]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/fpu/core.c
x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / fpu / core.c
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13
14 #include <linux/hardirq.h>
15 #include <linux/pkeys.h>
16
17 #define CREATE_TRACE_POINTS
18 #include <asm/trace/fpu.h>
19
20 /*
21 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
22 * depending on the FPU hardware format:
23 */
24 union fpregs_state init_fpstate __read_mostly;
25
26 /*
27 * Track whether the kernel is using the FPU state
28 * currently.
29 *
30 * This flag is used:
31 *
32 * - by IRQ context code to potentially use the FPU
33 * if it's unused.
34 *
35 * - to debug kernel_fpu_begin()/end() correctness
36 */
37 static DEFINE_PER_CPU(bool, in_kernel_fpu);
38
39 /*
40 * Track which context is using the FPU on the CPU:
41 */
42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43
44 static void kernel_fpu_disable(void)
45 {
46 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 this_cpu_write(in_kernel_fpu, true);
48 }
49
50 static void kernel_fpu_enable(void)
51 {
52 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 this_cpu_write(in_kernel_fpu, false);
54 }
55
56 static bool kernel_fpu_disabled(void)
57 {
58 return this_cpu_read(in_kernel_fpu);
59 }
60
61 static bool interrupted_kernel_fpu_idle(void)
62 {
63 return !kernel_fpu_disabled();
64 }
65
66 /*
67 * Were we in user mode (or vm86 mode) when we were
68 * interrupted?
69 *
70 * Doing kernel_fpu_begin/end() is ok if we are running
71 * in an interrupt context from user mode - we'll just
72 * save the FPU state as required.
73 */
74 static bool interrupted_user_mode(void)
75 {
76 struct pt_regs *regs = get_irq_regs();
77 return regs && user_mode(regs);
78 }
79
80 /*
81 * Can we use the FPU in kernel mode with the
82 * whole "kernel_fpu_begin/end()" sequence?
83 *
84 * It's always ok in process context (ie "not interrupt")
85 * but it is sometimes ok even from an irq.
86 */
87 bool irq_fpu_usable(void)
88 {
89 return !in_interrupt() ||
90 interrupted_user_mode() ||
91 interrupted_kernel_fpu_idle();
92 }
93 EXPORT_SYMBOL(irq_fpu_usable);
94
95 void __kernel_fpu_begin(void)
96 {
97 struct fpu *fpu = &current->thread.fpu;
98
99 WARN_ON_FPU(!irq_fpu_usable());
100
101 kernel_fpu_disable();
102
103 if (fpu->fpstate_active) {
104 /*
105 * Ignore return value -- we don't care if reg state
106 * is clobbered.
107 */
108 copy_fpregs_to_fpstate(fpu);
109 } else {
110 __cpu_invalidate_fpregs_state();
111 }
112 }
113 EXPORT_SYMBOL(__kernel_fpu_begin);
114
115 void __kernel_fpu_end(void)
116 {
117 struct fpu *fpu = &current->thread.fpu;
118
119 if (fpu->fpstate_active)
120 copy_kernel_to_fpregs(&fpu->state);
121
122 kernel_fpu_enable();
123 }
124 EXPORT_SYMBOL(__kernel_fpu_end);
125
126 void kernel_fpu_begin(void)
127 {
128 preempt_disable();
129 __kernel_fpu_begin();
130 }
131 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132
133 void kernel_fpu_end(void)
134 {
135 __kernel_fpu_end();
136 preempt_enable();
137 }
138 EXPORT_SYMBOL_GPL(kernel_fpu_end);
139
140 /*
141 * Save the FPU state (mark it for reload if necessary):
142 *
143 * This only ever gets called for the current task.
144 */
145 void fpu__save(struct fpu *fpu)
146 {
147 WARN_ON_FPU(fpu != &current->thread.fpu);
148
149 preempt_disable();
150 WARN_ON_FPU(fpu->fpstate_active != fpu->fpregs_active);
151
152 trace_x86_fpu_before_save(fpu);
153 if (fpu->fpstate_active) {
154 if (!copy_fpregs_to_fpstate(fpu)) {
155 copy_kernel_to_fpregs(&fpu->state);
156 }
157 }
158 trace_x86_fpu_after_save(fpu);
159 preempt_enable();
160 }
161 EXPORT_SYMBOL_GPL(fpu__save);
162
163 /*
164 * Legacy x87 fpstate state init:
165 */
166 static inline void fpstate_init_fstate(struct fregs_state *fp)
167 {
168 fp->cwd = 0xffff037fu;
169 fp->swd = 0xffff0000u;
170 fp->twd = 0xffffffffu;
171 fp->fos = 0xffff0000u;
172 }
173
174 void fpstate_init(union fpregs_state *state)
175 {
176 if (!static_cpu_has(X86_FEATURE_FPU)) {
177 fpstate_init_soft(&state->soft);
178 return;
179 }
180
181 memset(state, 0, fpu_kernel_xstate_size);
182
183 if (static_cpu_has(X86_FEATURE_XSAVES))
184 fpstate_init_xstate(&state->xsave);
185 if (static_cpu_has(X86_FEATURE_FXSR))
186 fpstate_init_fxstate(&state->fxsave);
187 else
188 fpstate_init_fstate(&state->fsave);
189 }
190 EXPORT_SYMBOL_GPL(fpstate_init);
191
192 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
193 {
194 dst_fpu->fpregs_active = 0;
195 dst_fpu->last_cpu = -1;
196
197 if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
198 return 0;
199
200 WARN_ON_FPU(src_fpu != &current->thread.fpu);
201
202 /*
203 * Don't let 'init optimized' areas of the XSAVE area
204 * leak into the child task:
205 */
206 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
207
208 /*
209 * Save current FPU registers directly into the child
210 * FPU context, without any memory-to-memory copying.
211 * In lazy mode, if the FPU context isn't loaded into
212 * fpregs, CR0.TS will be set and do_device_not_available
213 * will load the FPU context.
214 *
215 * We have to do all this with preemption disabled,
216 * mostly because of the FNSAVE case, because in that
217 * case we must not allow preemption in the window
218 * between the FNSAVE and us marking the context lazy.
219 *
220 * It shouldn't be an issue as even FNSAVE is plenty
221 * fast in terms of critical section length.
222 */
223 preempt_disable();
224 if (!copy_fpregs_to_fpstate(dst_fpu)) {
225 memcpy(&src_fpu->state, &dst_fpu->state,
226 fpu_kernel_xstate_size);
227
228 copy_kernel_to_fpregs(&src_fpu->state);
229 }
230 preempt_enable();
231
232 trace_x86_fpu_copy_src(src_fpu);
233 trace_x86_fpu_copy_dst(dst_fpu);
234
235 return 0;
236 }
237
238 /*
239 * Activate the current task's in-memory FPU context,
240 * if it has not been used before:
241 */
242 void fpu__activate_curr(struct fpu *fpu)
243 {
244 WARN_ON_FPU(fpu != &current->thread.fpu);
245
246 if (!fpu->fpstate_active) {
247 fpstate_init(&fpu->state);
248 trace_x86_fpu_init_state(fpu);
249
250 trace_x86_fpu_activate_state(fpu);
251 /* Safe to do for the current task: */
252 fpu->fpstate_active = 1;
253 }
254 }
255 EXPORT_SYMBOL_GPL(fpu__activate_curr);
256
257 /*
258 * This function must be called before we read a task's fpstate.
259 *
260 * If the task has not used the FPU before then initialize its
261 * fpstate.
262 *
263 * If the task has used the FPU before then save it.
264 */
265 void fpu__activate_fpstate_read(struct fpu *fpu)
266 {
267 WARN_ON_FPU(fpu->fpstate_active != fpu->fpregs_active);
268 /*
269 * If fpregs are active (in the current CPU), then
270 * copy them to the fpstate:
271 */
272 if (fpu->fpstate_active) {
273 fpu__save(fpu);
274 } else {
275 if (!fpu->fpstate_active) {
276 fpstate_init(&fpu->state);
277 trace_x86_fpu_init_state(fpu);
278
279 trace_x86_fpu_activate_state(fpu);
280 /* Safe to do for current and for stopped child tasks: */
281 fpu->fpstate_active = 1;
282 }
283 }
284 }
285
286 /*
287 * This function must be called before we write a task's fpstate.
288 *
289 * If the task has used the FPU before then unlazy it.
290 * If the task has not used the FPU before then initialize its fpstate.
291 *
292 * After this function call, after registers in the fpstate are
293 * modified and the child task has woken up, the child task will
294 * restore the modified FPU state from the modified context. If we
295 * didn't clear its lazy status here then the lazy in-registers
296 * state pending on its former CPU could be restored, corrupting
297 * the modifications.
298 */
299 void fpu__activate_fpstate_write(struct fpu *fpu)
300 {
301 /*
302 * Only stopped child tasks can be used to modify the FPU
303 * state in the fpstate buffer:
304 */
305 WARN_ON_FPU(fpu == &current->thread.fpu);
306
307 if (fpu->fpstate_active) {
308 /* Invalidate any lazy state: */
309 __fpu_invalidate_fpregs_state(fpu);
310 } else {
311 fpstate_init(&fpu->state);
312 trace_x86_fpu_init_state(fpu);
313
314 trace_x86_fpu_activate_state(fpu);
315 /* Safe to do for stopped child tasks: */
316 fpu->fpstate_active = 1;
317 }
318 }
319
320 /*
321 * This function must be called before we write the current
322 * task's fpstate.
323 *
324 * This call gets the current FPU register state and moves
325 * it in to the 'fpstate'. Preemption is disabled so that
326 * no writes to the 'fpstate' can occur from context
327 * swiches.
328 *
329 * Must be followed by a fpu__current_fpstate_write_end().
330 */
331 void fpu__current_fpstate_write_begin(void)
332 {
333 struct fpu *fpu = &current->thread.fpu;
334
335 /*
336 * Ensure that the context-switching code does not write
337 * over the fpstate while we are doing our update.
338 */
339 preempt_disable();
340
341 /*
342 * Move the fpregs in to the fpu's 'fpstate'.
343 */
344 fpu__activate_fpstate_read(fpu);
345
346 /*
347 * The caller is about to write to 'fpu'. Ensure that no
348 * CPU thinks that its fpregs match the fpstate. This
349 * ensures we will not be lazy and skip a XRSTOR in the
350 * future.
351 */
352 __fpu_invalidate_fpregs_state(fpu);
353 }
354
355 /*
356 * This function must be paired with fpu__current_fpstate_write_begin()
357 *
358 * This will ensure that the modified fpstate gets placed back in
359 * the fpregs if necessary.
360 *
361 * Note: This function may be called whether or not an _actual_
362 * write to the fpstate occurred.
363 */
364 void fpu__current_fpstate_write_end(void)
365 {
366 struct fpu *fpu = &current->thread.fpu;
367
368 WARN_ON_FPU(fpu->fpstate_active != fpu->fpregs_active);
369 /*
370 * 'fpu' now has an updated copy of the state, but the
371 * registers may still be out of date. Update them with
372 * an XRSTOR if they are active.
373 */
374 if (fpu->fpstate_active)
375 copy_kernel_to_fpregs(&fpu->state);
376
377 /*
378 * Our update is done and the fpregs/fpstate are in sync
379 * if necessary. Context switches can happen again.
380 */
381 preempt_enable();
382 }
383
384 /*
385 * 'fpu__restore()' is called to copy FPU registers from
386 * the FPU fpstate to the live hw registers and to activate
387 * access to the hardware registers, so that FPU instructions
388 * can be used afterwards.
389 *
390 * Must be called with kernel preemption disabled (for example
391 * with local interrupts disabled, as it is in the case of
392 * do_device_not_available()).
393 */
394 void fpu__restore(struct fpu *fpu)
395 {
396 fpu__activate_curr(fpu);
397
398 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
399 kernel_fpu_disable();
400 trace_x86_fpu_before_restore(fpu);
401 fpregs_activate(fpu);
402 copy_kernel_to_fpregs(&fpu->state);
403 trace_x86_fpu_after_restore(fpu);
404 kernel_fpu_enable();
405 }
406 EXPORT_SYMBOL_GPL(fpu__restore);
407
408 /*
409 * Drops current FPU state: deactivates the fpregs and
410 * the fpstate. NOTE: it still leaves previous contents
411 * in the fpregs in the eager-FPU case.
412 *
413 * This function can be used in cases where we know that
414 * a state-restore is coming: either an explicit one,
415 * or a reschedule.
416 */
417 void fpu__drop(struct fpu *fpu)
418 {
419 preempt_disable();
420
421 if (fpu == &current->thread.fpu) {
422 WARN_ON_FPU(fpu->fpstate_active != fpu->fpregs_active);
423
424 if (fpu->fpstate_active) {
425 /* Ignore delayed exceptions from user space */
426 asm volatile("1: fwait\n"
427 "2:\n"
428 _ASM_EXTABLE(1b, 2b));
429 if (fpu->fpregs_active)
430 fpregs_deactivate(fpu);
431 }
432 } else {
433 WARN_ON_FPU(fpu->fpregs_active);
434 }
435
436 fpu->fpstate_active = 0;
437
438 trace_x86_fpu_dropped(fpu);
439
440 preempt_enable();
441 }
442
443 /*
444 * Clear FPU registers by setting them up from
445 * the init fpstate:
446 */
447 static inline void copy_init_fpstate_to_fpregs(void)
448 {
449 if (use_xsave())
450 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
451 else if (static_cpu_has(X86_FEATURE_FXSR))
452 copy_kernel_to_fxregs(&init_fpstate.fxsave);
453 else
454 copy_kernel_to_fregs(&init_fpstate.fsave);
455
456 if (boot_cpu_has(X86_FEATURE_OSPKE))
457 copy_init_pkru_to_fpregs();
458 }
459
460 /*
461 * Clear the FPU state back to init state.
462 *
463 * Called by sys_execve(), by the signal handler code and by various
464 * error paths.
465 */
466 void fpu__clear(struct fpu *fpu)
467 {
468 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
469
470 fpu__drop(fpu);
471
472 /*
473 * Make sure fpstate is cleared and initialized.
474 */
475 if (static_cpu_has(X86_FEATURE_FPU)) {
476 preempt_disable();
477 fpu__activate_curr(fpu);
478 user_fpu_begin();
479 copy_init_fpstate_to_fpregs();
480 preempt_enable();
481 }
482 }
483
484 /*
485 * x87 math exception handling:
486 */
487
488 int fpu__exception_code(struct fpu *fpu, int trap_nr)
489 {
490 int err;
491
492 if (trap_nr == X86_TRAP_MF) {
493 unsigned short cwd, swd;
494 /*
495 * (~cwd & swd) will mask out exceptions that are not set to unmasked
496 * status. 0x3f is the exception bits in these regs, 0x200 is the
497 * C1 reg you need in case of a stack fault, 0x040 is the stack
498 * fault bit. We should only be taking one exception at a time,
499 * so if this combination doesn't produce any single exception,
500 * then we have a bad program that isn't synchronizing its FPU usage
501 * and it will suffer the consequences since we won't be able to
502 * fully reproduce the context of the exception.
503 */
504 if (boot_cpu_has(X86_FEATURE_FXSR)) {
505 cwd = fpu->state.fxsave.cwd;
506 swd = fpu->state.fxsave.swd;
507 } else {
508 cwd = (unsigned short)fpu->state.fsave.cwd;
509 swd = (unsigned short)fpu->state.fsave.swd;
510 }
511
512 err = swd & ~cwd;
513 } else {
514 /*
515 * The SIMD FPU exceptions are handled a little differently, as there
516 * is only a single status/control register. Thus, to determine which
517 * unmasked exception was caught we must mask the exception mask bits
518 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
519 */
520 unsigned short mxcsr = MXCSR_DEFAULT;
521
522 if (boot_cpu_has(X86_FEATURE_XMM))
523 mxcsr = fpu->state.fxsave.mxcsr;
524
525 err = ~(mxcsr >> 7) & mxcsr;
526 }
527
528 if (err & 0x001) { /* Invalid op */
529 /*
530 * swd & 0x240 == 0x040: Stack Underflow
531 * swd & 0x240 == 0x240: Stack Overflow
532 * User must clear the SF bit (0x40) if set
533 */
534 return FPE_FLTINV;
535 } else if (err & 0x004) { /* Divide by Zero */
536 return FPE_FLTDIV;
537 } else if (err & 0x008) { /* Overflow */
538 return FPE_FLTOVF;
539 } else if (err & 0x012) { /* Denormal, Underflow */
540 return FPE_FLTUND;
541 } else if (err & 0x020) { /* Precision */
542 return FPE_FLTRES;
543 }
544
545 /*
546 * If we're using IRQ 13, or supposedly even some trap
547 * X86_TRAP_MF implementations, it's possible
548 * we get a spurious trap, which is not an error.
549 */
550 return 0;
551 }