]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/hpet.c
Merge branch 'x86/cpu' into x86/asm, to avoid conflict
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/irqdomain.h>
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19
20 #define HPET_MASK CLOCKSOURCE_MASK(32)
21
22 /* FSEC = 10^-15
23 NSEC = 10^-9 */
24 #define FSEC_PER_NSEC 1000000L
25
26 #define HPET_DEV_USED_BIT 2
27 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID 0x8
29 #define HPET_DEV_FSB_CAP 0x1000
30 #define HPET_DEV_PERI_CAP 0x2000
31
32 #define HPET_MIN_CYCLES 128
33 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34
35 /*
36 * HPET address is set in acpi/boot.c, when an ACPI entry exists
37 */
38 unsigned long hpet_address;
39 u8 hpet_blockid; /* OS timer block num */
40 bool hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned int hpet_num_timers;
44 #endif
45 static void __iomem *hpet_virt_address;
46
47 struct hpet_dev {
48 struct clock_event_device evt;
49 unsigned int num;
50 int cpu;
51 unsigned int irq;
52 unsigned int flags;
53 char name[10];
54 };
55
56 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
57 {
58 return container_of(evtdev, struct hpet_dev, evt);
59 }
60
61 inline unsigned int hpet_readl(unsigned int a)
62 {
63 return readl(hpet_virt_address + a);
64 }
65
66 static inline void hpet_writel(unsigned int d, unsigned int a)
67 {
68 writel(d, hpet_virt_address + a);
69 }
70
71 #ifdef CONFIG_X86_64
72 #include <asm/pgtable.h>
73 #endif
74
75 static inline void hpet_set_mapping(void)
76 {
77 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
78 }
79
80 static inline void hpet_clear_mapping(void)
81 {
82 iounmap(hpet_virt_address);
83 hpet_virt_address = NULL;
84 }
85
86 /*
87 * HPET command line enable / disable
88 */
89 bool boot_hpet_disable;
90 bool hpet_force_user;
91 static bool hpet_verbose;
92
93 static int __init hpet_setup(char *str)
94 {
95 while (str) {
96 char *next = strchr(str, ',');
97
98 if (next)
99 *next++ = 0;
100 if (!strncmp("disable", str, 7))
101 boot_hpet_disable = true;
102 if (!strncmp("force", str, 5))
103 hpet_force_user = true;
104 if (!strncmp("verbose", str, 7))
105 hpet_verbose = true;
106 str = next;
107 }
108 return 1;
109 }
110 __setup("hpet=", hpet_setup);
111
112 static int __init disable_hpet(char *str)
113 {
114 boot_hpet_disable = true;
115 return 1;
116 }
117 __setup("nohpet", disable_hpet);
118
119 static inline int is_hpet_capable(void)
120 {
121 return !boot_hpet_disable && hpet_address;
122 }
123
124 /*
125 * HPET timer interrupt enable / disable
126 */
127 static bool hpet_legacy_int_enabled;
128
129 /**
130 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
131 */
132 int is_hpet_enabled(void)
133 {
134 return is_hpet_capable() && hpet_legacy_int_enabled;
135 }
136 EXPORT_SYMBOL_GPL(is_hpet_enabled);
137
138 static void _hpet_print_config(const char *function, int line)
139 {
140 u32 i, timers, l, h;
141 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
142 l = hpet_readl(HPET_ID);
143 h = hpet_readl(HPET_PERIOD);
144 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
145 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
146 l = hpet_readl(HPET_CFG);
147 h = hpet_readl(HPET_STATUS);
148 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
149 l = hpet_readl(HPET_COUNTER);
150 h = hpet_readl(HPET_COUNTER+4);
151 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
152
153 for (i = 0; i < timers; i++) {
154 l = hpet_readl(HPET_Tn_CFG(i));
155 h = hpet_readl(HPET_Tn_CFG(i)+4);
156 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
157 i, l, h);
158 l = hpet_readl(HPET_Tn_CMP(i));
159 h = hpet_readl(HPET_Tn_CMP(i)+4);
160 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
161 i, l, h);
162 l = hpet_readl(HPET_Tn_ROUTE(i));
163 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
164 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
165 i, l, h);
166 }
167 }
168
169 #define hpet_print_config() \
170 do { \
171 if (hpet_verbose) \
172 _hpet_print_config(__func__, __LINE__); \
173 } while (0)
174
175 /*
176 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177 * timer 0 and timer 1 in case of RTC emulation.
178 */
179 #ifdef CONFIG_HPET
180
181 static void hpet_reserve_msi_timers(struct hpet_data *hd);
182
183 static void hpet_reserve_platform_timers(unsigned int id)
184 {
185 struct hpet __iomem *hpet = hpet_virt_address;
186 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
187 unsigned int nrtimers, i;
188 struct hpet_data hd;
189
190 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
191
192 memset(&hd, 0, sizeof(hd));
193 hd.hd_phys_address = hpet_address;
194 hd.hd_address = hpet;
195 hd.hd_nirqs = nrtimers;
196 hpet_reserve_timer(&hd, 0);
197
198 #ifdef CONFIG_HPET_EMULATE_RTC
199 hpet_reserve_timer(&hd, 1);
200 #endif
201
202 /*
203 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204 * is wrong for i8259!) not the output IRQ. Many BIOS writers
205 * don't bother configuring *any* comparator interrupts.
206 */
207 hd.hd_irq[0] = HPET_LEGACY_8254;
208 hd.hd_irq[1] = HPET_LEGACY_RTC;
209
210 for (i = 2; i < nrtimers; timer++, i++) {
211 hd.hd_irq[i] = (readl(&timer->hpet_config) &
212 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
213 }
214
215 hpet_reserve_msi_timers(&hd);
216
217 hpet_alloc(&hd);
218
219 }
220 #else
221 static void hpet_reserve_platform_timers(unsigned int id) { }
222 #endif
223
224 /*
225 * Common hpet info
226 */
227 static unsigned long hpet_freq;
228
229 static struct clock_event_device hpet_clockevent;
230
231 static void hpet_stop_counter(void)
232 {
233 u32 cfg = hpet_readl(HPET_CFG);
234 cfg &= ~HPET_CFG_ENABLE;
235 hpet_writel(cfg, HPET_CFG);
236 }
237
238 static void hpet_reset_counter(void)
239 {
240 hpet_writel(0, HPET_COUNTER);
241 hpet_writel(0, HPET_COUNTER + 4);
242 }
243
244 static void hpet_start_counter(void)
245 {
246 unsigned int cfg = hpet_readl(HPET_CFG);
247 cfg |= HPET_CFG_ENABLE;
248 hpet_writel(cfg, HPET_CFG);
249 }
250
251 static void hpet_restart_counter(void)
252 {
253 hpet_stop_counter();
254 hpet_reset_counter();
255 hpet_start_counter();
256 }
257
258 static void hpet_resume_device(void)
259 {
260 force_hpet_resume();
261 }
262
263 static void hpet_resume_counter(struct clocksource *cs)
264 {
265 hpet_resume_device();
266 hpet_restart_counter();
267 }
268
269 static void hpet_enable_legacy_int(void)
270 {
271 unsigned int cfg = hpet_readl(HPET_CFG);
272
273 cfg |= HPET_CFG_LEGACY;
274 hpet_writel(cfg, HPET_CFG);
275 hpet_legacy_int_enabled = true;
276 }
277
278 static void hpet_legacy_clockevent_register(void)
279 {
280 /* Start HPET legacy interrupts */
281 hpet_enable_legacy_int();
282
283 /*
284 * Start hpet with the boot cpu mask and make it
285 * global after the IO_APIC has been initialized.
286 */
287 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
288 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
289 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
290 global_clock_event = &hpet_clockevent;
291 printk(KERN_DEBUG "hpet clockevent registered\n");
292 }
293
294 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
295 {
296 unsigned int cfg, cmp, now;
297 uint64_t delta;
298
299 hpet_stop_counter();
300 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
301 delta >>= evt->shift;
302 now = hpet_readl(HPET_COUNTER);
303 cmp = now + (unsigned int)delta;
304 cfg = hpet_readl(HPET_Tn_CFG(timer));
305 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
306 HPET_TN_32BIT;
307 hpet_writel(cfg, HPET_Tn_CFG(timer));
308 hpet_writel(cmp, HPET_Tn_CMP(timer));
309 udelay(1);
310 /*
311 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
312 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
313 * bit is automatically cleared after the first write.
314 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
315 * Publication # 24674)
316 */
317 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
318 hpet_start_counter();
319 hpet_print_config();
320
321 return 0;
322 }
323
324 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
325 {
326 unsigned int cfg;
327
328 cfg = hpet_readl(HPET_Tn_CFG(timer));
329 cfg &= ~HPET_TN_PERIODIC;
330 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
331 hpet_writel(cfg, HPET_Tn_CFG(timer));
332
333 return 0;
334 }
335
336 static int hpet_shutdown(struct clock_event_device *evt, int timer)
337 {
338 unsigned int cfg;
339
340 cfg = hpet_readl(HPET_Tn_CFG(timer));
341 cfg &= ~HPET_TN_ENABLE;
342 hpet_writel(cfg, HPET_Tn_CFG(timer));
343
344 return 0;
345 }
346
347 static int hpet_resume(struct clock_event_device *evt, int timer)
348 {
349 if (!timer) {
350 hpet_enable_legacy_int();
351 } else {
352 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
353
354 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
355 disable_irq(hdev->irq);
356 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
357 enable_irq(hdev->irq);
358 }
359 hpet_print_config();
360
361 return 0;
362 }
363
364 static int hpet_next_event(unsigned long delta,
365 struct clock_event_device *evt, int timer)
366 {
367 u32 cnt;
368 s32 res;
369
370 cnt = hpet_readl(HPET_COUNTER);
371 cnt += (u32) delta;
372 hpet_writel(cnt, HPET_Tn_CMP(timer));
373
374 /*
375 * HPETs are a complete disaster. The compare register is
376 * based on a equal comparison and neither provides a less
377 * than or equal functionality (which would require to take
378 * the wraparound into account) nor a simple count down event
379 * mode. Further the write to the comparator register is
380 * delayed internally up to two HPET clock cycles in certain
381 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
382 * longer delays. We worked around that by reading back the
383 * compare register, but that required another workaround for
384 * ICH9,10 chips where the first readout after write can
385 * return the old stale value. We already had a minimum
386 * programming delta of 5us enforced, but a NMI or SMI hitting
387 * between the counter readout and the comparator write can
388 * move us behind that point easily. Now instead of reading
389 * the compare register back several times, we make the ETIME
390 * decision based on the following: Return ETIME if the
391 * counter value after the write is less than HPET_MIN_CYCLES
392 * away from the event or if the counter is already ahead of
393 * the event. The minimum programming delta for the generic
394 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
395 */
396 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
397
398 return res < HPET_MIN_CYCLES ? -ETIME : 0;
399 }
400
401 static int hpet_legacy_shutdown(struct clock_event_device *evt)
402 {
403 return hpet_shutdown(evt, 0);
404 }
405
406 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
407 {
408 return hpet_set_oneshot(evt, 0);
409 }
410
411 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
412 {
413 return hpet_set_periodic(evt, 0);
414 }
415
416 static int hpet_legacy_resume(struct clock_event_device *evt)
417 {
418 return hpet_resume(evt, 0);
419 }
420
421 static int hpet_legacy_next_event(unsigned long delta,
422 struct clock_event_device *evt)
423 {
424 return hpet_next_event(delta, evt, 0);
425 }
426
427 /*
428 * The hpet clock event device
429 */
430 static struct clock_event_device hpet_clockevent = {
431 .name = "hpet",
432 .features = CLOCK_EVT_FEAT_PERIODIC |
433 CLOCK_EVT_FEAT_ONESHOT,
434 .set_state_periodic = hpet_legacy_set_periodic,
435 .set_state_oneshot = hpet_legacy_set_oneshot,
436 .set_state_shutdown = hpet_legacy_shutdown,
437 .tick_resume = hpet_legacy_resume,
438 .set_next_event = hpet_legacy_next_event,
439 .irq = 0,
440 .rating = 50,
441 };
442
443 /*
444 * HPET MSI Support
445 */
446 #ifdef CONFIG_PCI_MSI
447
448 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
449 static struct hpet_dev *hpet_devs;
450 static struct irq_domain *hpet_domain;
451
452 void hpet_msi_unmask(struct irq_data *data)
453 {
454 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
455 unsigned int cfg;
456
457 /* unmask it */
458 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
459 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
460 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
461 }
462
463 void hpet_msi_mask(struct irq_data *data)
464 {
465 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
466 unsigned int cfg;
467
468 /* mask it */
469 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
470 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
471 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
472 }
473
474 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
475 {
476 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
477 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
478 }
479
480 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
481 {
482 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
483 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
484 msg->address_hi = 0;
485 }
486
487 static int hpet_msi_shutdown(struct clock_event_device *evt)
488 {
489 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
490
491 return hpet_shutdown(evt, hdev->num);
492 }
493
494 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
495 {
496 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
497
498 return hpet_set_oneshot(evt, hdev->num);
499 }
500
501 static int hpet_msi_set_periodic(struct clock_event_device *evt)
502 {
503 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
504
505 return hpet_set_periodic(evt, hdev->num);
506 }
507
508 static int hpet_msi_resume(struct clock_event_device *evt)
509 {
510 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
511
512 return hpet_resume(evt, hdev->num);
513 }
514
515 static int hpet_msi_next_event(unsigned long delta,
516 struct clock_event_device *evt)
517 {
518 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
519 return hpet_next_event(delta, evt, hdev->num);
520 }
521
522 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
523 {
524 struct hpet_dev *dev = (struct hpet_dev *)data;
525 struct clock_event_device *hevt = &dev->evt;
526
527 if (!hevt->event_handler) {
528 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
529 dev->num);
530 return IRQ_HANDLED;
531 }
532
533 hevt->event_handler(hevt);
534 return IRQ_HANDLED;
535 }
536
537 static int hpet_setup_irq(struct hpet_dev *dev)
538 {
539
540 if (request_irq(dev->irq, hpet_interrupt_handler,
541 IRQF_TIMER | IRQF_NOBALANCING,
542 dev->name, dev))
543 return -1;
544
545 disable_irq(dev->irq);
546 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
547 enable_irq(dev->irq);
548
549 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
550 dev->name, dev->irq);
551
552 return 0;
553 }
554
555 /* This should be called in specific @cpu */
556 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
557 {
558 struct clock_event_device *evt = &hdev->evt;
559
560 WARN_ON(cpu != smp_processor_id());
561 if (!(hdev->flags & HPET_DEV_VALID))
562 return;
563
564 hdev->cpu = cpu;
565 per_cpu(cpu_hpet_dev, cpu) = hdev;
566 evt->name = hdev->name;
567 hpet_setup_irq(hdev);
568 evt->irq = hdev->irq;
569
570 evt->rating = 110;
571 evt->features = CLOCK_EVT_FEAT_ONESHOT;
572 if (hdev->flags & HPET_DEV_PERI_CAP) {
573 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
574 evt->set_state_periodic = hpet_msi_set_periodic;
575 }
576
577 evt->set_state_shutdown = hpet_msi_shutdown;
578 evt->set_state_oneshot = hpet_msi_set_oneshot;
579 evt->tick_resume = hpet_msi_resume;
580 evt->set_next_event = hpet_msi_next_event;
581 evt->cpumask = cpumask_of(hdev->cpu);
582
583 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
584 0x7FFFFFFF);
585 }
586
587 #ifdef CONFIG_HPET
588 /* Reserve at least one timer for userspace (/dev/hpet) */
589 #define RESERVE_TIMERS 1
590 #else
591 #define RESERVE_TIMERS 0
592 #endif
593
594 static void hpet_msi_capability_lookup(unsigned int start_timer)
595 {
596 unsigned int id;
597 unsigned int num_timers;
598 unsigned int num_timers_used = 0;
599 int i, irq;
600
601 if (hpet_msi_disable)
602 return;
603
604 if (boot_cpu_has(X86_FEATURE_ARAT))
605 return;
606 id = hpet_readl(HPET_ID);
607
608 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
609 num_timers++; /* Value read out starts from 0 */
610 hpet_print_config();
611
612 hpet_domain = hpet_create_irq_domain(hpet_blockid);
613 if (!hpet_domain)
614 return;
615
616 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
617 if (!hpet_devs)
618 return;
619
620 hpet_num_timers = num_timers;
621
622 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
623 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
624 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
625
626 /* Only consider HPET timer with MSI support */
627 if (!(cfg & HPET_TN_FSB_CAP))
628 continue;
629
630 hdev->flags = 0;
631 if (cfg & HPET_TN_PERIODIC_CAP)
632 hdev->flags |= HPET_DEV_PERI_CAP;
633 sprintf(hdev->name, "hpet%d", i);
634 hdev->num = i;
635
636 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
637 if (irq <= 0)
638 continue;
639
640 hdev->irq = irq;
641 hdev->flags |= HPET_DEV_FSB_CAP;
642 hdev->flags |= HPET_DEV_VALID;
643 num_timers_used++;
644 if (num_timers_used == num_possible_cpus())
645 break;
646 }
647
648 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
649 num_timers, num_timers_used);
650 }
651
652 #ifdef CONFIG_HPET
653 static void hpet_reserve_msi_timers(struct hpet_data *hd)
654 {
655 int i;
656
657 if (!hpet_devs)
658 return;
659
660 for (i = 0; i < hpet_num_timers; i++) {
661 struct hpet_dev *hdev = &hpet_devs[i];
662
663 if (!(hdev->flags & HPET_DEV_VALID))
664 continue;
665
666 hd->hd_irq[hdev->num] = hdev->irq;
667 hpet_reserve_timer(hd, hdev->num);
668 }
669 }
670 #endif
671
672 static struct hpet_dev *hpet_get_unused_timer(void)
673 {
674 int i;
675
676 if (!hpet_devs)
677 return NULL;
678
679 for (i = 0; i < hpet_num_timers; i++) {
680 struct hpet_dev *hdev = &hpet_devs[i];
681
682 if (!(hdev->flags & HPET_DEV_VALID))
683 continue;
684 if (test_and_set_bit(HPET_DEV_USED_BIT,
685 (unsigned long *)&hdev->flags))
686 continue;
687 return hdev;
688 }
689 return NULL;
690 }
691
692 struct hpet_work_struct {
693 struct delayed_work work;
694 struct completion complete;
695 };
696
697 static void hpet_work(struct work_struct *w)
698 {
699 struct hpet_dev *hdev;
700 int cpu = smp_processor_id();
701 struct hpet_work_struct *hpet_work;
702
703 hpet_work = container_of(w, struct hpet_work_struct, work.work);
704
705 hdev = hpet_get_unused_timer();
706 if (hdev)
707 init_one_hpet_msi_clockevent(hdev, cpu);
708
709 complete(&hpet_work->complete);
710 }
711
712 static int hpet_cpuhp_notify(struct notifier_block *n,
713 unsigned long action, void *hcpu)
714 {
715 unsigned long cpu = (unsigned long)hcpu;
716 struct hpet_work_struct work;
717 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
718
719 switch (action & 0xf) {
720 case CPU_ONLINE:
721 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
722 init_completion(&work.complete);
723 /* FIXME: add schedule_work_on() */
724 schedule_delayed_work_on(cpu, &work.work, 0);
725 wait_for_completion(&work.complete);
726 destroy_delayed_work_on_stack(&work.work);
727 break;
728 case CPU_DEAD:
729 if (hdev) {
730 free_irq(hdev->irq, hdev);
731 hdev->flags &= ~HPET_DEV_USED;
732 per_cpu(cpu_hpet_dev, cpu) = NULL;
733 }
734 break;
735 }
736 return NOTIFY_OK;
737 }
738 #else
739
740 static void hpet_msi_capability_lookup(unsigned int start_timer)
741 {
742 return;
743 }
744
745 #ifdef CONFIG_HPET
746 static void hpet_reserve_msi_timers(struct hpet_data *hd)
747 {
748 return;
749 }
750 #endif
751
752 static int hpet_cpuhp_notify(struct notifier_block *n,
753 unsigned long action, void *hcpu)
754 {
755 return NOTIFY_OK;
756 }
757
758 #endif
759
760 /*
761 * Clock source related code
762 */
763 static cycle_t read_hpet(struct clocksource *cs)
764 {
765 return (cycle_t)hpet_readl(HPET_COUNTER);
766 }
767
768 static struct clocksource clocksource_hpet = {
769 .name = "hpet",
770 .rating = 250,
771 .read = read_hpet,
772 .mask = HPET_MASK,
773 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
774 .resume = hpet_resume_counter,
775 .archdata = { .vclock_mode = VCLOCK_HPET },
776 };
777
778 static int hpet_clocksource_register(void)
779 {
780 u64 start, now;
781 cycle_t t1;
782
783 /* Start the counter */
784 hpet_restart_counter();
785
786 /* Verify whether hpet counter works */
787 t1 = hpet_readl(HPET_COUNTER);
788 start = rdtsc();
789
790 /*
791 * We don't know the TSC frequency yet, but waiting for
792 * 200000 TSC cycles is safe:
793 * 4 GHz == 50us
794 * 1 GHz == 200us
795 */
796 do {
797 rep_nop();
798 now = rdtsc();
799 } while ((now - start) < 200000UL);
800
801 if (t1 == hpet_readl(HPET_COUNTER)) {
802 printk(KERN_WARNING
803 "HPET counter not counting. HPET disabled\n");
804 return -ENODEV;
805 }
806
807 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
808 return 0;
809 }
810
811 static u32 *hpet_boot_cfg;
812
813 /**
814 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
815 */
816 int __init hpet_enable(void)
817 {
818 u32 hpet_period, cfg, id;
819 u64 freq;
820 unsigned int i, last;
821
822 if (!is_hpet_capable())
823 return 0;
824
825 hpet_set_mapping();
826
827 /*
828 * Read the period and check for a sane value:
829 */
830 hpet_period = hpet_readl(HPET_PERIOD);
831
832 /*
833 * AMD SB700 based systems with spread spectrum enabled use a
834 * SMM based HPET emulation to provide proper frequency
835 * setting. The SMM code is initialized with the first HPET
836 * register access and takes some time to complete. During
837 * this time the config register reads 0xffffffff. We check
838 * for max. 1000 loops whether the config register reads a non
839 * 0xffffffff value to make sure that HPET is up and running
840 * before we go further. A counting loop is safe, as the HPET
841 * access takes thousands of CPU cycles. On non SB700 based
842 * machines this check is only done once and has no side
843 * effects.
844 */
845 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
846 if (i == 1000) {
847 printk(KERN_WARNING
848 "HPET config register value = 0xFFFFFFFF. "
849 "Disabling HPET\n");
850 goto out_nohpet;
851 }
852 }
853
854 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
855 goto out_nohpet;
856
857 /*
858 * The period is a femto seconds value. Convert it to a
859 * frequency.
860 */
861 freq = FSEC_PER_SEC;
862 do_div(freq, hpet_period);
863 hpet_freq = freq;
864
865 /*
866 * Read the HPET ID register to retrieve the IRQ routing
867 * information and the number of channels
868 */
869 id = hpet_readl(HPET_ID);
870 hpet_print_config();
871
872 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
873
874 #ifdef CONFIG_HPET_EMULATE_RTC
875 /*
876 * The legacy routing mode needs at least two channels, tick timer
877 * and the rtc emulation channel.
878 */
879 if (!last)
880 goto out_nohpet;
881 #endif
882
883 cfg = hpet_readl(HPET_CFG);
884 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
885 GFP_KERNEL);
886 if (hpet_boot_cfg)
887 *hpet_boot_cfg = cfg;
888 else
889 pr_warn("HPET initial state will not be saved\n");
890 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
891 hpet_writel(cfg, HPET_CFG);
892 if (cfg)
893 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
894 cfg);
895
896 for (i = 0; i <= last; ++i) {
897 cfg = hpet_readl(HPET_Tn_CFG(i));
898 if (hpet_boot_cfg)
899 hpet_boot_cfg[i + 1] = cfg;
900 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
901 hpet_writel(cfg, HPET_Tn_CFG(i));
902 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
903 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
904 | HPET_TN_FSB | HPET_TN_FSB_CAP);
905 if (cfg)
906 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
907 cfg, i);
908 }
909 hpet_print_config();
910
911 if (hpet_clocksource_register())
912 goto out_nohpet;
913
914 if (id & HPET_ID_LEGSUP) {
915 hpet_legacy_clockevent_register();
916 return 1;
917 }
918 return 0;
919
920 out_nohpet:
921 hpet_clear_mapping();
922 hpet_address = 0;
923 return 0;
924 }
925
926 /*
927 * Needs to be late, as the reserve_timer code calls kalloc !
928 *
929 * Not a problem on i386 as hpet_enable is called from late_time_init,
930 * but on x86_64 it is necessary !
931 */
932 static __init int hpet_late_init(void)
933 {
934 int cpu;
935
936 if (boot_hpet_disable)
937 return -ENODEV;
938
939 if (!hpet_address) {
940 if (!force_hpet_address)
941 return -ENODEV;
942
943 hpet_address = force_hpet_address;
944 hpet_enable();
945 }
946
947 if (!hpet_virt_address)
948 return -ENODEV;
949
950 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
951 hpet_msi_capability_lookup(2);
952 else
953 hpet_msi_capability_lookup(0);
954
955 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
956 hpet_print_config();
957
958 if (hpet_msi_disable)
959 return 0;
960
961 if (boot_cpu_has(X86_FEATURE_ARAT))
962 return 0;
963
964 cpu_notifier_register_begin();
965 for_each_online_cpu(cpu) {
966 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
967 }
968
969 /* This notifier should be called after workqueue is ready */
970 __hotcpu_notifier(hpet_cpuhp_notify, -20);
971 cpu_notifier_register_done();
972
973 return 0;
974 }
975 fs_initcall(hpet_late_init);
976
977 void hpet_disable(void)
978 {
979 if (is_hpet_capable() && hpet_virt_address) {
980 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
981
982 if (hpet_boot_cfg)
983 cfg = *hpet_boot_cfg;
984 else if (hpet_legacy_int_enabled) {
985 cfg &= ~HPET_CFG_LEGACY;
986 hpet_legacy_int_enabled = false;
987 }
988 cfg &= ~HPET_CFG_ENABLE;
989 hpet_writel(cfg, HPET_CFG);
990
991 if (!hpet_boot_cfg)
992 return;
993
994 id = hpet_readl(HPET_ID);
995 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
996
997 for (id = 0; id <= last; ++id)
998 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
999
1000 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1001 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1002 }
1003 }
1004
1005 #ifdef CONFIG_HPET_EMULATE_RTC
1006
1007 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1008 * is enabled, we support RTC interrupt functionality in software.
1009 * RTC has 3 kinds of interrupts:
1010 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1011 * is updated
1012 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1013 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1014 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1015 * (1) and (2) above are implemented using polling at a frequency of
1016 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1017 * overhead. (DEFAULT_RTC_INT_FREQ)
1018 * For (3), we use interrupts at 64Hz or user specified periodic
1019 * frequency, whichever is higher.
1020 */
1021 #include <linux/mc146818rtc.h>
1022 #include <linux/rtc.h>
1023 #include <asm/rtc.h>
1024
1025 #define DEFAULT_RTC_INT_FREQ 64
1026 #define DEFAULT_RTC_SHIFT 6
1027 #define RTC_NUM_INTS 1
1028
1029 static unsigned long hpet_rtc_flags;
1030 static int hpet_prev_update_sec;
1031 static struct rtc_time hpet_alarm_time;
1032 static unsigned long hpet_pie_count;
1033 static u32 hpet_t1_cmp;
1034 static u32 hpet_default_delta;
1035 static u32 hpet_pie_delta;
1036 static unsigned long hpet_pie_limit;
1037
1038 static rtc_irq_handler irq_handler;
1039
1040 /*
1041 * Check that the hpet counter c1 is ahead of the c2
1042 */
1043 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1044 {
1045 return (s32)(c2 - c1) < 0;
1046 }
1047
1048 /*
1049 * Registers a IRQ handler.
1050 */
1051 int hpet_register_irq_handler(rtc_irq_handler handler)
1052 {
1053 if (!is_hpet_enabled())
1054 return -ENODEV;
1055 if (irq_handler)
1056 return -EBUSY;
1057
1058 irq_handler = handler;
1059
1060 return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1063
1064 /*
1065 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1066 * and does cleanup.
1067 */
1068 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1069 {
1070 if (!is_hpet_enabled())
1071 return;
1072
1073 irq_handler = NULL;
1074 hpet_rtc_flags = 0;
1075 }
1076 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1077
1078 /*
1079 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1080 * is not supported by all HPET implementations for timer 1.
1081 *
1082 * hpet_rtc_timer_init() is called when the rtc is initialized.
1083 */
1084 int hpet_rtc_timer_init(void)
1085 {
1086 unsigned int cfg, cnt, delta;
1087 unsigned long flags;
1088
1089 if (!is_hpet_enabled())
1090 return 0;
1091
1092 if (!hpet_default_delta) {
1093 uint64_t clc;
1094
1095 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1096 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1097 hpet_default_delta = clc;
1098 }
1099
1100 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1101 delta = hpet_default_delta;
1102 else
1103 delta = hpet_pie_delta;
1104
1105 local_irq_save(flags);
1106
1107 cnt = delta + hpet_readl(HPET_COUNTER);
1108 hpet_writel(cnt, HPET_T1_CMP);
1109 hpet_t1_cmp = cnt;
1110
1111 cfg = hpet_readl(HPET_T1_CFG);
1112 cfg &= ~HPET_TN_PERIODIC;
1113 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1114 hpet_writel(cfg, HPET_T1_CFG);
1115
1116 local_irq_restore(flags);
1117
1118 return 1;
1119 }
1120 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1121
1122 static void hpet_disable_rtc_channel(void)
1123 {
1124 u32 cfg = hpet_readl(HPET_T1_CFG);
1125 cfg &= ~HPET_TN_ENABLE;
1126 hpet_writel(cfg, HPET_T1_CFG);
1127 }
1128
1129 /*
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1133 */
1134 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135 {
1136 if (!is_hpet_enabled())
1137 return 0;
1138
1139 hpet_rtc_flags &= ~bit_mask;
1140 if (unlikely(!hpet_rtc_flags))
1141 hpet_disable_rtc_channel();
1142
1143 return 1;
1144 }
1145 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1146
1147 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148 {
1149 unsigned long oldbits = hpet_rtc_flags;
1150
1151 if (!is_hpet_enabled())
1152 return 0;
1153
1154 hpet_rtc_flags |= bit_mask;
1155
1156 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157 hpet_prev_update_sec = -1;
1158
1159 if (!oldbits)
1160 hpet_rtc_timer_init();
1161
1162 return 1;
1163 }
1164 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1165
1166 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1167 unsigned char sec)
1168 {
1169 if (!is_hpet_enabled())
1170 return 0;
1171
1172 hpet_alarm_time.tm_hour = hrs;
1173 hpet_alarm_time.tm_min = min;
1174 hpet_alarm_time.tm_sec = sec;
1175
1176 return 1;
1177 }
1178 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1179
1180 int hpet_set_periodic_freq(unsigned long freq)
1181 {
1182 uint64_t clc;
1183
1184 if (!is_hpet_enabled())
1185 return 0;
1186
1187 if (freq <= DEFAULT_RTC_INT_FREQ)
1188 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1189 else {
1190 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1191 do_div(clc, freq);
1192 clc >>= hpet_clockevent.shift;
1193 hpet_pie_delta = clc;
1194 hpet_pie_limit = 0;
1195 }
1196 return 1;
1197 }
1198 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1199
1200 int hpet_rtc_dropped_irq(void)
1201 {
1202 return is_hpet_enabled();
1203 }
1204 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1205
1206 static void hpet_rtc_timer_reinit(void)
1207 {
1208 unsigned int delta;
1209 int lost_ints = -1;
1210
1211 if (unlikely(!hpet_rtc_flags))
1212 hpet_disable_rtc_channel();
1213
1214 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1215 delta = hpet_default_delta;
1216 else
1217 delta = hpet_pie_delta;
1218
1219 /*
1220 * Increment the comparator value until we are ahead of the
1221 * current count.
1222 */
1223 do {
1224 hpet_t1_cmp += delta;
1225 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1226 lost_ints++;
1227 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1228
1229 if (lost_ints) {
1230 if (hpet_rtc_flags & RTC_PIE)
1231 hpet_pie_count += lost_ints;
1232 if (printk_ratelimit())
1233 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1234 lost_ints);
1235 }
1236 }
1237
1238 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1239 {
1240 struct rtc_time curr_time;
1241 unsigned long rtc_int_flag = 0;
1242
1243 hpet_rtc_timer_reinit();
1244 memset(&curr_time, 0, sizeof(struct rtc_time));
1245
1246 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1247 get_rtc_time(&curr_time);
1248
1249 if (hpet_rtc_flags & RTC_UIE &&
1250 curr_time.tm_sec != hpet_prev_update_sec) {
1251 if (hpet_prev_update_sec >= 0)
1252 rtc_int_flag = RTC_UF;
1253 hpet_prev_update_sec = curr_time.tm_sec;
1254 }
1255
1256 if (hpet_rtc_flags & RTC_PIE &&
1257 ++hpet_pie_count >= hpet_pie_limit) {
1258 rtc_int_flag |= RTC_PF;
1259 hpet_pie_count = 0;
1260 }
1261
1262 if (hpet_rtc_flags & RTC_AIE &&
1263 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266 rtc_int_flag |= RTC_AF;
1267
1268 if (rtc_int_flag) {
1269 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1270 if (irq_handler)
1271 irq_handler(rtc_int_flag, dev_id);
1272 }
1273 return IRQ_HANDLED;
1274 }
1275 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1276 #endif