]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kernel/fpu/init.c
Merge tag 'for-4.2' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kernel / fpu / init.c
1 /*
2 * x86 FPU boot time init code:
3 */
4 #include <asm/fpu/internal.h>
5 #include <asm/tlbflush.h>
6
7 /*
8 * Initialize the TS bit in CR0 according to the style of context-switches
9 * we are using:
10 */
11 static void fpu__init_cpu_ctx_switch(void)
12 {
13 if (!cpu_has_eager_fpu)
14 stts();
15 else
16 clts();
17 }
18
19 /*
20 * Initialize the registers found in all CPUs, CR0 and CR4:
21 */
22 static void fpu__init_cpu_generic(void)
23 {
24 unsigned long cr0;
25 unsigned long cr4_mask = 0;
26
27 if (cpu_has_fxsr)
28 cr4_mask |= X86_CR4_OSFXSR;
29 if (cpu_has_xmm)
30 cr4_mask |= X86_CR4_OSXMMEXCPT;
31 if (cr4_mask)
32 cr4_set_bits(cr4_mask);
33
34 cr0 = read_cr0();
35 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
36 if (!cpu_has_fpu)
37 cr0 |= X86_CR0_EM;
38 write_cr0(cr0);
39
40 /* Flush out any pending x87 state: */
41 asm volatile ("fninit");
42 }
43
44 /*
45 * Enable all supported FPU features. Called when a CPU is brought online:
46 */
47 void fpu__init_cpu(void)
48 {
49 fpu__init_cpu_generic();
50 fpu__init_cpu_xstate();
51 fpu__init_cpu_ctx_switch();
52 }
53
54 /*
55 * The earliest FPU detection code.
56 *
57 * Set the X86_FEATURE_FPU CPU-capability bit based on
58 * trying to execute an actual sequence of FPU instructions:
59 */
60 static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
61 {
62 unsigned long cr0;
63 u16 fsw, fcw;
64
65 fsw = fcw = 0xffff;
66
67 cr0 = read_cr0();
68 cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
69 write_cr0(cr0);
70
71 asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
72 : "+m" (fsw), "+m" (fcw));
73
74 if (fsw == 0 && (fcw & 0x103f) == 0x003f)
75 set_cpu_cap(c, X86_FEATURE_FPU);
76 else
77 clear_cpu_cap(c, X86_FEATURE_FPU);
78
79 #ifndef CONFIG_MATH_EMULATION
80 if (!cpu_has_fpu) {
81 pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
82 for (;;)
83 asm volatile("hlt");
84 }
85 #endif
86 }
87
88 /*
89 * Boot time FPU feature detection code:
90 */
91 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
92
93 static void __init fpu__init_system_mxcsr(void)
94 {
95 unsigned int mask = 0;
96
97 if (cpu_has_fxsr) {
98 struct fxregs_state fx_tmp __aligned(32) = { };
99
100 asm volatile("fxsave %0" : "+m" (fx_tmp));
101
102 mask = fx_tmp.mxcsr_mask;
103
104 /*
105 * If zero then use the default features mask,
106 * which has all features set, except the
107 * denormals-are-zero feature bit:
108 */
109 if (mask == 0)
110 mask = 0x0000ffbf;
111 }
112 mxcsr_feature_mask &= mask;
113 }
114
115 /*
116 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
117 */
118 static void __init fpu__init_system_generic(void)
119 {
120 /*
121 * Set up the legacy init FPU context. (xstate init might overwrite this
122 * with a more modern format, if the CPU supports it.)
123 */
124 fpstate_init_fxstate(&init_fpstate.fxsave);
125
126 fpu__init_system_mxcsr();
127 }
128
129 /*
130 * Size of the FPU context state. All tasks in the system use the
131 * same context size, regardless of what portion they use.
132 * This is inherent to the XSAVE architecture which puts all state
133 * components into a single, continuous memory block:
134 */
135 unsigned int xstate_size;
136 EXPORT_SYMBOL_GPL(xstate_size);
137
138 /*
139 * Set up the xstate_size based on the legacy FPU context size.
140 *
141 * We set this up first, and later it will be overwritten by
142 * fpu__init_system_xstate() if the CPU knows about xstates.
143 */
144 static void __init fpu__init_system_xstate_size_legacy(void)
145 {
146 static int on_boot_cpu = 1;
147
148 WARN_ON_FPU(!on_boot_cpu);
149 on_boot_cpu = 0;
150
151 /*
152 * Note that xstate_size might be overwriten later during
153 * fpu__init_system_xstate().
154 */
155
156 if (!cpu_has_fpu) {
157 /*
158 * Disable xsave as we do not support it if i387
159 * emulation is enabled.
160 */
161 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
162 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
163 xstate_size = sizeof(struct swregs_state);
164 } else {
165 if (cpu_has_fxsr)
166 xstate_size = sizeof(struct fxregs_state);
167 else
168 xstate_size = sizeof(struct fregs_state);
169 }
170 /*
171 * Quirk: we don't yet handle the XSAVES* instructions
172 * correctly, as we don't correctly convert between
173 * standard and compacted format when interfacing
174 * with user-space - so disable it for now.
175 *
176 * The difference is small: with recent CPUs the
177 * compacted format is only marginally smaller than
178 * the standard FPU state format.
179 *
180 * ( This is easy to backport while we are fixing
181 * XSAVES* support. )
182 */
183 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
184 }
185
186 /*
187 * FPU context switching strategies:
188 *
189 * Against popular belief, we don't do lazy FPU saves, due to the
190 * task migration complications it brings on SMP - we only do
191 * lazy FPU restores.
192 *
193 * 'lazy' is the traditional strategy, which is based on setting
194 * CR0::TS to 1 during context-switch (instead of doing a full
195 * restore of the FPU state), which causes the first FPU instruction
196 * after the context switch (whenever it is executed) to fault - at
197 * which point we lazily restore the FPU state into FPU registers.
198 *
199 * Tasks are of course under no obligation to execute FPU instructions,
200 * so it can easily happen that another context-switch occurs without
201 * a single FPU instruction being executed. If we eventually switch
202 * back to the original task (that still owns the FPU) then we have
203 * not only saved the restores along the way, but we also have the
204 * FPU ready to be used for the original task.
205 *
206 * 'eager' switching is used on modern CPUs, there we switch the FPU
207 * state during every context switch, regardless of whether the task
208 * has used FPU instructions in that time slice or not. This is done
209 * because modern FPU context saving instructions are able to optimize
210 * state saving and restoration in hardware: they can detect both
211 * unused and untouched FPU state and optimize accordingly.
212 *
213 * [ Note that even in 'lazy' mode we might optimize context switches
214 * to use 'eager' restores, if we detect that a task is using the FPU
215 * frequently. See the fpu->counter logic in fpu/internal.h for that. ]
216 */
217 static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
218
219 static int __init eager_fpu_setup(char *s)
220 {
221 if (!strcmp(s, "on"))
222 eagerfpu = ENABLE;
223 else if (!strcmp(s, "off"))
224 eagerfpu = DISABLE;
225 else if (!strcmp(s, "auto"))
226 eagerfpu = AUTO;
227 return 1;
228 }
229 __setup("eagerfpu=", eager_fpu_setup);
230
231 /*
232 * Pick the FPU context switching strategy:
233 */
234 static void __init fpu__init_system_ctx_switch(void)
235 {
236 static bool on_boot_cpu = 1;
237
238 WARN_ON_FPU(!on_boot_cpu);
239 on_boot_cpu = 0;
240
241 WARN_ON_FPU(current->thread.fpu.fpstate_active);
242 current_thread_info()->status = 0;
243
244 /* Auto enable eagerfpu for xsaveopt */
245 if (cpu_has_xsaveopt && eagerfpu != DISABLE)
246 eagerfpu = ENABLE;
247
248 if (xfeatures_mask & XSTATE_EAGER) {
249 if (eagerfpu == DISABLE) {
250 pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
251 xfeatures_mask & XSTATE_EAGER);
252 xfeatures_mask &= ~XSTATE_EAGER;
253 } else {
254 eagerfpu = ENABLE;
255 }
256 }
257
258 if (eagerfpu == ENABLE)
259 setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
260
261 printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
262 }
263
264 /*
265 * Called on the boot CPU once per system bootup, to set up the initial
266 * FPU state that is later cloned into all processes:
267 */
268 void __init fpu__init_system(struct cpuinfo_x86 *c)
269 {
270 fpu__init_system_early_generic(c);
271
272 /*
273 * The FPU has to be operational for some of the
274 * later FPU init activities:
275 */
276 fpu__init_cpu();
277
278 /*
279 * But don't leave CR0::TS set yet, as some of the FPU setup
280 * methods depend on being able to execute FPU instructions
281 * that will fault on a set TS, such as the FXSAVE in
282 * fpu__init_system_mxcsr().
283 */
284 clts();
285
286 fpu__init_system_generic();
287 fpu__init_system_xstate_size_legacy();
288 fpu__init_system_xstate();
289
290 fpu__init_system_ctx_switch();
291 }
292
293 /*
294 * Boot parameter to turn off FPU support and fall back to math-emu:
295 */
296 static int __init no_387(char *s)
297 {
298 setup_clear_cpu_cap(X86_FEATURE_FPU);
299 return 1;
300 }
301 __setup("no387", no_387);
302
303 /*
304 * Disable all xstate CPU features:
305 */
306 static int __init x86_noxsave_setup(char *s)
307 {
308 if (strlen(s))
309 return 0;
310
311 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
312 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
313 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
314 setup_clear_cpu_cap(X86_FEATURE_AVX);
315 setup_clear_cpu_cap(X86_FEATURE_AVX2);
316
317 return 1;
318 }
319 __setup("noxsave", x86_noxsave_setup);
320
321 /*
322 * Disable the XSAVEOPT instruction specifically:
323 */
324 static int __init x86_noxsaveopt_setup(char *s)
325 {
326 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
327
328 return 1;
329 }
330 __setup("noxsaveopt", x86_noxsaveopt_setup);
331
332 /*
333 * Disable the XSAVES instruction:
334 */
335 static int __init x86_noxsaves_setup(char *s)
336 {
337 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
338
339 return 1;
340 }
341 __setup("noxsaves", x86_noxsaves_setup);
342
343 /*
344 * Disable FX save/restore and SSE support:
345 */
346 static int __init x86_nofxsr_setup(char *s)
347 {
348 setup_clear_cpu_cap(X86_FEATURE_FXSR);
349 setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
350 setup_clear_cpu_cap(X86_FEATURE_XMM);
351
352 return 1;
353 }
354 __setup("nofxsr", x86_nofxsr_setup);