]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/fpu/core.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / fpu / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21
22 /*
23 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24 * depending on the FPU hardware format:
25 */
26 union fpregs_state init_fpstate __read_mostly;
27
28 /*
29 * Track whether the kernel is using the FPU state
30 * currently.
31 *
32 * This flag is used:
33 *
34 * - by IRQ context code to potentially use the FPU
35 * if it's unused.
36 *
37 * - to debug kernel_fpu_begin()/end() correctness
38 */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40
41 /*
42 * Track which context is using the FPU on the CPU:
43 */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45
46 static bool kernel_fpu_disabled(void)
47 {
48 return this_cpu_read(in_kernel_fpu);
49 }
50
51 static bool interrupted_kernel_fpu_idle(void)
52 {
53 return !kernel_fpu_disabled();
54 }
55
56 /*
57 * Were we in user mode (or vm86 mode) when we were
58 * interrupted?
59 *
60 * Doing kernel_fpu_begin/end() is ok if we are running
61 * in an interrupt context from user mode - we'll just
62 * save the FPU state as required.
63 */
64 static bool interrupted_user_mode(void)
65 {
66 struct pt_regs *regs = get_irq_regs();
67 return regs && user_mode(regs);
68 }
69
70 /*
71 * Can we use the FPU in kernel mode with the
72 * whole "kernel_fpu_begin/end()" sequence?
73 *
74 * It's always ok in process context (ie "not interrupt")
75 * but it is sometimes ok even from an irq.
76 */
77 bool irq_fpu_usable(void)
78 {
79 return !in_interrupt() ||
80 interrupted_user_mode() ||
81 interrupted_kernel_fpu_idle();
82 }
83 EXPORT_SYMBOL(irq_fpu_usable);
84
85 /*
86 * These must be called with preempt disabled. Returns
87 * 'true' if the FPU state is still intact and we can
88 * keep registers active.
89 *
90 * The legacy FNSAVE instruction cleared all FPU state
91 * unconditionally, so registers are essentially destroyed.
92 * Modern FPU state can be kept in registers, if there are
93 * no pending FP exceptions.
94 */
95 int copy_fpregs_to_fpstate(struct fpu *fpu)
96 {
97 if (likely(use_xsave())) {
98 copy_xregs_to_kernel(&fpu->state.xsave);
99
100 /*
101 * AVX512 state is tracked here because its use is
102 * known to slow the max clock speed of the core.
103 */
104 if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
105 fpu->avx512_timestamp = jiffies;
106 return 1;
107 }
108
109 if (likely(use_fxsr())) {
110 copy_fxregs_to_kernel(fpu);
111 return 1;
112 }
113
114 /*
115 * Legacy FPU register saving, FNSAVE always clears FPU registers,
116 * so we have to mark them inactive:
117 */
118 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
119
120 return 0;
121 }
122 EXPORT_SYMBOL(copy_fpregs_to_fpstate);
123
124 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
125 {
126 preempt_disable();
127
128 WARN_ON_FPU(!irq_fpu_usable());
129 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
130
131 this_cpu_write(in_kernel_fpu, true);
132
133 if (!(current->flags & PF_KTHREAD) &&
134 !test_thread_flag(TIF_NEED_FPU_LOAD)) {
135 set_thread_flag(TIF_NEED_FPU_LOAD);
136 /*
137 * Ignore return value -- we don't care if reg state
138 * is clobbered.
139 */
140 copy_fpregs_to_fpstate(&current->thread.fpu);
141 }
142 __cpu_invalidate_fpregs_state();
143
144 /* Put sane initial values into the control registers. */
145 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
146 ldmxcsr(MXCSR_DEFAULT);
147
148 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
149 asm volatile ("fninit");
150 }
151 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
152
153 void kernel_fpu_end(void)
154 {
155 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
156
157 this_cpu_write(in_kernel_fpu, false);
158 preempt_enable();
159 }
160 EXPORT_SYMBOL_GPL(kernel_fpu_end);
161
162 /*
163 * Save the FPU state (mark it for reload if necessary):
164 *
165 * This only ever gets called for the current task.
166 */
167 void fpu__save(struct fpu *fpu)
168 {
169 WARN_ON_FPU(fpu != &current->thread.fpu);
170
171 fpregs_lock();
172 trace_x86_fpu_before_save(fpu);
173
174 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
175 if (!copy_fpregs_to_fpstate(fpu)) {
176 copy_kernel_to_fpregs(&fpu->state);
177 }
178 }
179
180 trace_x86_fpu_after_save(fpu);
181 fpregs_unlock();
182 }
183
184 /*
185 * Legacy x87 fpstate state init:
186 */
187 static inline void fpstate_init_fstate(struct fregs_state *fp)
188 {
189 fp->cwd = 0xffff037fu;
190 fp->swd = 0xffff0000u;
191 fp->twd = 0xffffffffu;
192 fp->fos = 0xffff0000u;
193 }
194
195 void fpstate_init(union fpregs_state *state)
196 {
197 if (!static_cpu_has(X86_FEATURE_FPU)) {
198 fpstate_init_soft(&state->soft);
199 return;
200 }
201
202 memset(state, 0, fpu_kernel_xstate_size);
203
204 if (static_cpu_has(X86_FEATURE_XSAVES))
205 fpstate_init_xstate(&state->xsave);
206 if (static_cpu_has(X86_FEATURE_FXSR))
207 fpstate_init_fxstate(&state->fxsave);
208 else
209 fpstate_init_fstate(&state->fsave);
210 }
211 EXPORT_SYMBOL_GPL(fpstate_init);
212
213 int fpu__copy(struct task_struct *dst, struct task_struct *src)
214 {
215 struct fpu *dst_fpu = &dst->thread.fpu;
216 struct fpu *src_fpu = &src->thread.fpu;
217
218 dst_fpu->last_cpu = -1;
219
220 if (!static_cpu_has(X86_FEATURE_FPU))
221 return 0;
222
223 WARN_ON_FPU(src_fpu != &current->thread.fpu);
224
225 /*
226 * Don't let 'init optimized' areas of the XSAVE area
227 * leak into the child task:
228 */
229 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
230
231 /*
232 * If the FPU registers are not current just memcpy() the state.
233 * Otherwise save current FPU registers directly into the child's FPU
234 * context, without any memory-to-memory copying.
235 *
236 * ( The function 'fails' in the FNSAVE case, which destroys
237 * register contents so we have to load them back. )
238 */
239 fpregs_lock();
240 if (test_thread_flag(TIF_NEED_FPU_LOAD))
241 memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
242
243 else if (!copy_fpregs_to_fpstate(dst_fpu))
244 copy_kernel_to_fpregs(&dst_fpu->state);
245
246 fpregs_unlock();
247
248 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
249
250 trace_x86_fpu_copy_src(src_fpu);
251 trace_x86_fpu_copy_dst(dst_fpu);
252
253 return 0;
254 }
255
256 /*
257 * Activate the current task's in-memory FPU context,
258 * if it has not been used before:
259 */
260 static void fpu__initialize(struct fpu *fpu)
261 {
262 WARN_ON_FPU(fpu != &current->thread.fpu);
263
264 set_thread_flag(TIF_NEED_FPU_LOAD);
265 fpstate_init(&fpu->state);
266 trace_x86_fpu_init_state(fpu);
267 }
268
269 /*
270 * This function must be called before we read a task's fpstate.
271 *
272 * There's two cases where this gets called:
273 *
274 * - for the current task (when coredumping), in which case we have
275 * to save the latest FPU registers into the fpstate,
276 *
277 * - or it's called for stopped tasks (ptrace), in which case the
278 * registers were already saved by the context-switch code when
279 * the task scheduled out.
280 *
281 * If the task has used the FPU before then save it.
282 */
283 void fpu__prepare_read(struct fpu *fpu)
284 {
285 if (fpu == &current->thread.fpu)
286 fpu__save(fpu);
287 }
288
289 /*
290 * This function must be called before we write a task's fpstate.
291 *
292 * Invalidate any cached FPU registers.
293 *
294 * After this function call, after registers in the fpstate are
295 * modified and the child task has woken up, the child task will
296 * restore the modified FPU state from the modified context. If we
297 * didn't clear its cached status here then the cached in-registers
298 * state pending on its former CPU could be restored, corrupting
299 * the modifications.
300 */
301 void fpu__prepare_write(struct fpu *fpu)
302 {
303 /*
304 * Only stopped child tasks can be used to modify the FPU
305 * state in the fpstate buffer:
306 */
307 WARN_ON_FPU(fpu == &current->thread.fpu);
308
309 /* Invalidate any cached state: */
310 __fpu_invalidate_fpregs_state(fpu);
311 }
312
313 /*
314 * Drops current FPU state: deactivates the fpregs and
315 * the fpstate. NOTE: it still leaves previous contents
316 * in the fpregs in the eager-FPU case.
317 *
318 * This function can be used in cases where we know that
319 * a state-restore is coming: either an explicit one,
320 * or a reschedule.
321 */
322 void fpu__drop(struct fpu *fpu)
323 {
324 preempt_disable();
325
326 if (fpu == &current->thread.fpu) {
327 /* Ignore delayed exceptions from user space */
328 asm volatile("1: fwait\n"
329 "2:\n"
330 _ASM_EXTABLE(1b, 2b));
331 fpregs_deactivate(fpu);
332 }
333
334 trace_x86_fpu_dropped(fpu);
335
336 preempt_enable();
337 }
338
339 /*
340 * Clear FPU registers by setting them up from the init fpstate.
341 * Caller must do fpregs_[un]lock() around it.
342 */
343 static inline void copy_init_fpstate_to_fpregs(u64 features_mask)
344 {
345 if (use_xsave())
346 copy_kernel_to_xregs(&init_fpstate.xsave, features_mask);
347 else if (static_cpu_has(X86_FEATURE_FXSR))
348 copy_kernel_to_fxregs(&init_fpstate.fxsave);
349 else
350 copy_kernel_to_fregs(&init_fpstate.fsave);
351
352 if (boot_cpu_has(X86_FEATURE_OSPKE))
353 copy_init_pkru_to_fpregs();
354 }
355
356 /*
357 * Clear the FPU state back to init state.
358 *
359 * Called by sys_execve(), by the signal handler code and by various
360 * error paths.
361 */
362 static void fpu__clear(struct fpu *fpu, bool user_only)
363 {
364 WARN_ON_FPU(fpu != &current->thread.fpu);
365
366 if (!static_cpu_has(X86_FEATURE_FPU)) {
367 fpu__drop(fpu);
368 fpu__initialize(fpu);
369 return;
370 }
371
372 fpregs_lock();
373
374 if (user_only) {
375 if (!fpregs_state_valid(fpu, smp_processor_id()) &&
376 xfeatures_mask_supervisor())
377 copy_kernel_to_xregs(&fpu->state.xsave,
378 xfeatures_mask_supervisor());
379 copy_init_fpstate_to_fpregs(xfeatures_mask_user());
380 } else {
381 copy_init_fpstate_to_fpregs(xfeatures_mask_all);
382 }
383
384 fpregs_mark_activate();
385 fpregs_unlock();
386 }
387
388 void fpu__clear_user_states(struct fpu *fpu)
389 {
390 fpu__clear(fpu, true);
391 }
392
393 void fpu__clear_all(struct fpu *fpu)
394 {
395 fpu__clear(fpu, false);
396 }
397
398 /*
399 * Load FPU context before returning to userspace.
400 */
401 void switch_fpu_return(void)
402 {
403 if (!static_cpu_has(X86_FEATURE_FPU))
404 return;
405
406 __fpregs_load_activate();
407 }
408 EXPORT_SYMBOL_GPL(switch_fpu_return);
409
410 #ifdef CONFIG_X86_DEBUG_FPU
411 /*
412 * If current FPU state according to its tracking (loaded FPU context on this
413 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
414 * loaded on return to userland.
415 */
416 void fpregs_assert_state_consistent(void)
417 {
418 struct fpu *fpu = &current->thread.fpu;
419
420 if (test_thread_flag(TIF_NEED_FPU_LOAD))
421 return;
422
423 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
424 }
425 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
426 #endif
427
428 void fpregs_mark_activate(void)
429 {
430 struct fpu *fpu = &current->thread.fpu;
431
432 fpregs_activate(fpu);
433 fpu->last_cpu = smp_processor_id();
434 clear_thread_flag(TIF_NEED_FPU_LOAD);
435 }
436 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
437
438 /*
439 * x87 math exception handling:
440 */
441
442 int fpu__exception_code(struct fpu *fpu, int trap_nr)
443 {
444 int err;
445
446 if (trap_nr == X86_TRAP_MF) {
447 unsigned short cwd, swd;
448 /*
449 * (~cwd & swd) will mask out exceptions that are not set to unmasked
450 * status. 0x3f is the exception bits in these regs, 0x200 is the
451 * C1 reg you need in case of a stack fault, 0x040 is the stack
452 * fault bit. We should only be taking one exception at a time,
453 * so if this combination doesn't produce any single exception,
454 * then we have a bad program that isn't synchronizing its FPU usage
455 * and it will suffer the consequences since we won't be able to
456 * fully reproduce the context of the exception.
457 */
458 if (boot_cpu_has(X86_FEATURE_FXSR)) {
459 cwd = fpu->state.fxsave.cwd;
460 swd = fpu->state.fxsave.swd;
461 } else {
462 cwd = (unsigned short)fpu->state.fsave.cwd;
463 swd = (unsigned short)fpu->state.fsave.swd;
464 }
465
466 err = swd & ~cwd;
467 } else {
468 /*
469 * The SIMD FPU exceptions are handled a little differently, as there
470 * is only a single status/control register. Thus, to determine which
471 * unmasked exception was caught we must mask the exception mask bits
472 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
473 */
474 unsigned short mxcsr = MXCSR_DEFAULT;
475
476 if (boot_cpu_has(X86_FEATURE_XMM))
477 mxcsr = fpu->state.fxsave.mxcsr;
478
479 err = ~(mxcsr >> 7) & mxcsr;
480 }
481
482 if (err & 0x001) { /* Invalid op */
483 /*
484 * swd & 0x240 == 0x040: Stack Underflow
485 * swd & 0x240 == 0x240: Stack Overflow
486 * User must clear the SF bit (0x40) if set
487 */
488 return FPE_FLTINV;
489 } else if (err & 0x004) { /* Divide by Zero */
490 return FPE_FLTDIV;
491 } else if (err & 0x008) { /* Overflow */
492 return FPE_FLTOVF;
493 } else if (err & 0x012) { /* Denormal, Underflow */
494 return FPE_FLTUND;
495 } else if (err & 0x020) { /* Precision */
496 return FPE_FLTRES;
497 }
498
499 /*
500 * If we're using IRQ 13, or supposedly even some trap
501 * X86_TRAP_MF implementations, it's possible
502 * we get a spurious trap, which is not an error.
503 */
504 return 0;
505 }