]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/hpet.c
x86/hpet: Use proper hpet device number for MSI allocation
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/irqdomain.h>
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19
20 #define HPET_MASK CLOCKSOURCE_MASK(32)
21
22 /* FSEC = 10^-15
23 NSEC = 10^-9 */
24 #define FSEC_PER_NSEC 1000000L
25
26 #define HPET_DEV_USED_BIT 2
27 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID 0x8
29 #define HPET_DEV_FSB_CAP 0x1000
30 #define HPET_DEV_PERI_CAP 0x2000
31
32 #define HPET_MIN_CYCLES 128
33 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34
35 /*
36 * HPET address is set in acpi/boot.c, when an ACPI entry exists
37 */
38 unsigned long hpet_address;
39 u8 hpet_blockid; /* OS timer block num */
40 u8 hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long hpet_num_timers;
44 #endif
45 static void __iomem *hpet_virt_address;
46
47 struct hpet_dev {
48 struct clock_event_device evt;
49 unsigned int num;
50 int cpu;
51 unsigned int irq;
52 unsigned int flags;
53 char name[10];
54 };
55
56 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
57 {
58 return container_of(evtdev, struct hpet_dev, evt);
59 }
60
61 inline unsigned int hpet_readl(unsigned int a)
62 {
63 return readl(hpet_virt_address + a);
64 }
65
66 static inline void hpet_writel(unsigned int d, unsigned int a)
67 {
68 writel(d, hpet_virt_address + a);
69 }
70
71 #ifdef CONFIG_X86_64
72 #include <asm/pgtable.h>
73 #endif
74
75 static inline void hpet_set_mapping(void)
76 {
77 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
78 }
79
80 static inline void hpet_clear_mapping(void)
81 {
82 iounmap(hpet_virt_address);
83 hpet_virt_address = NULL;
84 }
85
86 /*
87 * HPET command line enable / disable
88 */
89 int boot_hpet_disable;
90 int hpet_force_user;
91 static int hpet_verbose;
92
93 static int __init hpet_setup(char *str)
94 {
95 while (str) {
96 char *next = strchr(str, ',');
97
98 if (next)
99 *next++ = 0;
100 if (!strncmp("disable", str, 7))
101 boot_hpet_disable = 1;
102 if (!strncmp("force", str, 5))
103 hpet_force_user = 1;
104 if (!strncmp("verbose", str, 7))
105 hpet_verbose = 1;
106 str = next;
107 }
108 return 1;
109 }
110 __setup("hpet=", hpet_setup);
111
112 static int __init disable_hpet(char *str)
113 {
114 boot_hpet_disable = 1;
115 return 1;
116 }
117 __setup("nohpet", disable_hpet);
118
119 static inline int is_hpet_capable(void)
120 {
121 return !boot_hpet_disable && hpet_address;
122 }
123
124 /*
125 * HPET timer interrupt enable / disable
126 */
127 static int hpet_legacy_int_enabled;
128
129 /**
130 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
131 */
132 int is_hpet_enabled(void)
133 {
134 return is_hpet_capable() && hpet_legacy_int_enabled;
135 }
136 EXPORT_SYMBOL_GPL(is_hpet_enabled);
137
138 static void _hpet_print_config(const char *function, int line)
139 {
140 u32 i, timers, l, h;
141 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
142 l = hpet_readl(HPET_ID);
143 h = hpet_readl(HPET_PERIOD);
144 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
145 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
146 l = hpet_readl(HPET_CFG);
147 h = hpet_readl(HPET_STATUS);
148 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
149 l = hpet_readl(HPET_COUNTER);
150 h = hpet_readl(HPET_COUNTER+4);
151 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
152
153 for (i = 0; i < timers; i++) {
154 l = hpet_readl(HPET_Tn_CFG(i));
155 h = hpet_readl(HPET_Tn_CFG(i)+4);
156 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
157 i, l, h);
158 l = hpet_readl(HPET_Tn_CMP(i));
159 h = hpet_readl(HPET_Tn_CMP(i)+4);
160 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
161 i, l, h);
162 l = hpet_readl(HPET_Tn_ROUTE(i));
163 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
164 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
165 i, l, h);
166 }
167 }
168
169 #define hpet_print_config() \
170 do { \
171 if (hpet_verbose) \
172 _hpet_print_config(__func__, __LINE__); \
173 } while (0)
174
175 /*
176 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177 * timer 0 and timer 1 in case of RTC emulation.
178 */
179 #ifdef CONFIG_HPET
180
181 static void hpet_reserve_msi_timers(struct hpet_data *hd);
182
183 static void hpet_reserve_platform_timers(unsigned int id)
184 {
185 struct hpet __iomem *hpet = hpet_virt_address;
186 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
187 unsigned int nrtimers, i;
188 struct hpet_data hd;
189
190 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
191
192 memset(&hd, 0, sizeof(hd));
193 hd.hd_phys_address = hpet_address;
194 hd.hd_address = hpet;
195 hd.hd_nirqs = nrtimers;
196 hpet_reserve_timer(&hd, 0);
197
198 #ifdef CONFIG_HPET_EMULATE_RTC
199 hpet_reserve_timer(&hd, 1);
200 #endif
201
202 /*
203 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204 * is wrong for i8259!) not the output IRQ. Many BIOS writers
205 * don't bother configuring *any* comparator interrupts.
206 */
207 hd.hd_irq[0] = HPET_LEGACY_8254;
208 hd.hd_irq[1] = HPET_LEGACY_RTC;
209
210 for (i = 2; i < nrtimers; timer++, i++) {
211 hd.hd_irq[i] = (readl(&timer->hpet_config) &
212 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
213 }
214
215 hpet_reserve_msi_timers(&hd);
216
217 hpet_alloc(&hd);
218
219 }
220 #else
221 static void hpet_reserve_platform_timers(unsigned int id) { }
222 #endif
223
224 /*
225 * Common hpet info
226 */
227 static unsigned long hpet_freq;
228
229 static void hpet_legacy_set_mode(enum clock_event_mode mode,
230 struct clock_event_device *evt);
231 static int hpet_legacy_next_event(unsigned long delta,
232 struct clock_event_device *evt);
233
234 /*
235 * The hpet clock event device
236 */
237 static struct clock_event_device hpet_clockevent = {
238 .name = "hpet",
239 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
240 .set_mode = hpet_legacy_set_mode,
241 .set_next_event = hpet_legacy_next_event,
242 .irq = 0,
243 .rating = 50,
244 };
245
246 static void hpet_stop_counter(void)
247 {
248 unsigned long cfg = hpet_readl(HPET_CFG);
249 cfg &= ~HPET_CFG_ENABLE;
250 hpet_writel(cfg, HPET_CFG);
251 }
252
253 static void hpet_reset_counter(void)
254 {
255 hpet_writel(0, HPET_COUNTER);
256 hpet_writel(0, HPET_COUNTER + 4);
257 }
258
259 static void hpet_start_counter(void)
260 {
261 unsigned int cfg = hpet_readl(HPET_CFG);
262 cfg |= HPET_CFG_ENABLE;
263 hpet_writel(cfg, HPET_CFG);
264 }
265
266 static void hpet_restart_counter(void)
267 {
268 hpet_stop_counter();
269 hpet_reset_counter();
270 hpet_start_counter();
271 }
272
273 static void hpet_resume_device(void)
274 {
275 force_hpet_resume();
276 }
277
278 static void hpet_resume_counter(struct clocksource *cs)
279 {
280 hpet_resume_device();
281 hpet_restart_counter();
282 }
283
284 static void hpet_enable_legacy_int(void)
285 {
286 unsigned int cfg = hpet_readl(HPET_CFG);
287
288 cfg |= HPET_CFG_LEGACY;
289 hpet_writel(cfg, HPET_CFG);
290 hpet_legacy_int_enabled = 1;
291 }
292
293 static void hpet_legacy_clockevent_register(void)
294 {
295 /* Start HPET legacy interrupts */
296 hpet_enable_legacy_int();
297
298 /*
299 * Start hpet with the boot cpu mask and make it
300 * global after the IO_APIC has been initialized.
301 */
302 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
303 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
304 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
305 global_clock_event = &hpet_clockevent;
306 printk(KERN_DEBUG "hpet clockevent registered\n");
307 }
308
309 static void hpet_set_mode(enum clock_event_mode mode,
310 struct clock_event_device *evt, int timer)
311 {
312 unsigned int cfg, cmp, now;
313 uint64_t delta;
314
315 switch (mode) {
316 case CLOCK_EVT_MODE_PERIODIC:
317 hpet_stop_counter();
318 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
319 delta >>= evt->shift;
320 now = hpet_readl(HPET_COUNTER);
321 cmp = now + (unsigned int) delta;
322 cfg = hpet_readl(HPET_Tn_CFG(timer));
323 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
324 HPET_TN_SETVAL | HPET_TN_32BIT;
325 hpet_writel(cfg, HPET_Tn_CFG(timer));
326 hpet_writel(cmp, HPET_Tn_CMP(timer));
327 udelay(1);
328 /*
329 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
330 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
331 * bit is automatically cleared after the first write.
332 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
333 * Publication # 24674)
334 */
335 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
336 hpet_start_counter();
337 hpet_print_config();
338 break;
339
340 case CLOCK_EVT_MODE_ONESHOT:
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_PERIODIC;
343 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
344 hpet_writel(cfg, HPET_Tn_CFG(timer));
345 break;
346
347 case CLOCK_EVT_MODE_UNUSED:
348 case CLOCK_EVT_MODE_SHUTDOWN:
349 cfg = hpet_readl(HPET_Tn_CFG(timer));
350 cfg &= ~HPET_TN_ENABLE;
351 hpet_writel(cfg, HPET_Tn_CFG(timer));
352 break;
353
354 case CLOCK_EVT_MODE_RESUME:
355 if (timer == 0) {
356 hpet_enable_legacy_int();
357 } else {
358 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
359 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
360 disable_irq(hdev->irq);
361 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
362 enable_irq(hdev->irq);
363 }
364 hpet_print_config();
365 break;
366 }
367 }
368
369 static int hpet_next_event(unsigned long delta,
370 struct clock_event_device *evt, int timer)
371 {
372 u32 cnt;
373 s32 res;
374
375 cnt = hpet_readl(HPET_COUNTER);
376 cnt += (u32) delta;
377 hpet_writel(cnt, HPET_Tn_CMP(timer));
378
379 /*
380 * HPETs are a complete disaster. The compare register is
381 * based on a equal comparison and neither provides a less
382 * than or equal functionality (which would require to take
383 * the wraparound into account) nor a simple count down event
384 * mode. Further the write to the comparator register is
385 * delayed internally up to two HPET clock cycles in certain
386 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
387 * longer delays. We worked around that by reading back the
388 * compare register, but that required another workaround for
389 * ICH9,10 chips where the first readout after write can
390 * return the old stale value. We already had a minimum
391 * programming delta of 5us enforced, but a NMI or SMI hitting
392 * between the counter readout and the comparator write can
393 * move us behind that point easily. Now instead of reading
394 * the compare register back several times, we make the ETIME
395 * decision based on the following: Return ETIME if the
396 * counter value after the write is less than HPET_MIN_CYCLES
397 * away from the event or if the counter is already ahead of
398 * the event. The minimum programming delta for the generic
399 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
400 */
401 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
402
403 return res < HPET_MIN_CYCLES ? -ETIME : 0;
404 }
405
406 static void hpet_legacy_set_mode(enum clock_event_mode mode,
407 struct clock_event_device *evt)
408 {
409 hpet_set_mode(mode, evt, 0);
410 }
411
412 static int hpet_legacy_next_event(unsigned long delta,
413 struct clock_event_device *evt)
414 {
415 return hpet_next_event(delta, evt, 0);
416 }
417
418 /*
419 * HPET MSI Support
420 */
421 #ifdef CONFIG_PCI_MSI
422
423 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
424 static struct hpet_dev *hpet_devs;
425 static struct irq_domain *hpet_domain;
426
427 void hpet_msi_unmask(struct irq_data *data)
428 {
429 struct hpet_dev *hdev = data->handler_data;
430 unsigned int cfg;
431
432 /* unmask it */
433 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
435 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
436 }
437
438 void hpet_msi_mask(struct irq_data *data)
439 {
440 struct hpet_dev *hdev = data->handler_data;
441 unsigned int cfg;
442
443 /* mask it */
444 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
446 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
447 }
448
449 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
450 {
451 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
452 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
453 }
454
455 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
456 {
457 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
458 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
459 msg->address_hi = 0;
460 }
461
462 static void hpet_msi_set_mode(enum clock_event_mode mode,
463 struct clock_event_device *evt)
464 {
465 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
466 hpet_set_mode(mode, evt, hdev->num);
467 }
468
469 static int hpet_msi_next_event(unsigned long delta,
470 struct clock_event_device *evt)
471 {
472 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473 return hpet_next_event(delta, evt, hdev->num);
474 }
475
476 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
477 {
478 struct hpet_dev *dev = (struct hpet_dev *)data;
479 struct clock_event_device *hevt = &dev->evt;
480
481 if (!hevt->event_handler) {
482 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
483 dev->num);
484 return IRQ_HANDLED;
485 }
486
487 hevt->event_handler(hevt);
488 return IRQ_HANDLED;
489 }
490
491 static int hpet_setup_irq(struct hpet_dev *dev)
492 {
493
494 if (request_irq(dev->irq, hpet_interrupt_handler,
495 IRQF_TIMER | IRQF_NOBALANCING,
496 dev->name, dev))
497 return -1;
498
499 disable_irq(dev->irq);
500 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
501 enable_irq(dev->irq);
502
503 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
504 dev->name, dev->irq);
505
506 return 0;
507 }
508
509 /* This should be called in specific @cpu */
510 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
511 {
512 struct clock_event_device *evt = &hdev->evt;
513
514 WARN_ON(cpu != smp_processor_id());
515 if (!(hdev->flags & HPET_DEV_VALID))
516 return;
517
518 hdev->cpu = cpu;
519 per_cpu(cpu_hpet_dev, cpu) = hdev;
520 evt->name = hdev->name;
521 hpet_setup_irq(hdev);
522 evt->irq = hdev->irq;
523
524 evt->rating = 110;
525 evt->features = CLOCK_EVT_FEAT_ONESHOT;
526 if (hdev->flags & HPET_DEV_PERI_CAP)
527 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
528
529 evt->set_mode = hpet_msi_set_mode;
530 evt->set_next_event = hpet_msi_next_event;
531 evt->cpumask = cpumask_of(hdev->cpu);
532
533 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
534 0x7FFFFFFF);
535 }
536
537 #ifdef CONFIG_HPET
538 /* Reserve at least one timer for userspace (/dev/hpet) */
539 #define RESERVE_TIMERS 1
540 #else
541 #define RESERVE_TIMERS 0
542 #endif
543
544 static void hpet_msi_capability_lookup(unsigned int start_timer)
545 {
546 unsigned int id;
547 unsigned int num_timers;
548 unsigned int num_timers_used = 0;
549 int i, irq;
550
551 if (hpet_msi_disable)
552 return;
553
554 if (boot_cpu_has(X86_FEATURE_ARAT))
555 return;
556 id = hpet_readl(HPET_ID);
557
558 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
559 num_timers++; /* Value read out starts from 0 */
560 hpet_print_config();
561
562 hpet_domain = hpet_create_irq_domain(hpet_blockid);
563 if (!hpet_domain)
564 return;
565
566 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
567 if (!hpet_devs)
568 return;
569
570 hpet_num_timers = num_timers;
571
572 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
573 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
574 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
575
576 /* Only consider HPET timer with MSI support */
577 if (!(cfg & HPET_TN_FSB_CAP))
578 continue;
579
580 hdev->flags = 0;
581 if (cfg & HPET_TN_PERIODIC_CAP)
582 hdev->flags |= HPET_DEV_PERI_CAP;
583 sprintf(hdev->name, "hpet%d", i);
584 hdev->num = i;
585
586 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
587 if (irq <= 0)
588 continue;
589
590 hdev->irq = irq;
591 hdev->flags |= HPET_DEV_FSB_CAP;
592 hdev->flags |= HPET_DEV_VALID;
593 num_timers_used++;
594 if (num_timers_used == num_possible_cpus())
595 break;
596 }
597
598 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
599 num_timers, num_timers_used);
600 }
601
602 #ifdef CONFIG_HPET
603 static void hpet_reserve_msi_timers(struct hpet_data *hd)
604 {
605 int i;
606
607 if (!hpet_devs)
608 return;
609
610 for (i = 0; i < hpet_num_timers; i++) {
611 struct hpet_dev *hdev = &hpet_devs[i];
612
613 if (!(hdev->flags & HPET_DEV_VALID))
614 continue;
615
616 hd->hd_irq[hdev->num] = hdev->irq;
617 hpet_reserve_timer(hd, hdev->num);
618 }
619 }
620 #endif
621
622 static struct hpet_dev *hpet_get_unused_timer(void)
623 {
624 int i;
625
626 if (!hpet_devs)
627 return NULL;
628
629 for (i = 0; i < hpet_num_timers; i++) {
630 struct hpet_dev *hdev = &hpet_devs[i];
631
632 if (!(hdev->flags & HPET_DEV_VALID))
633 continue;
634 if (test_and_set_bit(HPET_DEV_USED_BIT,
635 (unsigned long *)&hdev->flags))
636 continue;
637 return hdev;
638 }
639 return NULL;
640 }
641
642 struct hpet_work_struct {
643 struct delayed_work work;
644 struct completion complete;
645 };
646
647 static void hpet_work(struct work_struct *w)
648 {
649 struct hpet_dev *hdev;
650 int cpu = smp_processor_id();
651 struct hpet_work_struct *hpet_work;
652
653 hpet_work = container_of(w, struct hpet_work_struct, work.work);
654
655 hdev = hpet_get_unused_timer();
656 if (hdev)
657 init_one_hpet_msi_clockevent(hdev, cpu);
658
659 complete(&hpet_work->complete);
660 }
661
662 static int hpet_cpuhp_notify(struct notifier_block *n,
663 unsigned long action, void *hcpu)
664 {
665 unsigned long cpu = (unsigned long)hcpu;
666 struct hpet_work_struct work;
667 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
668
669 switch (action & 0xf) {
670 case CPU_ONLINE:
671 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
672 init_completion(&work.complete);
673 /* FIXME: add schedule_work_on() */
674 schedule_delayed_work_on(cpu, &work.work, 0);
675 wait_for_completion(&work.complete);
676 destroy_delayed_work_on_stack(&work.work);
677 break;
678 case CPU_DEAD:
679 if (hdev) {
680 free_irq(hdev->irq, hdev);
681 hdev->flags &= ~HPET_DEV_USED;
682 per_cpu(cpu_hpet_dev, cpu) = NULL;
683 }
684 break;
685 }
686 return NOTIFY_OK;
687 }
688 #else
689
690 static void hpet_msi_capability_lookup(unsigned int start_timer)
691 {
692 return;
693 }
694
695 #ifdef CONFIG_HPET
696 static void hpet_reserve_msi_timers(struct hpet_data *hd)
697 {
698 return;
699 }
700 #endif
701
702 static int hpet_cpuhp_notify(struct notifier_block *n,
703 unsigned long action, void *hcpu)
704 {
705 return NOTIFY_OK;
706 }
707
708 #endif
709
710 /*
711 * Clock source related code
712 */
713 static cycle_t read_hpet(struct clocksource *cs)
714 {
715 return (cycle_t)hpet_readl(HPET_COUNTER);
716 }
717
718 static struct clocksource clocksource_hpet = {
719 .name = "hpet",
720 .rating = 250,
721 .read = read_hpet,
722 .mask = HPET_MASK,
723 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
724 .resume = hpet_resume_counter,
725 .archdata = { .vclock_mode = VCLOCK_HPET },
726 };
727
728 static int hpet_clocksource_register(void)
729 {
730 u64 start, now;
731 cycle_t t1;
732
733 /* Start the counter */
734 hpet_restart_counter();
735
736 /* Verify whether hpet counter works */
737 t1 = hpet_readl(HPET_COUNTER);
738 rdtscll(start);
739
740 /*
741 * We don't know the TSC frequency yet, but waiting for
742 * 200000 TSC cycles is safe:
743 * 4 GHz == 50us
744 * 1 GHz == 200us
745 */
746 do {
747 rep_nop();
748 rdtscll(now);
749 } while ((now - start) < 200000UL);
750
751 if (t1 == hpet_readl(HPET_COUNTER)) {
752 printk(KERN_WARNING
753 "HPET counter not counting. HPET disabled\n");
754 return -ENODEV;
755 }
756
757 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
758 return 0;
759 }
760
761 static u32 *hpet_boot_cfg;
762
763 /**
764 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
765 */
766 int __init hpet_enable(void)
767 {
768 u32 hpet_period, cfg, id;
769 u64 freq;
770 unsigned int i, last;
771
772 if (!is_hpet_capable())
773 return 0;
774
775 hpet_set_mapping();
776
777 /*
778 * Read the period and check for a sane value:
779 */
780 hpet_period = hpet_readl(HPET_PERIOD);
781
782 /*
783 * AMD SB700 based systems with spread spectrum enabled use a
784 * SMM based HPET emulation to provide proper frequency
785 * setting. The SMM code is initialized with the first HPET
786 * register access and takes some time to complete. During
787 * this time the config register reads 0xffffffff. We check
788 * for max. 1000 loops whether the config register reads a non
789 * 0xffffffff value to make sure that HPET is up and running
790 * before we go further. A counting loop is safe, as the HPET
791 * access takes thousands of CPU cycles. On non SB700 based
792 * machines this check is only done once and has no side
793 * effects.
794 */
795 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
796 if (i == 1000) {
797 printk(KERN_WARNING
798 "HPET config register value = 0xFFFFFFFF. "
799 "Disabling HPET\n");
800 goto out_nohpet;
801 }
802 }
803
804 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
805 goto out_nohpet;
806
807 /*
808 * The period is a femto seconds value. Convert it to a
809 * frequency.
810 */
811 freq = FSEC_PER_SEC;
812 do_div(freq, hpet_period);
813 hpet_freq = freq;
814
815 /*
816 * Read the HPET ID register to retrieve the IRQ routing
817 * information and the number of channels
818 */
819 id = hpet_readl(HPET_ID);
820 hpet_print_config();
821
822 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
823
824 #ifdef CONFIG_HPET_EMULATE_RTC
825 /*
826 * The legacy routing mode needs at least two channels, tick timer
827 * and the rtc emulation channel.
828 */
829 if (!last)
830 goto out_nohpet;
831 #endif
832
833 cfg = hpet_readl(HPET_CFG);
834 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
835 GFP_KERNEL);
836 if (hpet_boot_cfg)
837 *hpet_boot_cfg = cfg;
838 else
839 pr_warn("HPET initial state will not be saved\n");
840 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
841 hpet_writel(cfg, HPET_CFG);
842 if (cfg)
843 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
844 cfg);
845
846 for (i = 0; i <= last; ++i) {
847 cfg = hpet_readl(HPET_Tn_CFG(i));
848 if (hpet_boot_cfg)
849 hpet_boot_cfg[i + 1] = cfg;
850 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
851 hpet_writel(cfg, HPET_Tn_CFG(i));
852 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
853 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
854 | HPET_TN_FSB | HPET_TN_FSB_CAP);
855 if (cfg)
856 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
857 cfg, i);
858 }
859 hpet_print_config();
860
861 if (hpet_clocksource_register())
862 goto out_nohpet;
863
864 if (id & HPET_ID_LEGSUP) {
865 hpet_legacy_clockevent_register();
866 return 1;
867 }
868 return 0;
869
870 out_nohpet:
871 hpet_clear_mapping();
872 hpet_address = 0;
873 return 0;
874 }
875
876 /*
877 * Needs to be late, as the reserve_timer code calls kalloc !
878 *
879 * Not a problem on i386 as hpet_enable is called from late_time_init,
880 * but on x86_64 it is necessary !
881 */
882 static __init int hpet_late_init(void)
883 {
884 int cpu;
885
886 if (boot_hpet_disable)
887 return -ENODEV;
888
889 if (!hpet_address) {
890 if (!force_hpet_address)
891 return -ENODEV;
892
893 hpet_address = force_hpet_address;
894 hpet_enable();
895 }
896
897 if (!hpet_virt_address)
898 return -ENODEV;
899
900 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
901 hpet_msi_capability_lookup(2);
902 else
903 hpet_msi_capability_lookup(0);
904
905 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
906 hpet_print_config();
907
908 if (hpet_msi_disable)
909 return 0;
910
911 if (boot_cpu_has(X86_FEATURE_ARAT))
912 return 0;
913
914 cpu_notifier_register_begin();
915 for_each_online_cpu(cpu) {
916 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
917 }
918
919 /* This notifier should be called after workqueue is ready */
920 __hotcpu_notifier(hpet_cpuhp_notify, -20);
921 cpu_notifier_register_done();
922
923 return 0;
924 }
925 fs_initcall(hpet_late_init);
926
927 void hpet_disable(void)
928 {
929 if (is_hpet_capable() && hpet_virt_address) {
930 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
931
932 if (hpet_boot_cfg)
933 cfg = *hpet_boot_cfg;
934 else if (hpet_legacy_int_enabled) {
935 cfg &= ~HPET_CFG_LEGACY;
936 hpet_legacy_int_enabled = 0;
937 }
938 cfg &= ~HPET_CFG_ENABLE;
939 hpet_writel(cfg, HPET_CFG);
940
941 if (!hpet_boot_cfg)
942 return;
943
944 id = hpet_readl(HPET_ID);
945 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
946
947 for (id = 0; id <= last; ++id)
948 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
949
950 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
951 hpet_writel(*hpet_boot_cfg, HPET_CFG);
952 }
953 }
954
955 #ifdef CONFIG_HPET_EMULATE_RTC
956
957 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
958 * is enabled, we support RTC interrupt functionality in software.
959 * RTC has 3 kinds of interrupts:
960 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
961 * is updated
962 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
963 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
964 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
965 * (1) and (2) above are implemented using polling at a frequency of
966 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
967 * overhead. (DEFAULT_RTC_INT_FREQ)
968 * For (3), we use interrupts at 64Hz or user specified periodic
969 * frequency, whichever is higher.
970 */
971 #include <linux/mc146818rtc.h>
972 #include <linux/rtc.h>
973 #include <asm/rtc.h>
974
975 #define DEFAULT_RTC_INT_FREQ 64
976 #define DEFAULT_RTC_SHIFT 6
977 #define RTC_NUM_INTS 1
978
979 static unsigned long hpet_rtc_flags;
980 static int hpet_prev_update_sec;
981 static struct rtc_time hpet_alarm_time;
982 static unsigned long hpet_pie_count;
983 static u32 hpet_t1_cmp;
984 static u32 hpet_default_delta;
985 static u32 hpet_pie_delta;
986 static unsigned long hpet_pie_limit;
987
988 static rtc_irq_handler irq_handler;
989
990 /*
991 * Check that the hpet counter c1 is ahead of the c2
992 */
993 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
994 {
995 return (s32)(c2 - c1) < 0;
996 }
997
998 /*
999 * Registers a IRQ handler.
1000 */
1001 int hpet_register_irq_handler(rtc_irq_handler handler)
1002 {
1003 if (!is_hpet_enabled())
1004 return -ENODEV;
1005 if (irq_handler)
1006 return -EBUSY;
1007
1008 irq_handler = handler;
1009
1010 return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1013
1014 /*
1015 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1016 * and does cleanup.
1017 */
1018 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1019 {
1020 if (!is_hpet_enabled())
1021 return;
1022
1023 irq_handler = NULL;
1024 hpet_rtc_flags = 0;
1025 }
1026 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1027
1028 /*
1029 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1030 * is not supported by all HPET implementations for timer 1.
1031 *
1032 * hpet_rtc_timer_init() is called when the rtc is initialized.
1033 */
1034 int hpet_rtc_timer_init(void)
1035 {
1036 unsigned int cfg, cnt, delta;
1037 unsigned long flags;
1038
1039 if (!is_hpet_enabled())
1040 return 0;
1041
1042 if (!hpet_default_delta) {
1043 uint64_t clc;
1044
1045 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1046 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1047 hpet_default_delta = clc;
1048 }
1049
1050 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1051 delta = hpet_default_delta;
1052 else
1053 delta = hpet_pie_delta;
1054
1055 local_irq_save(flags);
1056
1057 cnt = delta + hpet_readl(HPET_COUNTER);
1058 hpet_writel(cnt, HPET_T1_CMP);
1059 hpet_t1_cmp = cnt;
1060
1061 cfg = hpet_readl(HPET_T1_CFG);
1062 cfg &= ~HPET_TN_PERIODIC;
1063 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1064 hpet_writel(cfg, HPET_T1_CFG);
1065
1066 local_irq_restore(flags);
1067
1068 return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1071
1072 static void hpet_disable_rtc_channel(void)
1073 {
1074 unsigned long cfg;
1075 cfg = hpet_readl(HPET_T1_CFG);
1076 cfg &= ~HPET_TN_ENABLE;
1077 hpet_writel(cfg, HPET_T1_CFG);
1078 }
1079
1080 /*
1081 * The functions below are called from rtc driver.
1082 * Return 0 if HPET is not being used.
1083 * Otherwise do the necessary changes and return 1.
1084 */
1085 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1086 {
1087 if (!is_hpet_enabled())
1088 return 0;
1089
1090 hpet_rtc_flags &= ~bit_mask;
1091 if (unlikely(!hpet_rtc_flags))
1092 hpet_disable_rtc_channel();
1093
1094 return 1;
1095 }
1096 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1097
1098 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1099 {
1100 unsigned long oldbits = hpet_rtc_flags;
1101
1102 if (!is_hpet_enabled())
1103 return 0;
1104
1105 hpet_rtc_flags |= bit_mask;
1106
1107 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1108 hpet_prev_update_sec = -1;
1109
1110 if (!oldbits)
1111 hpet_rtc_timer_init();
1112
1113 return 1;
1114 }
1115 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1116
1117 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1118 unsigned char sec)
1119 {
1120 if (!is_hpet_enabled())
1121 return 0;
1122
1123 hpet_alarm_time.tm_hour = hrs;
1124 hpet_alarm_time.tm_min = min;
1125 hpet_alarm_time.tm_sec = sec;
1126
1127 return 1;
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1130
1131 int hpet_set_periodic_freq(unsigned long freq)
1132 {
1133 uint64_t clc;
1134
1135 if (!is_hpet_enabled())
1136 return 0;
1137
1138 if (freq <= DEFAULT_RTC_INT_FREQ)
1139 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1140 else {
1141 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1142 do_div(clc, freq);
1143 clc >>= hpet_clockevent.shift;
1144 hpet_pie_delta = clc;
1145 hpet_pie_limit = 0;
1146 }
1147 return 1;
1148 }
1149 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1150
1151 int hpet_rtc_dropped_irq(void)
1152 {
1153 return is_hpet_enabled();
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1156
1157 static void hpet_rtc_timer_reinit(void)
1158 {
1159 unsigned int delta;
1160 int lost_ints = -1;
1161
1162 if (unlikely(!hpet_rtc_flags))
1163 hpet_disable_rtc_channel();
1164
1165 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1166 delta = hpet_default_delta;
1167 else
1168 delta = hpet_pie_delta;
1169
1170 /*
1171 * Increment the comparator value until we are ahead of the
1172 * current count.
1173 */
1174 do {
1175 hpet_t1_cmp += delta;
1176 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1177 lost_ints++;
1178 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1179
1180 if (lost_ints) {
1181 if (hpet_rtc_flags & RTC_PIE)
1182 hpet_pie_count += lost_ints;
1183 if (printk_ratelimit())
1184 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1185 lost_ints);
1186 }
1187 }
1188
1189 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1190 {
1191 struct rtc_time curr_time;
1192 unsigned long rtc_int_flag = 0;
1193
1194 hpet_rtc_timer_reinit();
1195 memset(&curr_time, 0, sizeof(struct rtc_time));
1196
1197 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1198 get_rtc_time(&curr_time);
1199
1200 if (hpet_rtc_flags & RTC_UIE &&
1201 curr_time.tm_sec != hpet_prev_update_sec) {
1202 if (hpet_prev_update_sec >= 0)
1203 rtc_int_flag = RTC_UF;
1204 hpet_prev_update_sec = curr_time.tm_sec;
1205 }
1206
1207 if (hpet_rtc_flags & RTC_PIE &&
1208 ++hpet_pie_count >= hpet_pie_limit) {
1209 rtc_int_flag |= RTC_PF;
1210 hpet_pie_count = 0;
1211 }
1212
1213 if (hpet_rtc_flags & RTC_AIE &&
1214 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1215 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1216 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1217 rtc_int_flag |= RTC_AF;
1218
1219 if (rtc_int_flag) {
1220 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1221 if (irq_handler)
1222 irq_handler(rtc_int_flag, dev_id);
1223 }
1224 return IRQ_HANDLED;
1225 }
1226 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1227 #endif