]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kernel/hpet.c
Merge tag 'sh-pfc-for-v5.1-tag2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/export.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/irqdomain.h>
18 #include <asm/fixmap.h>
19 #include <asm/hpet.h>
20 #include <asm/time.h>
21
22 #define HPET_MASK CLOCKSOURCE_MASK(32)
23
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
29
30 #define HPET_MIN_CYCLES 128
31 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32
33 /*
34 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 */
36 unsigned long hpet_address;
37 u8 hpet_blockid; /* OS timer block num */
38 bool hpet_msi_disable;
39
40 #ifdef CONFIG_PCI_MSI
41 static unsigned int hpet_num_timers;
42 #endif
43 static void __iomem *hpet_virt_address;
44
45 struct hpet_dev {
46 struct clock_event_device evt;
47 unsigned int num;
48 int cpu;
49 unsigned int irq;
50 unsigned int flags;
51 char name[10];
52 };
53
54 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
55 {
56 return container_of(evtdev, struct hpet_dev, evt);
57 }
58
59 inline unsigned int hpet_readl(unsigned int a)
60 {
61 return readl(hpet_virt_address + a);
62 }
63
64 static inline void hpet_writel(unsigned int d, unsigned int a)
65 {
66 writel(d, hpet_virt_address + a);
67 }
68
69 #ifdef CONFIG_X86_64
70 #include <asm/pgtable.h>
71 #endif
72
73 static inline void hpet_set_mapping(void)
74 {
75 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
76 }
77
78 static inline void hpet_clear_mapping(void)
79 {
80 iounmap(hpet_virt_address);
81 hpet_virt_address = NULL;
82 }
83
84 /*
85 * HPET command line enable / disable
86 */
87 bool boot_hpet_disable;
88 bool hpet_force_user;
89 static bool hpet_verbose;
90
91 static int __init hpet_setup(char *str)
92 {
93 while (str) {
94 char *next = strchr(str, ',');
95
96 if (next)
97 *next++ = 0;
98 if (!strncmp("disable", str, 7))
99 boot_hpet_disable = true;
100 if (!strncmp("force", str, 5))
101 hpet_force_user = true;
102 if (!strncmp("verbose", str, 7))
103 hpet_verbose = true;
104 str = next;
105 }
106 return 1;
107 }
108 __setup("hpet=", hpet_setup);
109
110 static int __init disable_hpet(char *str)
111 {
112 boot_hpet_disable = true;
113 return 1;
114 }
115 __setup("nohpet", disable_hpet);
116
117 static inline int is_hpet_capable(void)
118 {
119 return !boot_hpet_disable && hpet_address;
120 }
121
122 /*
123 * HPET timer interrupt enable / disable
124 */
125 static bool hpet_legacy_int_enabled;
126
127 /**
128 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
129 */
130 int is_hpet_enabled(void)
131 {
132 return is_hpet_capable() && hpet_legacy_int_enabled;
133 }
134 EXPORT_SYMBOL_GPL(is_hpet_enabled);
135
136 static void _hpet_print_config(const char *function, int line)
137 {
138 u32 i, timers, l, h;
139 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
140 l = hpet_readl(HPET_ID);
141 h = hpet_readl(HPET_PERIOD);
142 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
143 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
144 l = hpet_readl(HPET_CFG);
145 h = hpet_readl(HPET_STATUS);
146 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
147 l = hpet_readl(HPET_COUNTER);
148 h = hpet_readl(HPET_COUNTER+4);
149 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
150
151 for (i = 0; i < timers; i++) {
152 l = hpet_readl(HPET_Tn_CFG(i));
153 h = hpet_readl(HPET_Tn_CFG(i)+4);
154 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
155 i, l, h);
156 l = hpet_readl(HPET_Tn_CMP(i));
157 h = hpet_readl(HPET_Tn_CMP(i)+4);
158 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
159 i, l, h);
160 l = hpet_readl(HPET_Tn_ROUTE(i));
161 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
162 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
163 i, l, h);
164 }
165 }
166
167 #define hpet_print_config() \
168 do { \
169 if (hpet_verbose) \
170 _hpet_print_config(__func__, __LINE__); \
171 } while (0)
172
173 /*
174 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
175 * timer 0 and timer 1 in case of RTC emulation.
176 */
177 #ifdef CONFIG_HPET
178
179 static void hpet_reserve_msi_timers(struct hpet_data *hd);
180
181 static void hpet_reserve_platform_timers(unsigned int id)
182 {
183 struct hpet __iomem *hpet = hpet_virt_address;
184 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
185 unsigned int nrtimers, i;
186 struct hpet_data hd;
187
188 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
189
190 memset(&hd, 0, sizeof(hd));
191 hd.hd_phys_address = hpet_address;
192 hd.hd_address = hpet;
193 hd.hd_nirqs = nrtimers;
194 hpet_reserve_timer(&hd, 0);
195
196 #ifdef CONFIG_HPET_EMULATE_RTC
197 hpet_reserve_timer(&hd, 1);
198 #endif
199
200 /*
201 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
202 * is wrong for i8259!) not the output IRQ. Many BIOS writers
203 * don't bother configuring *any* comparator interrupts.
204 */
205 hd.hd_irq[0] = HPET_LEGACY_8254;
206 hd.hd_irq[1] = HPET_LEGACY_RTC;
207
208 for (i = 2; i < nrtimers; timer++, i++) {
209 hd.hd_irq[i] = (readl(&timer->hpet_config) &
210 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
211 }
212
213 hpet_reserve_msi_timers(&hd);
214
215 hpet_alloc(&hd);
216
217 }
218 #else
219 static void hpet_reserve_platform_timers(unsigned int id) { }
220 #endif
221
222 /*
223 * Common hpet info
224 */
225 static unsigned long hpet_freq;
226
227 static struct clock_event_device hpet_clockevent;
228
229 static void hpet_stop_counter(void)
230 {
231 u32 cfg = hpet_readl(HPET_CFG);
232 cfg &= ~HPET_CFG_ENABLE;
233 hpet_writel(cfg, HPET_CFG);
234 }
235
236 static void hpet_reset_counter(void)
237 {
238 hpet_writel(0, HPET_COUNTER);
239 hpet_writel(0, HPET_COUNTER + 4);
240 }
241
242 static void hpet_start_counter(void)
243 {
244 unsigned int cfg = hpet_readl(HPET_CFG);
245 cfg |= HPET_CFG_ENABLE;
246 hpet_writel(cfg, HPET_CFG);
247 }
248
249 static void hpet_restart_counter(void)
250 {
251 hpet_stop_counter();
252 hpet_reset_counter();
253 hpet_start_counter();
254 }
255
256 static void hpet_resume_device(void)
257 {
258 force_hpet_resume();
259 }
260
261 static void hpet_resume_counter(struct clocksource *cs)
262 {
263 hpet_resume_device();
264 hpet_restart_counter();
265 }
266
267 static void hpet_enable_legacy_int(void)
268 {
269 unsigned int cfg = hpet_readl(HPET_CFG);
270
271 cfg |= HPET_CFG_LEGACY;
272 hpet_writel(cfg, HPET_CFG);
273 hpet_legacy_int_enabled = true;
274 }
275
276 static void hpet_legacy_clockevent_register(void)
277 {
278 /* Start HPET legacy interrupts */
279 hpet_enable_legacy_int();
280
281 /*
282 * Start hpet with the boot cpu mask and make it
283 * global after the IO_APIC has been initialized.
284 */
285 hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
286 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
287 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
288 global_clock_event = &hpet_clockevent;
289 printk(KERN_DEBUG "hpet clockevent registered\n");
290 }
291
292 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
293 {
294 unsigned int cfg, cmp, now;
295 uint64_t delta;
296
297 hpet_stop_counter();
298 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
299 delta >>= evt->shift;
300 now = hpet_readl(HPET_COUNTER);
301 cmp = now + (unsigned int)delta;
302 cfg = hpet_readl(HPET_Tn_CFG(timer));
303 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
304 HPET_TN_32BIT;
305 hpet_writel(cfg, HPET_Tn_CFG(timer));
306 hpet_writel(cmp, HPET_Tn_CMP(timer));
307 udelay(1);
308 /*
309 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
310 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
311 * bit is automatically cleared after the first write.
312 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
313 * Publication # 24674)
314 */
315 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
316 hpet_start_counter();
317 hpet_print_config();
318
319 return 0;
320 }
321
322 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
323 {
324 unsigned int cfg;
325
326 cfg = hpet_readl(HPET_Tn_CFG(timer));
327 cfg &= ~HPET_TN_PERIODIC;
328 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
329 hpet_writel(cfg, HPET_Tn_CFG(timer));
330
331 return 0;
332 }
333
334 static int hpet_shutdown(struct clock_event_device *evt, int timer)
335 {
336 unsigned int cfg;
337
338 cfg = hpet_readl(HPET_Tn_CFG(timer));
339 cfg &= ~HPET_TN_ENABLE;
340 hpet_writel(cfg, HPET_Tn_CFG(timer));
341
342 return 0;
343 }
344
345 static int hpet_resume(struct clock_event_device *evt)
346 {
347 hpet_enable_legacy_int();
348 hpet_print_config();
349 return 0;
350 }
351
352 static int hpet_next_event(unsigned long delta,
353 struct clock_event_device *evt, int timer)
354 {
355 u32 cnt;
356 s32 res;
357
358 cnt = hpet_readl(HPET_COUNTER);
359 cnt += (u32) delta;
360 hpet_writel(cnt, HPET_Tn_CMP(timer));
361
362 /*
363 * HPETs are a complete disaster. The compare register is
364 * based on a equal comparison and neither provides a less
365 * than or equal functionality (which would require to take
366 * the wraparound into account) nor a simple count down event
367 * mode. Further the write to the comparator register is
368 * delayed internally up to two HPET clock cycles in certain
369 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
370 * longer delays. We worked around that by reading back the
371 * compare register, but that required another workaround for
372 * ICH9,10 chips where the first readout after write can
373 * return the old stale value. We already had a minimum
374 * programming delta of 5us enforced, but a NMI or SMI hitting
375 * between the counter readout and the comparator write can
376 * move us behind that point easily. Now instead of reading
377 * the compare register back several times, we make the ETIME
378 * decision based on the following: Return ETIME if the
379 * counter value after the write is less than HPET_MIN_CYCLES
380 * away from the event or if the counter is already ahead of
381 * the event. The minimum programming delta for the generic
382 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
383 */
384 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
385
386 return res < HPET_MIN_CYCLES ? -ETIME : 0;
387 }
388
389 static int hpet_legacy_shutdown(struct clock_event_device *evt)
390 {
391 return hpet_shutdown(evt, 0);
392 }
393
394 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
395 {
396 return hpet_set_oneshot(evt, 0);
397 }
398
399 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
400 {
401 return hpet_set_periodic(evt, 0);
402 }
403
404 static int hpet_legacy_resume(struct clock_event_device *evt)
405 {
406 return hpet_resume(evt);
407 }
408
409 static int hpet_legacy_next_event(unsigned long delta,
410 struct clock_event_device *evt)
411 {
412 return hpet_next_event(delta, evt, 0);
413 }
414
415 /*
416 * The hpet clock event device
417 */
418 static struct clock_event_device hpet_clockevent = {
419 .name = "hpet",
420 .features = CLOCK_EVT_FEAT_PERIODIC |
421 CLOCK_EVT_FEAT_ONESHOT,
422 .set_state_periodic = hpet_legacy_set_periodic,
423 .set_state_oneshot = hpet_legacy_set_oneshot,
424 .set_state_shutdown = hpet_legacy_shutdown,
425 .tick_resume = hpet_legacy_resume,
426 .set_next_event = hpet_legacy_next_event,
427 .irq = 0,
428 .rating = 50,
429 };
430
431 /*
432 * HPET MSI Support
433 */
434 #ifdef CONFIG_PCI_MSI
435
436 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
437 static struct hpet_dev *hpet_devs;
438 static struct irq_domain *hpet_domain;
439
440 void hpet_msi_unmask(struct irq_data *data)
441 {
442 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
443 unsigned int cfg;
444
445 /* unmask it */
446 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
447 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
448 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449 }
450
451 void hpet_msi_mask(struct irq_data *data)
452 {
453 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
454 unsigned int cfg;
455
456 /* mask it */
457 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
458 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
459 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
460 }
461
462 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
463 {
464 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
465 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
466 }
467
468 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
469 {
470 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
471 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
472 msg->address_hi = 0;
473 }
474
475 static int hpet_msi_shutdown(struct clock_event_device *evt)
476 {
477 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
478
479 return hpet_shutdown(evt, hdev->num);
480 }
481
482 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
483 {
484 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
485
486 return hpet_set_oneshot(evt, hdev->num);
487 }
488
489 static int hpet_msi_set_periodic(struct clock_event_device *evt)
490 {
491 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492
493 return hpet_set_periodic(evt, hdev->num);
494 }
495
496 static int hpet_msi_resume(struct clock_event_device *evt)
497 {
498 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499 struct irq_data *data = irq_get_irq_data(hdev->irq);
500 struct msi_msg msg;
501
502 /* Restore the MSI msg and unmask the interrupt */
503 irq_chip_compose_msi_msg(data, &msg);
504 hpet_msi_write(hdev, &msg);
505 hpet_msi_unmask(data);
506 return 0;
507 }
508
509 static int hpet_msi_next_event(unsigned long delta,
510 struct clock_event_device *evt)
511 {
512 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513 return hpet_next_event(delta, evt, hdev->num);
514 }
515
516 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
517 {
518 struct hpet_dev *dev = (struct hpet_dev *)data;
519 struct clock_event_device *hevt = &dev->evt;
520
521 if (!hevt->event_handler) {
522 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
523 dev->num);
524 return IRQ_HANDLED;
525 }
526
527 hevt->event_handler(hevt);
528 return IRQ_HANDLED;
529 }
530
531 static int hpet_setup_irq(struct hpet_dev *dev)
532 {
533
534 if (request_irq(dev->irq, hpet_interrupt_handler,
535 IRQF_TIMER | IRQF_NOBALANCING,
536 dev->name, dev))
537 return -1;
538
539 disable_irq(dev->irq);
540 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
541 enable_irq(dev->irq);
542
543 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
544 dev->name, dev->irq);
545
546 return 0;
547 }
548
549 /* This should be called in specific @cpu */
550 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
551 {
552 struct clock_event_device *evt = &hdev->evt;
553
554 WARN_ON(cpu != smp_processor_id());
555 if (!(hdev->flags & HPET_DEV_VALID))
556 return;
557
558 hdev->cpu = cpu;
559 per_cpu(cpu_hpet_dev, cpu) = hdev;
560 evt->name = hdev->name;
561 hpet_setup_irq(hdev);
562 evt->irq = hdev->irq;
563
564 evt->rating = 110;
565 evt->features = CLOCK_EVT_FEAT_ONESHOT;
566 if (hdev->flags & HPET_DEV_PERI_CAP) {
567 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
568 evt->set_state_periodic = hpet_msi_set_periodic;
569 }
570
571 evt->set_state_shutdown = hpet_msi_shutdown;
572 evt->set_state_oneshot = hpet_msi_set_oneshot;
573 evt->tick_resume = hpet_msi_resume;
574 evt->set_next_event = hpet_msi_next_event;
575 evt->cpumask = cpumask_of(hdev->cpu);
576
577 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
578 0x7FFFFFFF);
579 }
580
581 #ifdef CONFIG_HPET
582 /* Reserve at least one timer for userspace (/dev/hpet) */
583 #define RESERVE_TIMERS 1
584 #else
585 #define RESERVE_TIMERS 0
586 #endif
587
588 static void hpet_msi_capability_lookup(unsigned int start_timer)
589 {
590 unsigned int id;
591 unsigned int num_timers;
592 unsigned int num_timers_used = 0;
593 int i, irq;
594
595 if (hpet_msi_disable)
596 return;
597
598 if (boot_cpu_has(X86_FEATURE_ARAT))
599 return;
600 id = hpet_readl(HPET_ID);
601
602 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
603 num_timers++; /* Value read out starts from 0 */
604 hpet_print_config();
605
606 hpet_domain = hpet_create_irq_domain(hpet_blockid);
607 if (!hpet_domain)
608 return;
609
610 hpet_devs = kcalloc(num_timers, sizeof(struct hpet_dev), GFP_KERNEL);
611 if (!hpet_devs)
612 return;
613
614 hpet_num_timers = num_timers;
615
616 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
617 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
618 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
619
620 /* Only consider HPET timer with MSI support */
621 if (!(cfg & HPET_TN_FSB_CAP))
622 continue;
623
624 hdev->flags = 0;
625 if (cfg & HPET_TN_PERIODIC_CAP)
626 hdev->flags |= HPET_DEV_PERI_CAP;
627 sprintf(hdev->name, "hpet%d", i);
628 hdev->num = i;
629
630 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
631 if (irq <= 0)
632 continue;
633
634 hdev->irq = irq;
635 hdev->flags |= HPET_DEV_FSB_CAP;
636 hdev->flags |= HPET_DEV_VALID;
637 num_timers_used++;
638 if (num_timers_used == num_possible_cpus())
639 break;
640 }
641
642 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
643 num_timers, num_timers_used);
644 }
645
646 #ifdef CONFIG_HPET
647 static void hpet_reserve_msi_timers(struct hpet_data *hd)
648 {
649 int i;
650
651 if (!hpet_devs)
652 return;
653
654 for (i = 0; i < hpet_num_timers; i++) {
655 struct hpet_dev *hdev = &hpet_devs[i];
656
657 if (!(hdev->flags & HPET_DEV_VALID))
658 continue;
659
660 hd->hd_irq[hdev->num] = hdev->irq;
661 hpet_reserve_timer(hd, hdev->num);
662 }
663 }
664 #endif
665
666 static struct hpet_dev *hpet_get_unused_timer(void)
667 {
668 int i;
669
670 if (!hpet_devs)
671 return NULL;
672
673 for (i = 0; i < hpet_num_timers; i++) {
674 struct hpet_dev *hdev = &hpet_devs[i];
675
676 if (!(hdev->flags & HPET_DEV_VALID))
677 continue;
678 if (test_and_set_bit(HPET_DEV_USED_BIT,
679 (unsigned long *)&hdev->flags))
680 continue;
681 return hdev;
682 }
683 return NULL;
684 }
685
686 struct hpet_work_struct {
687 struct delayed_work work;
688 struct completion complete;
689 };
690
691 static void hpet_work(struct work_struct *w)
692 {
693 struct hpet_dev *hdev;
694 int cpu = smp_processor_id();
695 struct hpet_work_struct *hpet_work;
696
697 hpet_work = container_of(w, struct hpet_work_struct, work.work);
698
699 hdev = hpet_get_unused_timer();
700 if (hdev)
701 init_one_hpet_msi_clockevent(hdev, cpu);
702
703 complete(&hpet_work->complete);
704 }
705
706 static int hpet_cpuhp_online(unsigned int cpu)
707 {
708 struct hpet_work_struct work;
709
710 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
711 init_completion(&work.complete);
712 /* FIXME: add schedule_work_on() */
713 schedule_delayed_work_on(cpu, &work.work, 0);
714 wait_for_completion(&work.complete);
715 destroy_delayed_work_on_stack(&work.work);
716 return 0;
717 }
718
719 static int hpet_cpuhp_dead(unsigned int cpu)
720 {
721 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
722
723 if (!hdev)
724 return 0;
725 free_irq(hdev->irq, hdev);
726 hdev->flags &= ~HPET_DEV_USED;
727 per_cpu(cpu_hpet_dev, cpu) = NULL;
728 return 0;
729 }
730 #else
731
732 static void hpet_msi_capability_lookup(unsigned int start_timer)
733 {
734 return;
735 }
736
737 #ifdef CONFIG_HPET
738 static void hpet_reserve_msi_timers(struct hpet_data *hd)
739 {
740 return;
741 }
742 #endif
743
744 #define hpet_cpuhp_online NULL
745 #define hpet_cpuhp_dead NULL
746
747 #endif
748
749 /*
750 * Clock source related code
751 */
752 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
753 /*
754 * Reading the HPET counter is a very slow operation. If a large number of
755 * CPUs are trying to access the HPET counter simultaneously, it can cause
756 * massive delay and slow down system performance dramatically. This may
757 * happen when HPET is the default clock source instead of TSC. For a
758 * really large system with hundreds of CPUs, the slowdown may be so
759 * severe that it may actually crash the system because of a NMI watchdog
760 * soft lockup, for example.
761 *
762 * If multiple CPUs are trying to access the HPET counter at the same time,
763 * we don't actually need to read the counter multiple times. Instead, the
764 * other CPUs can use the counter value read by the first CPU in the group.
765 *
766 * This special feature is only enabled on x86-64 systems. It is unlikely
767 * that 32-bit x86 systems will have enough CPUs to require this feature
768 * with its associated locking overhead. And we also need 64-bit atomic
769 * read.
770 *
771 * The lock and the hpet value are stored together and can be read in a
772 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
773 * is 32 bits in size.
774 */
775 union hpet_lock {
776 struct {
777 arch_spinlock_t lock;
778 u32 value;
779 };
780 u64 lockval;
781 };
782
783 static union hpet_lock hpet __cacheline_aligned = {
784 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
785 };
786
787 static u64 read_hpet(struct clocksource *cs)
788 {
789 unsigned long flags;
790 union hpet_lock old, new;
791
792 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
793
794 /*
795 * Read HPET directly if in NMI.
796 */
797 if (in_nmi())
798 return (u64)hpet_readl(HPET_COUNTER);
799
800 /*
801 * Read the current state of the lock and HPET value atomically.
802 */
803 old.lockval = READ_ONCE(hpet.lockval);
804
805 if (arch_spin_is_locked(&old.lock))
806 goto contended;
807
808 local_irq_save(flags);
809 if (arch_spin_trylock(&hpet.lock)) {
810 new.value = hpet_readl(HPET_COUNTER);
811 /*
812 * Use WRITE_ONCE() to prevent store tearing.
813 */
814 WRITE_ONCE(hpet.value, new.value);
815 arch_spin_unlock(&hpet.lock);
816 local_irq_restore(flags);
817 return (u64)new.value;
818 }
819 local_irq_restore(flags);
820
821 contended:
822 /*
823 * Contended case
824 * --------------
825 * Wait until the HPET value change or the lock is free to indicate
826 * its value is up-to-date.
827 *
828 * It is possible that old.value has already contained the latest
829 * HPET value while the lock holder was in the process of releasing
830 * the lock. Checking for lock state change will enable us to return
831 * the value immediately instead of waiting for the next HPET reader
832 * to come along.
833 */
834 do {
835 cpu_relax();
836 new.lockval = READ_ONCE(hpet.lockval);
837 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
838
839 return (u64)new.value;
840 }
841 #else
842 /*
843 * For UP or 32-bit.
844 */
845 static u64 read_hpet(struct clocksource *cs)
846 {
847 return (u64)hpet_readl(HPET_COUNTER);
848 }
849 #endif
850
851 static struct clocksource clocksource_hpet = {
852 .name = "hpet",
853 .rating = 250,
854 .read = read_hpet,
855 .mask = HPET_MASK,
856 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
857 .resume = hpet_resume_counter,
858 };
859
860 static int hpet_clocksource_register(void)
861 {
862 u64 start, now;
863 u64 t1;
864
865 /* Start the counter */
866 hpet_restart_counter();
867
868 /* Verify whether hpet counter works */
869 t1 = hpet_readl(HPET_COUNTER);
870 start = rdtsc();
871
872 /*
873 * We don't know the TSC frequency yet, but waiting for
874 * 200000 TSC cycles is safe:
875 * 4 GHz == 50us
876 * 1 GHz == 200us
877 */
878 do {
879 rep_nop();
880 now = rdtsc();
881 } while ((now - start) < 200000UL);
882
883 if (t1 == hpet_readl(HPET_COUNTER)) {
884 printk(KERN_WARNING
885 "HPET counter not counting. HPET disabled\n");
886 return -ENODEV;
887 }
888
889 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
890 return 0;
891 }
892
893 static u32 *hpet_boot_cfg;
894
895 /**
896 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
897 */
898 int __init hpet_enable(void)
899 {
900 u32 hpet_period, cfg, id;
901 u64 freq;
902 unsigned int i, last;
903
904 if (!is_hpet_capable())
905 return 0;
906
907 hpet_set_mapping();
908
909 /*
910 * Read the period and check for a sane value:
911 */
912 hpet_period = hpet_readl(HPET_PERIOD);
913
914 /*
915 * AMD SB700 based systems with spread spectrum enabled use a
916 * SMM based HPET emulation to provide proper frequency
917 * setting. The SMM code is initialized with the first HPET
918 * register access and takes some time to complete. During
919 * this time the config register reads 0xffffffff. We check
920 * for max. 1000 loops whether the config register reads a non
921 * 0xffffffff value to make sure that HPET is up and running
922 * before we go further. A counting loop is safe, as the HPET
923 * access takes thousands of CPU cycles. On non SB700 based
924 * machines this check is only done once and has no side
925 * effects.
926 */
927 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
928 if (i == 1000) {
929 printk(KERN_WARNING
930 "HPET config register value = 0xFFFFFFFF. "
931 "Disabling HPET\n");
932 goto out_nohpet;
933 }
934 }
935
936 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
937 goto out_nohpet;
938
939 /*
940 * The period is a femto seconds value. Convert it to a
941 * frequency.
942 */
943 freq = FSEC_PER_SEC;
944 do_div(freq, hpet_period);
945 hpet_freq = freq;
946
947 /*
948 * Read the HPET ID register to retrieve the IRQ routing
949 * information and the number of channels
950 */
951 id = hpet_readl(HPET_ID);
952 hpet_print_config();
953
954 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
955
956 #ifdef CONFIG_HPET_EMULATE_RTC
957 /*
958 * The legacy routing mode needs at least two channels, tick timer
959 * and the rtc emulation channel.
960 */
961 if (!last)
962 goto out_nohpet;
963 #endif
964
965 cfg = hpet_readl(HPET_CFG);
966 hpet_boot_cfg = kmalloc_array(last + 2, sizeof(*hpet_boot_cfg),
967 GFP_KERNEL);
968 if (hpet_boot_cfg)
969 *hpet_boot_cfg = cfg;
970 else
971 pr_warn("HPET initial state will not be saved\n");
972 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
973 hpet_writel(cfg, HPET_CFG);
974 if (cfg)
975 pr_warn("Unrecognized bits %#x set in global cfg\n", cfg);
976
977 for (i = 0; i <= last; ++i) {
978 cfg = hpet_readl(HPET_Tn_CFG(i));
979 if (hpet_boot_cfg)
980 hpet_boot_cfg[i + 1] = cfg;
981 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
982 hpet_writel(cfg, HPET_Tn_CFG(i));
983 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
984 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
985 | HPET_TN_FSB | HPET_TN_FSB_CAP);
986 if (cfg)
987 pr_warn("Unrecognized bits %#x set in cfg#%u\n",
988 cfg, i);
989 }
990 hpet_print_config();
991
992 if (hpet_clocksource_register())
993 goto out_nohpet;
994
995 if (id & HPET_ID_LEGSUP) {
996 hpet_legacy_clockevent_register();
997 return 1;
998 }
999 return 0;
1000
1001 out_nohpet:
1002 hpet_clear_mapping();
1003 hpet_address = 0;
1004 return 0;
1005 }
1006
1007 /*
1008 * Needs to be late, as the reserve_timer code calls kalloc !
1009 *
1010 * Not a problem on i386 as hpet_enable is called from late_time_init,
1011 * but on x86_64 it is necessary !
1012 */
1013 static __init int hpet_late_init(void)
1014 {
1015 int ret;
1016
1017 if (boot_hpet_disable)
1018 return -ENODEV;
1019
1020 if (!hpet_address) {
1021 if (!force_hpet_address)
1022 return -ENODEV;
1023
1024 hpet_address = force_hpet_address;
1025 hpet_enable();
1026 }
1027
1028 if (!hpet_virt_address)
1029 return -ENODEV;
1030
1031 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1032 hpet_msi_capability_lookup(2);
1033 else
1034 hpet_msi_capability_lookup(0);
1035
1036 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1037 hpet_print_config();
1038
1039 if (hpet_msi_disable)
1040 return 0;
1041
1042 if (boot_cpu_has(X86_FEATURE_ARAT))
1043 return 0;
1044
1045 /* This notifier should be called after workqueue is ready */
1046 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1047 hpet_cpuhp_online, NULL);
1048 if (ret)
1049 return ret;
1050 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1051 hpet_cpuhp_dead);
1052 if (ret)
1053 goto err_cpuhp;
1054 return 0;
1055
1056 err_cpuhp:
1057 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1058 return ret;
1059 }
1060 fs_initcall(hpet_late_init);
1061
1062 void hpet_disable(void)
1063 {
1064 if (is_hpet_capable() && hpet_virt_address) {
1065 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1066
1067 if (hpet_boot_cfg)
1068 cfg = *hpet_boot_cfg;
1069 else if (hpet_legacy_int_enabled) {
1070 cfg &= ~HPET_CFG_LEGACY;
1071 hpet_legacy_int_enabled = false;
1072 }
1073 cfg &= ~HPET_CFG_ENABLE;
1074 hpet_writel(cfg, HPET_CFG);
1075
1076 if (!hpet_boot_cfg)
1077 return;
1078
1079 id = hpet_readl(HPET_ID);
1080 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1081
1082 for (id = 0; id <= last; ++id)
1083 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1084
1085 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1086 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1087 }
1088 }
1089
1090 #ifdef CONFIG_HPET_EMULATE_RTC
1091
1092 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1093 * is enabled, we support RTC interrupt functionality in software.
1094 * RTC has 3 kinds of interrupts:
1095 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1096 * is updated
1097 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1098 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1099 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1100 * (1) and (2) above are implemented using polling at a frequency of
1101 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1102 * overhead. (DEFAULT_RTC_INT_FREQ)
1103 * For (3), we use interrupts at 64Hz or user specified periodic
1104 * frequency, whichever is higher.
1105 */
1106 #include <linux/mc146818rtc.h>
1107 #include <linux/rtc.h>
1108
1109 #define DEFAULT_RTC_INT_FREQ 64
1110 #define DEFAULT_RTC_SHIFT 6
1111 #define RTC_NUM_INTS 1
1112
1113 static unsigned long hpet_rtc_flags;
1114 static int hpet_prev_update_sec;
1115 static struct rtc_time hpet_alarm_time;
1116 static unsigned long hpet_pie_count;
1117 static u32 hpet_t1_cmp;
1118 static u32 hpet_default_delta;
1119 static u32 hpet_pie_delta;
1120 static unsigned long hpet_pie_limit;
1121
1122 static rtc_irq_handler irq_handler;
1123
1124 /*
1125 * Check that the hpet counter c1 is ahead of the c2
1126 */
1127 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1128 {
1129 return (s32)(c2 - c1) < 0;
1130 }
1131
1132 /*
1133 * Registers a IRQ handler.
1134 */
1135 int hpet_register_irq_handler(rtc_irq_handler handler)
1136 {
1137 if (!is_hpet_enabled())
1138 return -ENODEV;
1139 if (irq_handler)
1140 return -EBUSY;
1141
1142 irq_handler = handler;
1143
1144 return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1147
1148 /*
1149 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1150 * and does cleanup.
1151 */
1152 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1153 {
1154 if (!is_hpet_enabled())
1155 return;
1156
1157 irq_handler = NULL;
1158 hpet_rtc_flags = 0;
1159 }
1160 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1161
1162 /*
1163 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1164 * is not supported by all HPET implementations for timer 1.
1165 *
1166 * hpet_rtc_timer_init() is called when the rtc is initialized.
1167 */
1168 int hpet_rtc_timer_init(void)
1169 {
1170 unsigned int cfg, cnt, delta;
1171 unsigned long flags;
1172
1173 if (!is_hpet_enabled())
1174 return 0;
1175
1176 if (!hpet_default_delta) {
1177 uint64_t clc;
1178
1179 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1180 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1181 hpet_default_delta = clc;
1182 }
1183
1184 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1185 delta = hpet_default_delta;
1186 else
1187 delta = hpet_pie_delta;
1188
1189 local_irq_save(flags);
1190
1191 cnt = delta + hpet_readl(HPET_COUNTER);
1192 hpet_writel(cnt, HPET_T1_CMP);
1193 hpet_t1_cmp = cnt;
1194
1195 cfg = hpet_readl(HPET_T1_CFG);
1196 cfg &= ~HPET_TN_PERIODIC;
1197 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1198 hpet_writel(cfg, HPET_T1_CFG);
1199
1200 local_irq_restore(flags);
1201
1202 return 1;
1203 }
1204 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1205
1206 static void hpet_disable_rtc_channel(void)
1207 {
1208 u32 cfg = hpet_readl(HPET_T1_CFG);
1209 cfg &= ~HPET_TN_ENABLE;
1210 hpet_writel(cfg, HPET_T1_CFG);
1211 }
1212
1213 /*
1214 * The functions below are called from rtc driver.
1215 * Return 0 if HPET is not being used.
1216 * Otherwise do the necessary changes and return 1.
1217 */
1218 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1219 {
1220 if (!is_hpet_enabled())
1221 return 0;
1222
1223 hpet_rtc_flags &= ~bit_mask;
1224 if (unlikely(!hpet_rtc_flags))
1225 hpet_disable_rtc_channel();
1226
1227 return 1;
1228 }
1229 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1230
1231 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1232 {
1233 unsigned long oldbits = hpet_rtc_flags;
1234
1235 if (!is_hpet_enabled())
1236 return 0;
1237
1238 hpet_rtc_flags |= bit_mask;
1239
1240 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1241 hpet_prev_update_sec = -1;
1242
1243 if (!oldbits)
1244 hpet_rtc_timer_init();
1245
1246 return 1;
1247 }
1248 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1249
1250 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1251 unsigned char sec)
1252 {
1253 if (!is_hpet_enabled())
1254 return 0;
1255
1256 hpet_alarm_time.tm_hour = hrs;
1257 hpet_alarm_time.tm_min = min;
1258 hpet_alarm_time.tm_sec = sec;
1259
1260 return 1;
1261 }
1262 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1263
1264 int hpet_set_periodic_freq(unsigned long freq)
1265 {
1266 uint64_t clc;
1267
1268 if (!is_hpet_enabled())
1269 return 0;
1270
1271 if (freq <= DEFAULT_RTC_INT_FREQ)
1272 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1273 else {
1274 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1275 do_div(clc, freq);
1276 clc >>= hpet_clockevent.shift;
1277 hpet_pie_delta = clc;
1278 hpet_pie_limit = 0;
1279 }
1280 return 1;
1281 }
1282 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1283
1284 int hpet_rtc_dropped_irq(void)
1285 {
1286 return is_hpet_enabled();
1287 }
1288 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1289
1290 static void hpet_rtc_timer_reinit(void)
1291 {
1292 unsigned int delta;
1293 int lost_ints = -1;
1294
1295 if (unlikely(!hpet_rtc_flags))
1296 hpet_disable_rtc_channel();
1297
1298 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1299 delta = hpet_default_delta;
1300 else
1301 delta = hpet_pie_delta;
1302
1303 /*
1304 * Increment the comparator value until we are ahead of the
1305 * current count.
1306 */
1307 do {
1308 hpet_t1_cmp += delta;
1309 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1310 lost_ints++;
1311 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1312
1313 if (lost_ints) {
1314 if (hpet_rtc_flags & RTC_PIE)
1315 hpet_pie_count += lost_ints;
1316 if (printk_ratelimit())
1317 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1318 lost_ints);
1319 }
1320 }
1321
1322 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1323 {
1324 struct rtc_time curr_time;
1325 unsigned long rtc_int_flag = 0;
1326
1327 hpet_rtc_timer_reinit();
1328 memset(&curr_time, 0, sizeof(struct rtc_time));
1329
1330 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1331 mc146818_get_time(&curr_time);
1332
1333 if (hpet_rtc_flags & RTC_UIE &&
1334 curr_time.tm_sec != hpet_prev_update_sec) {
1335 if (hpet_prev_update_sec >= 0)
1336 rtc_int_flag = RTC_UF;
1337 hpet_prev_update_sec = curr_time.tm_sec;
1338 }
1339
1340 if (hpet_rtc_flags & RTC_PIE &&
1341 ++hpet_pie_count >= hpet_pie_limit) {
1342 rtc_int_flag |= RTC_PF;
1343 hpet_pie_count = 0;
1344 }
1345
1346 if (hpet_rtc_flags & RTC_AIE &&
1347 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1348 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1349 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1350 rtc_int_flag |= RTC_AF;
1351
1352 if (rtc_int_flag) {
1353 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1354 if (irq_handler)
1355 irq_handler(rtc_int_flag, dev_id);
1356 }
1357 return IRQ_HANDLED;
1358 }
1359 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1360 #endif