map; i++) {
1354 end = e820.map[i].addr + e820.map[i].size - 1;
1355 if (end != (resource_size_t)end) {
1356 res++;
1357 continue;
1358 }
1359 res->name = e820_type_to_string(e820.map[i].type);
1360 res->start = e820.map[i].addr;
1361 res->end = end;
1362
1363 res->flags = IORESOURCE_MEM;
1364
1365 /*
1366 * don't register the region that could be conflicted with
1367 * pci device BAR resource and insert them later in
1368 * pcibios_resource_survey()
1369 */
1370 if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1371 res->flags |= IORESOURCE_BUSY;
1372 insert_resource(&iomem_resource, res);
1373 }
1374 res++;
1375 }
1376
1377 for (i = 0; i < e820_saved.nr_map; i++) {
1378 struct e820entry *entry = &e820_saved.map[i];
1379 firmware_map_add_early(entry->addr,
1380 entry->addr + entry->size - 1,
1381 e820_type_to_string(entry->type));
1382 }
1383 }
1384
1385 /* How much should we pad RAM ending depending on where it is? */
1386 static unsigned long ram_alignment(resource_size_t pos)
1387 {
1388 unsigned long mb = pos >> 20;
1389
1390 /* To 64kB in the first megabyte */
1391 if (!mb)
1392 return 64*1024;
1393
1394 /* To 1MB in the first 16MB */
1395 if (mb < 16)
1396 return 1024*1024;
1397
1398 /* To 64MB for anything above that */
1399 return 64*1024*1024;
1400 }
1401
1402 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1403
1404 void __init e820_reserve_resources_late(void)
1405 {
1406 int i;
1407 struct resource *res;
1408
1409 res = e820_res;
1410 for (i = 0; i < e820.nr_map; i++) {
1411 if (!res->parent && res->end)
1412 insert_resource_expand_to_fit(&iomem_resource, res);
1413 res++;
1414 }
1415
1416 /*
1417 * Try to bump up RAM regions to reasonable boundaries to
1418 * avoid stolen RAM:
1419 */
1420 for (i = 0; i < e820.nr_map; i++) {
1421 struct e820entry *entry = &e820.map[i];
1422 u64 start, end;
1423
1424 if (entry->type != E820_RAM)
1425 continue;
1426 start = entry->addr + entry->size;
1427 end = round_up(start, ram_alignment(start)) - 1;
1428 if (end > MAX_RESOURCE_SIZE)
1429 end = MAX_RESOURCE_SIZE;
1430 if (start >= end)
1431 continue;
1432 reserve_region_with_split(&iomem_resource, start, end,
1433 "RAM buffer");
1434 }
1435 }
1436
1437 char *__init default_machine_specific_memory_setup(void)
1438 {
1439 char *who = "BIOS-e820";
1440 u32 new_nr;
1441 /*
1442 * Try to copy the BIOS-supplied E820-map.
1443 *
1444 * Otherwise fake a memory map; one section from 0k->640k,
1445 * the next section from 1mb->appropriate_mem_k
1446 */
1447 new_nr = boot_params.e820_entries;
1448 sanitize_e820_map(boot_params.e820_map,
1449 ARRAY_SIZE(boot_params.e820_map),
1450 &new_nr);
1451 boot_params.e820_entries = new_nr;
1452 if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1453 < 0) {
1454 u64 mem_size;
1455
1456 /* compare results from other methods and take the greater */
1457 if (boot_params.alt_mem_k
1458 < boot_params.screen_info.ext_mem_k) {
1459 mem_size = boot_params.screen_info.ext_mem_k;
1460 who = "BIOS-88";
1461 } else {
1462 mem_size = boot_params.alt_mem_k;
1463 who = "BIOS-e801";
1464 }
1465
1466 e820.nr_map = 0;
1467 e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1468 e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1469 }
1470
1471 /* In case someone cares... */
1472 return who;
1473 }
1474
1475 void __init setup_memory_map(void)
1476 {
1477 char *who;
1478
1479 who = x86_init.resources.memory_setup();
1480 memcpy(&e820_saved, &e820, sizeof(struct e820map));
1481 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1482 e820_print_map(who);
1483 }