]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/fpu/core.c
Merge tag 'v4.9-rc1' into x86/fpu, to resolve conflict
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / fpu / core.c
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13
14 #include <linux/hardirq.h>
15 #include <linux/pkeys.h>
16
17 #define CREATE_TRACE_POINTS
18 #include <asm/trace/fpu.h>
19
20 /*
21 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
22 * depending on the FPU hardware format:
23 */
24 union fpregs_state init_fpstate __read_mostly;
25
26 /*
27 * Track whether the kernel is using the FPU state
28 * currently.
29 *
30 * This flag is used:
31 *
32 * - by IRQ context code to potentially use the FPU
33 * if it's unused.
34 *
35 * - to debug kernel_fpu_begin()/end() correctness
36 */
37 static DEFINE_PER_CPU(bool, in_kernel_fpu);
38
39 /*
40 * Track which context is using the FPU on the CPU:
41 */
42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43
44 static void kernel_fpu_disable(void)
45 {
46 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 this_cpu_write(in_kernel_fpu, true);
48 }
49
50 static void kernel_fpu_enable(void)
51 {
52 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 this_cpu_write(in_kernel_fpu, false);
54 }
55
56 static bool kernel_fpu_disabled(void)
57 {
58 return this_cpu_read(in_kernel_fpu);
59 }
60
61 static bool interrupted_kernel_fpu_idle(void)
62 {
63 return !kernel_fpu_disabled();
64 }
65
66 /*
67 * Were we in user mode (or vm86 mode) when we were
68 * interrupted?
69 *
70 * Doing kernel_fpu_begin/end() is ok if we are running
71 * in an interrupt context from user mode - we'll just
72 * save the FPU state as required.
73 */
74 static bool interrupted_user_mode(void)
75 {
76 struct pt_regs *regs = get_irq_regs();
77 return regs && user_mode(regs);
78 }
79
80 /*
81 * Can we use the FPU in kernel mode with the
82 * whole "kernel_fpu_begin/end()" sequence?
83 *
84 * It's always ok in process context (ie "not interrupt")
85 * but it is sometimes ok even from an irq.
86 */
87 bool irq_fpu_usable(void)
88 {
89 return !in_interrupt() ||
90 interrupted_user_mode() ||
91 interrupted_kernel_fpu_idle();
92 }
93 EXPORT_SYMBOL(irq_fpu_usable);
94
95 void __kernel_fpu_begin(void)
96 {
97 struct fpu *fpu = &current->thread.fpu;
98
99 WARN_ON_FPU(!irq_fpu_usable());
100
101 kernel_fpu_disable();
102
103 if (fpu->fpregs_active) {
104 /*
105 * Ignore return value -- we don't care if reg state
106 * is clobbered.
107 */
108 copy_fpregs_to_fpstate(fpu);
109 } else {
110 __cpu_invalidate_fpregs_state();
111 }
112 }
113 EXPORT_SYMBOL(__kernel_fpu_begin);
114
115 void __kernel_fpu_end(void)
116 {
117 struct fpu *fpu = &current->thread.fpu;
118
119 if (fpu->fpregs_active)
120 copy_kernel_to_fpregs(&fpu->state);
121
122 kernel_fpu_enable();
123 }
124 EXPORT_SYMBOL(__kernel_fpu_end);
125
126 void kernel_fpu_begin(void)
127 {
128 preempt_disable();
129 __kernel_fpu_begin();
130 }
131 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132
133 void kernel_fpu_end(void)
134 {
135 __kernel_fpu_end();
136 preempt_enable();
137 }
138 EXPORT_SYMBOL_GPL(kernel_fpu_end);
139
140 /*
141 * CR0::TS save/restore functions:
142 */
143 int irq_ts_save(void)
144 {
145 /*
146 * If in process context and not atomic, we can take a spurious DNA fault.
147 * Otherwise, doing clts() in process context requires disabling preemption
148 * or some heavy lifting like kernel_fpu_begin()
149 */
150 if (!in_atomic())
151 return 0;
152
153 if (read_cr0() & X86_CR0_TS) {
154 clts();
155 return 1;
156 }
157
158 return 0;
159 }
160 EXPORT_SYMBOL_GPL(irq_ts_save);
161
162 void irq_ts_restore(int TS_state)
163 {
164 if (TS_state)
165 stts();
166 }
167 EXPORT_SYMBOL_GPL(irq_ts_restore);
168
169 /*
170 * Save the FPU state (mark it for reload if necessary):
171 *
172 * This only ever gets called for the current task.
173 */
174 void fpu__save(struct fpu *fpu)
175 {
176 WARN_ON_FPU(fpu != &current->thread.fpu);
177
178 preempt_disable();
179 trace_x86_fpu_before_save(fpu);
180 if (fpu->fpregs_active) {
181 if (!copy_fpregs_to_fpstate(fpu)) {
182 copy_kernel_to_fpregs(&fpu->state);
183 }
184 }
185 trace_x86_fpu_after_save(fpu);
186 preempt_enable();
187 }
188 EXPORT_SYMBOL_GPL(fpu__save);
189
190 /*
191 * Legacy x87 fpstate state init:
192 */
193 static inline void fpstate_init_fstate(struct fregs_state *fp)
194 {
195 fp->cwd = 0xffff037fu;
196 fp->swd = 0xffff0000u;
197 fp->twd = 0xffffffffu;
198 fp->fos = 0xffff0000u;
199 }
200
201 void fpstate_init(union fpregs_state *state)
202 {
203 if (!static_cpu_has(X86_FEATURE_FPU)) {
204 fpstate_init_soft(&state->soft);
205 return;
206 }
207
208 memset(state, 0, fpu_kernel_xstate_size);
209
210 /*
211 * XRSTORS requires that this bit is set in xcomp_bv, or
212 * it will #GP. Make sure it is replaced after the memset().
213 */
214 if (static_cpu_has(X86_FEATURE_XSAVES))
215 state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT;
216
217 if (static_cpu_has(X86_FEATURE_FXSR))
218 fpstate_init_fxstate(&state->fxsave);
219 else
220 fpstate_init_fstate(&state->fsave);
221 }
222 EXPORT_SYMBOL_GPL(fpstate_init);
223
224 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
225 {
226 dst_fpu->fpregs_active = 0;
227 dst_fpu->last_cpu = -1;
228
229 if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
230 return 0;
231
232 WARN_ON_FPU(src_fpu != &current->thread.fpu);
233
234 /*
235 * Don't let 'init optimized' areas of the XSAVE area
236 * leak into the child task:
237 */
238 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
239
240 /*
241 * Save current FPU registers directly into the child
242 * FPU context, without any memory-to-memory copying.
243 * In lazy mode, if the FPU context isn't loaded into
244 * fpregs, CR0.TS will be set and do_device_not_available
245 * will load the FPU context.
246 *
247 * We have to do all this with preemption disabled,
248 * mostly because of the FNSAVE case, because in that
249 * case we must not allow preemption in the window
250 * between the FNSAVE and us marking the context lazy.
251 *
252 * It shouldn't be an issue as even FNSAVE is plenty
253 * fast in terms of critical section length.
254 */
255 preempt_disable();
256 if (!copy_fpregs_to_fpstate(dst_fpu)) {
257 memcpy(&src_fpu->state, &dst_fpu->state,
258 fpu_kernel_xstate_size);
259
260 copy_kernel_to_fpregs(&src_fpu->state);
261 }
262 preempt_enable();
263
264 trace_x86_fpu_copy_src(src_fpu);
265 trace_x86_fpu_copy_dst(dst_fpu);
266
267 return 0;
268 }
269
270 /*
271 * Activate the current task's in-memory FPU context,
272 * if it has not been used before:
273 */
274 void fpu__activate_curr(struct fpu *fpu)
275 {
276 WARN_ON_FPU(fpu != &current->thread.fpu);
277
278 if (!fpu->fpstate_active) {
279 fpstate_init(&fpu->state);
280 trace_x86_fpu_init_state(fpu);
281
282 trace_x86_fpu_activate_state(fpu);
283 /* Safe to do for the current task: */
284 fpu->fpstate_active = 1;
285 }
286 }
287 EXPORT_SYMBOL_GPL(fpu__activate_curr);
288
289 /*
290 * This function must be called before we read a task's fpstate.
291 *
292 * If the task has not used the FPU before then initialize its
293 * fpstate.
294 *
295 * If the task has used the FPU before then save it.
296 */
297 void fpu__activate_fpstate_read(struct fpu *fpu)
298 {
299 /*
300 * If fpregs are active (in the current CPU), then
301 * copy them to the fpstate:
302 */
303 if (fpu->fpregs_active) {
304 fpu__save(fpu);
305 } else {
306 if (!fpu->fpstate_active) {
307 fpstate_init(&fpu->state);
308 trace_x86_fpu_init_state(fpu);
309
310 trace_x86_fpu_activate_state(fpu);
311 /* Safe to do for current and for stopped child tasks: */
312 fpu->fpstate_active = 1;
313 }
314 }
315 }
316
317 /*
318 * This function must be called before we write a task's fpstate.
319 *
320 * If the task has used the FPU before then unlazy it.
321 * If the task has not used the FPU before then initialize its fpstate.
322 *
323 * After this function call, after registers in the fpstate are
324 * modified and the child task has woken up, the child task will
325 * restore the modified FPU state from the modified context. If we
326 * didn't clear its lazy status here then the lazy in-registers
327 * state pending on its former CPU could be restored, corrupting
328 * the modifications.
329 */
330 void fpu__activate_fpstate_write(struct fpu *fpu)
331 {
332 /*
333 * Only stopped child tasks can be used to modify the FPU
334 * state in the fpstate buffer:
335 */
336 WARN_ON_FPU(fpu == &current->thread.fpu);
337
338 if (fpu->fpstate_active) {
339 /* Invalidate any lazy state: */
340 __fpu_invalidate_fpregs_state(fpu);
341 } else {
342 fpstate_init(&fpu->state);
343 trace_x86_fpu_init_state(fpu);
344
345 trace_x86_fpu_activate_state(fpu);
346 /* Safe to do for stopped child tasks: */
347 fpu->fpstate_active = 1;
348 }
349 }
350
351 /*
352 * This function must be called before we write the current
353 * task's fpstate.
354 *
355 * This call gets the current FPU register state and moves
356 * it in to the 'fpstate'. Preemption is disabled so that
357 * no writes to the 'fpstate' can occur from context
358 * swiches.
359 *
360 * Must be followed by a fpu__current_fpstate_write_end().
361 */
362 void fpu__current_fpstate_write_begin(void)
363 {
364 struct fpu *fpu = &current->thread.fpu;
365
366 /*
367 * Ensure that the context-switching code does not write
368 * over the fpstate while we are doing our update.
369 */
370 preempt_disable();
371
372 /*
373 * Move the fpregs in to the fpu's 'fpstate'.
374 */
375 fpu__activate_fpstate_read(fpu);
376
377 /*
378 * The caller is about to write to 'fpu'. Ensure that no
379 * CPU thinks that its fpregs match the fpstate. This
380 * ensures we will not be lazy and skip a XRSTOR in the
381 * future.
382 */
383 __fpu_invalidate_fpregs_state(fpu);
384 }
385
386 /*
387 * This function must be paired with fpu__current_fpstate_write_begin()
388 *
389 * This will ensure that the modified fpstate gets placed back in
390 * the fpregs if necessary.
391 *
392 * Note: This function may be called whether or not an _actual_
393 * write to the fpstate occurred.
394 */
395 void fpu__current_fpstate_write_end(void)
396 {
397 struct fpu *fpu = &current->thread.fpu;
398
399 /*
400 * 'fpu' now has an updated copy of the state, but the
401 * registers may still be out of date. Update them with
402 * an XRSTOR if they are active.
403 */
404 if (fpregs_active())
405 copy_kernel_to_fpregs(&fpu->state);
406
407 /*
408 * Our update is done and the fpregs/fpstate are in sync
409 * if necessary. Context switches can happen again.
410 */
411 preempt_enable();
412 }
413
414 /*
415 * 'fpu__restore()' is called to copy FPU registers from
416 * the FPU fpstate to the live hw registers and to activate
417 * access to the hardware registers, so that FPU instructions
418 * can be used afterwards.
419 *
420 * Must be called with kernel preemption disabled (for example
421 * with local interrupts disabled, as it is in the case of
422 * do_device_not_available()).
423 */
424 void fpu__restore(struct fpu *fpu)
425 {
426 fpu__activate_curr(fpu);
427
428 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
429 kernel_fpu_disable();
430 trace_x86_fpu_before_restore(fpu);
431 fpregs_activate(fpu);
432 copy_kernel_to_fpregs(&fpu->state);
433 trace_x86_fpu_after_restore(fpu);
434 kernel_fpu_enable();
435 }
436 EXPORT_SYMBOL_GPL(fpu__restore);
437
438 /*
439 * Drops current FPU state: deactivates the fpregs and
440 * the fpstate. NOTE: it still leaves previous contents
441 * in the fpregs in the eager-FPU case.
442 *
443 * This function can be used in cases where we know that
444 * a state-restore is coming: either an explicit one,
445 * or a reschedule.
446 */
447 void fpu__drop(struct fpu *fpu)
448 {
449 preempt_disable();
450
451 if (fpu->fpregs_active) {
452 /* Ignore delayed exceptions from user space */
453 asm volatile("1: fwait\n"
454 "2:\n"
455 _ASM_EXTABLE(1b, 2b));
456 fpregs_deactivate(fpu);
457 }
458
459 fpu->fpstate_active = 0;
460
461 trace_x86_fpu_dropped(fpu);
462
463 preempt_enable();
464 }
465
466 /*
467 * Clear FPU registers by setting them up from
468 * the init fpstate:
469 */
470 static inline void copy_init_fpstate_to_fpregs(void)
471 {
472 if (use_xsave())
473 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
474 else if (static_cpu_has(X86_FEATURE_FXSR))
475 copy_kernel_to_fxregs(&init_fpstate.fxsave);
476 else
477 copy_kernel_to_fregs(&init_fpstate.fsave);
478
479 if (boot_cpu_has(X86_FEATURE_OSPKE))
480 copy_init_pkru_to_fpregs();
481 }
482
483 /*
484 * Clear the FPU state back to init state.
485 *
486 * Called by sys_execve(), by the signal handler code and by various
487 * error paths.
488 */
489 void fpu__clear(struct fpu *fpu)
490 {
491 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
492
493 if (!static_cpu_has(X86_FEATURE_FPU)) {
494 /* FPU state will be reallocated lazily at the first use. */
495 fpu__drop(fpu);
496 } else {
497 if (!fpu->fpstate_active) {
498 fpu__activate_curr(fpu);
499 user_fpu_begin();
500 }
501 copy_init_fpstate_to_fpregs();
502 }
503 }
504
505 /*
506 * x87 math exception handling:
507 */
508
509 int fpu__exception_code(struct fpu *fpu, int trap_nr)
510 {
511 int err;
512
513 if (trap_nr == X86_TRAP_MF) {
514 unsigned short cwd, swd;
515 /*
516 * (~cwd & swd) will mask out exceptions that are not set to unmasked
517 * status. 0x3f is the exception bits in these regs, 0x200 is the
518 * C1 reg you need in case of a stack fault, 0x040 is the stack
519 * fault bit. We should only be taking one exception at a time,
520 * so if this combination doesn't produce any single exception,
521 * then we have a bad program that isn't synchronizing its FPU usage
522 * and it will suffer the consequences since we won't be able to
523 * fully reproduce the context of the exception.
524 */
525 if (boot_cpu_has(X86_FEATURE_FXSR)) {
526 cwd = fpu->state.fxsave.cwd;
527 swd = fpu->state.fxsave.swd;
528 } else {
529 cwd = (unsigned short)fpu->state.fsave.cwd;
530 swd = (unsigned short)fpu->state.fsave.swd;
531 }
532
533 err = swd & ~cwd;
534 } else {
535 /*
536 * The SIMD FPU exceptions are handled a little differently, as there
537 * is only a single status/control register. Thus, to determine which
538 * unmasked exception was caught we must mask the exception mask bits
539 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
540 */
541 unsigned short mxcsr = MXCSR_DEFAULT;
542
543 if (boot_cpu_has(X86_FEATURE_XMM))
544 mxcsr = fpu->state.fxsave.mxcsr;
545
546 err = ~(mxcsr >> 7) & mxcsr;
547 }
548
549 if (err & 0x001) { /* Invalid op */
550 /*
551 * swd & 0x240 == 0x040: Stack Underflow
552 * swd & 0x240 == 0x240: Stack Overflow
553 * User must clear the SF bit (0x40) if set
554 */
555 return FPE_FLTINV;
556 } else if (err & 0x004) { /* Divide by Zero */
557 return FPE_FLTDIV;
558 } else if (err & 0x008) { /* Overflow */
559 return FPE_FLTOVF;
560 } else if (err & 0x012) { /* Denormal, Underflow */
561 return FPE_FLTUND;
562 } else if (err & 0x020) { /* Precision */
563 return FPE_FLTRES;
564 }
565
566 /*
567 * If we're using IRQ 13, or supposedly even some trap
568 * X86_TRAP_MF implementations, it's possible
569 * we get a spurious trap, which is not an error.
570 */
571 return 0;
572 }