]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/fpu/core.c
Merge branch 'for-next' of git://git.samba.org/sfrench/cifs-2.6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / fpu / core.c
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13
14 #include <linux/hardirq.h>
15
16 #define CREATE_TRACE_POINTS
17 #include <asm/trace/fpu.h>
18
19 /*
20 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
21 * depending on the FPU hardware format:
22 */
23 union fpregs_state init_fpstate __read_mostly;
24
25 /*
26 * Track whether the kernel is using the FPU state
27 * currently.
28 *
29 * This flag is used:
30 *
31 * - by IRQ context code to potentially use the FPU
32 * if it's unused.
33 *
34 * - to debug kernel_fpu_begin()/end() correctness
35 */
36 static DEFINE_PER_CPU(bool, in_kernel_fpu);
37
38 /*
39 * Track which context is using the FPU on the CPU:
40 */
41 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
42
43 static void kernel_fpu_disable(void)
44 {
45 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
46 this_cpu_write(in_kernel_fpu, true);
47 }
48
49 static void kernel_fpu_enable(void)
50 {
51 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
52 this_cpu_write(in_kernel_fpu, false);
53 }
54
55 static bool kernel_fpu_disabled(void)
56 {
57 return this_cpu_read(in_kernel_fpu);
58 }
59
60 /*
61 * Were we in an interrupt that interrupted kernel mode?
62 *
63 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
64 * pair does nothing at all: the thread must not have fpu (so
65 * that we don't try to save the FPU state), and TS must
66 * be set (so that the clts/stts pair does nothing that is
67 * visible in the interrupted kernel thread).
68 *
69 * Except for the eagerfpu case when we return true; in the likely case
70 * the thread has FPU but we are not going to set/clear TS.
71 */
72 static bool interrupted_kernel_fpu_idle(void)
73 {
74 if (kernel_fpu_disabled())
75 return false;
76
77 if (use_eager_fpu())
78 return true;
79
80 return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
81 }
82
83 /*
84 * Were we in user mode (or vm86 mode) when we were
85 * interrupted?
86 *
87 * Doing kernel_fpu_begin/end() is ok if we are running
88 * in an interrupt context from user mode - we'll just
89 * save the FPU state as required.
90 */
91 static bool interrupted_user_mode(void)
92 {
93 struct pt_regs *regs = get_irq_regs();
94 return regs && user_mode(regs);
95 }
96
97 /*
98 * Can we use the FPU in kernel mode with the
99 * whole "kernel_fpu_begin/end()" sequence?
100 *
101 * It's always ok in process context (ie "not interrupt")
102 * but it is sometimes ok even from an irq.
103 */
104 bool irq_fpu_usable(void)
105 {
106 return !in_interrupt() ||
107 interrupted_user_mode() ||
108 interrupted_kernel_fpu_idle();
109 }
110 EXPORT_SYMBOL(irq_fpu_usable);
111
112 void __kernel_fpu_begin(void)
113 {
114 struct fpu *fpu = &current->thread.fpu;
115
116 WARN_ON_FPU(!irq_fpu_usable());
117
118 kernel_fpu_disable();
119
120 if (fpu->fpregs_active) {
121 /*
122 * Ignore return value -- we don't care if reg state
123 * is clobbered.
124 */
125 copy_fpregs_to_fpstate(fpu);
126 } else {
127 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
128 __fpregs_activate_hw();
129 }
130 }
131 EXPORT_SYMBOL(__kernel_fpu_begin);
132
133 void __kernel_fpu_end(void)
134 {
135 struct fpu *fpu = &current->thread.fpu;
136
137 if (fpu->fpregs_active)
138 copy_kernel_to_fpregs(&fpu->state);
139 else
140 __fpregs_deactivate_hw();
141
142 kernel_fpu_enable();
143 }
144 EXPORT_SYMBOL(__kernel_fpu_end);
145
146 void kernel_fpu_begin(void)
147 {
148 preempt_disable();
149 __kernel_fpu_begin();
150 }
151 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
152
153 void kernel_fpu_end(void)
154 {
155 __kernel_fpu_end();
156 preempt_enable();
157 }
158 EXPORT_SYMBOL_GPL(kernel_fpu_end);
159
160 /*
161 * CR0::TS save/restore functions:
162 */
163 int irq_ts_save(void)
164 {
165 /*
166 * If in process context and not atomic, we can take a spurious DNA fault.
167 * Otherwise, doing clts() in process context requires disabling preemption
168 * or some heavy lifting like kernel_fpu_begin()
169 */
170 if (!in_atomic())
171 return 0;
172
173 if (read_cr0() & X86_CR0_TS) {
174 clts();
175 return 1;
176 }
177
178 return 0;
179 }
180 EXPORT_SYMBOL_GPL(irq_ts_save);
181
182 void irq_ts_restore(int TS_state)
183 {
184 if (TS_state)
185 stts();
186 }
187 EXPORT_SYMBOL_GPL(irq_ts_restore);
188
189 /*
190 * Save the FPU state (mark it for reload if necessary):
191 *
192 * This only ever gets called for the current task.
193 */
194 void fpu__save(struct fpu *fpu)
195 {
196 WARN_ON_FPU(fpu != &current->thread.fpu);
197
198 preempt_disable();
199 trace_x86_fpu_before_save(fpu);
200 if (fpu->fpregs_active) {
201 if (!copy_fpregs_to_fpstate(fpu)) {
202 if (use_eager_fpu())
203 copy_kernel_to_fpregs(&fpu->state);
204 else
205 fpregs_deactivate(fpu);
206 }
207 }
208 trace_x86_fpu_after_save(fpu);
209 preempt_enable();
210 }
211 EXPORT_SYMBOL_GPL(fpu__save);
212
213 /*
214 * Legacy x87 fpstate state init:
215 */
216 static inline void fpstate_init_fstate(struct fregs_state *fp)
217 {
218 fp->cwd = 0xffff037fu;
219 fp->swd = 0xffff0000u;
220 fp->twd = 0xffffffffu;
221 fp->fos = 0xffff0000u;
222 }
223
224 void fpstate_init(union fpregs_state *state)
225 {
226 if (!static_cpu_has(X86_FEATURE_FPU)) {
227 fpstate_init_soft(&state->soft);
228 return;
229 }
230
231 memset(state, 0, fpu_kernel_xstate_size);
232
233 /*
234 * XRSTORS requires that this bit is set in xcomp_bv, or
235 * it will #GP. Make sure it is replaced after the memset().
236 */
237 if (static_cpu_has(X86_FEATURE_XSAVES))
238 state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT;
239
240 if (static_cpu_has(X86_FEATURE_FXSR))
241 fpstate_init_fxstate(&state->fxsave);
242 else
243 fpstate_init_fstate(&state->fsave);
244 }
245 EXPORT_SYMBOL_GPL(fpstate_init);
246
247 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
248 {
249 dst_fpu->counter = 0;
250 dst_fpu->fpregs_active = 0;
251 dst_fpu->last_cpu = -1;
252
253 if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
254 return 0;
255
256 WARN_ON_FPU(src_fpu != &current->thread.fpu);
257
258 /*
259 * Don't let 'init optimized' areas of the XSAVE area
260 * leak into the child task:
261 */
262 if (use_eager_fpu())
263 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
264
265 /*
266 * Save current FPU registers directly into the child
267 * FPU context, without any memory-to-memory copying.
268 * In lazy mode, if the FPU context isn't loaded into
269 * fpregs, CR0.TS will be set and do_device_not_available
270 * will load the FPU context.
271 *
272 * We have to do all this with preemption disabled,
273 * mostly because of the FNSAVE case, because in that
274 * case we must not allow preemption in the window
275 * between the FNSAVE and us marking the context lazy.
276 *
277 * It shouldn't be an issue as even FNSAVE is plenty
278 * fast in terms of critical section length.
279 */
280 preempt_disable();
281 if (!copy_fpregs_to_fpstate(dst_fpu)) {
282 memcpy(&src_fpu->state, &dst_fpu->state,
283 fpu_kernel_xstate_size);
284
285 if (use_eager_fpu())
286 copy_kernel_to_fpregs(&src_fpu->state);
287 else
288 fpregs_deactivate(src_fpu);
289 }
290 preempt_enable();
291
292 trace_x86_fpu_copy_src(src_fpu);
293 trace_x86_fpu_copy_dst(dst_fpu);
294
295 return 0;
296 }
297
298 /*
299 * Activate the current task's in-memory FPU context,
300 * if it has not been used before:
301 */
302 void fpu__activate_curr(struct fpu *fpu)
303 {
304 WARN_ON_FPU(fpu != &current->thread.fpu);
305
306 if (!fpu->fpstate_active) {
307 fpstate_init(&fpu->state);
308 trace_x86_fpu_init_state(fpu);
309
310 trace_x86_fpu_activate_state(fpu);
311 /* Safe to do for the current task: */
312 fpu->fpstate_active = 1;
313 }
314 }
315 EXPORT_SYMBOL_GPL(fpu__activate_curr);
316
317 /*
318 * This function must be called before we read a task's fpstate.
319 *
320 * If the task has not used the FPU before then initialize its
321 * fpstate.
322 *
323 * If the task has used the FPU before then save it.
324 */
325 void fpu__activate_fpstate_read(struct fpu *fpu)
326 {
327 /*
328 * If fpregs are active (in the current CPU), then
329 * copy them to the fpstate:
330 */
331 if (fpu->fpregs_active) {
332 fpu__save(fpu);
333 } else {
334 if (!fpu->fpstate_active) {
335 fpstate_init(&fpu->state);
336 trace_x86_fpu_init_state(fpu);
337
338 trace_x86_fpu_activate_state(fpu);
339 /* Safe to do for current and for stopped child tasks: */
340 fpu->fpstate_active = 1;
341 }
342 }
343 }
344
345 /*
346 * This function must be called before we write a task's fpstate.
347 *
348 * If the task has used the FPU before then unlazy it.
349 * If the task has not used the FPU before then initialize its fpstate.
350 *
351 * After this function call, after registers in the fpstate are
352 * modified and the child task has woken up, the child task will
353 * restore the modified FPU state from the modified context. If we
354 * didn't clear its lazy status here then the lazy in-registers
355 * state pending on its former CPU could be restored, corrupting
356 * the modifications.
357 */
358 void fpu__activate_fpstate_write(struct fpu *fpu)
359 {
360 /*
361 * Only stopped child tasks can be used to modify the FPU
362 * state in the fpstate buffer:
363 */
364 WARN_ON_FPU(fpu == &current->thread.fpu);
365
366 if (fpu->fpstate_active) {
367 /* Invalidate any lazy state: */
368 fpu->last_cpu = -1;
369 } else {
370 fpstate_init(&fpu->state);
371 trace_x86_fpu_init_state(fpu);
372
373 trace_x86_fpu_activate_state(fpu);
374 /* Safe to do for stopped child tasks: */
375 fpu->fpstate_active = 1;
376 }
377 }
378
379 /*
380 * This function must be called before we write the current
381 * task's fpstate.
382 *
383 * This call gets the current FPU register state and moves
384 * it in to the 'fpstate'. Preemption is disabled so that
385 * no writes to the 'fpstate' can occur from context
386 * swiches.
387 *
388 * Must be followed by a fpu__current_fpstate_write_end().
389 */
390 void fpu__current_fpstate_write_begin(void)
391 {
392 struct fpu *fpu = &current->thread.fpu;
393
394 /*
395 * Ensure that the context-switching code does not write
396 * over the fpstate while we are doing our update.
397 */
398 preempt_disable();
399
400 /*
401 * Move the fpregs in to the fpu's 'fpstate'.
402 */
403 fpu__activate_fpstate_read(fpu);
404
405 /*
406 * The caller is about to write to 'fpu'. Ensure that no
407 * CPU thinks that its fpregs match the fpstate. This
408 * ensures we will not be lazy and skip a XRSTOR in the
409 * future.
410 */
411 fpu->last_cpu = -1;
412 }
413
414 /*
415 * This function must be paired with fpu__current_fpstate_write_begin()
416 *
417 * This will ensure that the modified fpstate gets placed back in
418 * the fpregs if necessary.
419 *
420 * Note: This function may be called whether or not an _actual_
421 * write to the fpstate occurred.
422 */
423 void fpu__current_fpstate_write_end(void)
424 {
425 struct fpu *fpu = &current->thread.fpu;
426
427 /*
428 * 'fpu' now has an updated copy of the state, but the
429 * registers may still be out of date. Update them with
430 * an XRSTOR if they are active.
431 */
432 if (fpregs_active())
433 copy_kernel_to_fpregs(&fpu->state);
434
435 /*
436 * Our update is done and the fpregs/fpstate are in sync
437 * if necessary. Context switches can happen again.
438 */
439 preempt_enable();
440 }
441
442 /*
443 * 'fpu__restore()' is called to copy FPU registers from
444 * the FPU fpstate to the live hw registers and to activate
445 * access to the hardware registers, so that FPU instructions
446 * can be used afterwards.
447 *
448 * Must be called with kernel preemption disabled (for example
449 * with local interrupts disabled, as it is in the case of
450 * do_device_not_available()).
451 */
452 void fpu__restore(struct fpu *fpu)
453 {
454 fpu__activate_curr(fpu);
455
456 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
457 kernel_fpu_disable();
458 trace_x86_fpu_before_restore(fpu);
459 fpregs_activate(fpu);
460 copy_kernel_to_fpregs(&fpu->state);
461 fpu->counter++;
462 trace_x86_fpu_after_restore(fpu);
463 kernel_fpu_enable();
464 }
465 EXPORT_SYMBOL_GPL(fpu__restore);
466
467 /*
468 * Drops current FPU state: deactivates the fpregs and
469 * the fpstate. NOTE: it still leaves previous contents
470 * in the fpregs in the eager-FPU case.
471 *
472 * This function can be used in cases where we know that
473 * a state-restore is coming: either an explicit one,
474 * or a reschedule.
475 */
476 void fpu__drop(struct fpu *fpu)
477 {
478 preempt_disable();
479 fpu->counter = 0;
480
481 if (fpu->fpregs_active) {
482 /* Ignore delayed exceptions from user space */
483 asm volatile("1: fwait\n"
484 "2:\n"
485 _ASM_EXTABLE(1b, 2b));
486 fpregs_deactivate(fpu);
487 }
488
489 fpu->fpstate_active = 0;
490
491 trace_x86_fpu_dropped(fpu);
492
493 preempt_enable();
494 }
495
496 /*
497 * Clear FPU registers by setting them up from
498 * the init fpstate:
499 */
500 static inline void copy_init_fpstate_to_fpregs(void)
501 {
502 if (use_xsave())
503 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
504 else if (static_cpu_has(X86_FEATURE_FXSR))
505 copy_kernel_to_fxregs(&init_fpstate.fxsave);
506 else
507 copy_kernel_to_fregs(&init_fpstate.fsave);
508 }
509
510 /*
511 * Clear the FPU state back to init state.
512 *
513 * Called by sys_execve(), by the signal handler code and by various
514 * error paths.
515 */
516 void fpu__clear(struct fpu *fpu)
517 {
518 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
519
520 if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) {
521 /* FPU state will be reallocated lazily at the first use. */
522 fpu__drop(fpu);
523 } else {
524 if (!fpu->fpstate_active) {
525 fpu__activate_curr(fpu);
526 user_fpu_begin();
527 }
528 copy_init_fpstate_to_fpregs();
529 }
530 }
531
532 /*
533 * x87 math exception handling:
534 */
535
536 int fpu__exception_code(struct fpu *fpu, int trap_nr)
537 {
538 int err;
539
540 if (trap_nr == X86_TRAP_MF) {
541 unsigned short cwd, swd;
542 /*
543 * (~cwd & swd) will mask out exceptions that are not set to unmasked
544 * status. 0x3f is the exception bits in these regs, 0x200 is the
545 * C1 reg you need in case of a stack fault, 0x040 is the stack
546 * fault bit. We should only be taking one exception at a time,
547 * so if this combination doesn't produce any single exception,
548 * then we have a bad program that isn't synchronizing its FPU usage
549 * and it will suffer the consequences since we won't be able to
550 * fully reproduce the context of the exception.
551 */
552 if (boot_cpu_has(X86_FEATURE_FXSR)) {
553 cwd = fpu->state.fxsave.cwd;
554 swd = fpu->state.fxsave.swd;
555 } else {
556 cwd = (unsigned short)fpu->state.fsave.cwd;
557 swd = (unsigned short)fpu->state.fsave.swd;
558 }
559
560 err = swd & ~cwd;
561 } else {
562 /*
563 * The SIMD FPU exceptions are handled a little differently, as there
564 * is only a single status/control register. Thus, to determine which
565 * unmasked exception was caught we must mask the exception mask bits
566 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
567 */
568 unsigned short mxcsr = MXCSR_DEFAULT;
569
570 if (boot_cpu_has(X86_FEATURE_XMM))
571 mxcsr = fpu->state.fxsave.mxcsr;
572
573 err = ~(mxcsr >> 7) & mxcsr;
574 }
575
576 if (err & 0x001) { /* Invalid op */
577 /*
578 * swd & 0x240 == 0x040: Stack Underflow
579 * swd & 0x240 == 0x240: Stack Overflow
580 * User must clear the SF bit (0x40) if set
581 */
582 return FPE_FLTINV;
583 } else if (err & 0x004) { /* Divide by Zero */
584 return FPE_FLTDIV;
585 } else if (err & 0x008) { /* Overflow */
586 return FPE_FLTOVF;
587 } else if (err & 0x012) { /* Denormal, Underflow */
588 return FPE_FLTUND;
589 } else if (err & 0x020) { /* Precision */
590 return FPE_FLTRES;
591 }
592
593 /*
594 * If we're using IRQ 13, or supposedly even some trap
595 * X86_TRAP_MF implementations, it's possible
596 * we get a spurious trap, which is not an error.
597 */
598 return 0;
599 }