]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/hpet.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK CLOCKSOURCE_MASK(32)
19
20 /* FSEC = 10^-15
21 NSEC = 10^-9 */
22 #define FSEC_PER_NSEC 1000000L
23
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
35 unsigned long hpet_address;
36 u8 hpet_blockid; /* OS timer block num */
37 u8 hpet_msi_disable;
38
39 #ifdef CONFIG_PCI_MSI
40 static unsigned long hpet_num_timers;
41 #endif
42 static void __iomem *hpet_virt_address;
43
44 struct hpet_dev {
45 struct clock_event_device evt;
46 unsigned int num;
47 int cpu;
48 unsigned int irq;
49 unsigned int flags;
50 char name[10];
51 };
52
53 inline unsigned int hpet_readl(unsigned int a)
54 {
55 return readl(hpet_virt_address + a);
56 }
57
58 static inline void hpet_writel(unsigned int d, unsigned int a)
59 {
60 writel(d, hpet_virt_address + a);
61 }
62
63 #ifdef CONFIG_X86_64
64 #include <asm/pgtable.h>
65 #endif
66
67 static inline void hpet_set_mapping(void)
68 {
69 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
70 #ifdef CONFIG_X86_64
71 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72 #endif
73 }
74
75 static inline void hpet_clear_mapping(void)
76 {
77 iounmap(hpet_virt_address);
78 hpet_virt_address = NULL;
79 }
80
81 /*
82 * HPET command line enable / disable
83 */
84 static int boot_hpet_disable;
85 int hpet_force_user;
86 static int hpet_verbose;
87
88 static int __init hpet_setup(char *str)
89 {
90 if (str) {
91 if (!strncmp("disable", str, 7))
92 boot_hpet_disable = 1;
93 if (!strncmp("force", str, 5))
94 hpet_force_user = 1;
95 if (!strncmp("verbose", str, 7))
96 hpet_verbose = 1;
97 }
98 return 1;
99 }
100 __setup("hpet=", hpet_setup);
101
102 static int __init disable_hpet(char *str)
103 {
104 boot_hpet_disable = 1;
105 return 1;
106 }
107 __setup("nohpet", disable_hpet);
108
109 static inline int is_hpet_capable(void)
110 {
111 return !boot_hpet_disable && hpet_address;
112 }
113
114 /*
115 * HPET timer interrupt enable / disable
116 */
117 static int hpet_legacy_int_enabled;
118
119 /**
120 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121 */
122 int is_hpet_enabled(void)
123 {
124 return is_hpet_capable() && hpet_legacy_int_enabled;
125 }
126 EXPORT_SYMBOL_GPL(is_hpet_enabled);
127
128 static void _hpet_print_config(const char *function, int line)
129 {
130 u32 i, timers, l, h;
131 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132 l = hpet_readl(HPET_ID);
133 h = hpet_readl(HPET_PERIOD);
134 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136 l = hpet_readl(HPET_CFG);
137 h = hpet_readl(HPET_STATUS);
138 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139 l = hpet_readl(HPET_COUNTER);
140 h = hpet_readl(HPET_COUNTER+4);
141 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142
143 for (i = 0; i < timers; i++) {
144 l = hpet_readl(HPET_Tn_CFG(i));
145 h = hpet_readl(HPET_Tn_CFG(i)+4);
146 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147 i, l, h);
148 l = hpet_readl(HPET_Tn_CMP(i));
149 h = hpet_readl(HPET_Tn_CMP(i)+4);
150 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151 i, l, h);
152 l = hpet_readl(HPET_Tn_ROUTE(i));
153 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155 i, l, h);
156 }
157 }
158
159 #define hpet_print_config() \
160 do { \
161 if (hpet_verbose) \
162 _hpet_print_config(__FUNCTION__, __LINE__); \
163 } while (0)
164
165 /*
166 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167 * timer 0 and timer 1 in case of RTC emulation.
168 */
169 #ifdef CONFIG_HPET
170
171 static void hpet_reserve_msi_timers(struct hpet_data *hd);
172
173 static void hpet_reserve_platform_timers(unsigned int id)
174 {
175 struct hpet __iomem *hpet = hpet_virt_address;
176 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177 unsigned int nrtimers, i;
178 struct hpet_data hd;
179
180 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181
182 memset(&hd, 0, sizeof(hd));
183 hd.hd_phys_address = hpet_address;
184 hd.hd_address = hpet;
185 hd.hd_nirqs = nrtimers;
186 hpet_reserve_timer(&hd, 0);
187
188 #ifdef CONFIG_HPET_EMULATE_RTC
189 hpet_reserve_timer(&hd, 1);
190 #endif
191
192 /*
193 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194 * is wrong for i8259!) not the output IRQ. Many BIOS writers
195 * don't bother configuring *any* comparator interrupts.
196 */
197 hd.hd_irq[0] = HPET_LEGACY_8254;
198 hd.hd_irq[1] = HPET_LEGACY_RTC;
199
200 for (i = 2; i < nrtimers; timer++, i++) {
201 hd.hd_irq[i] = (readl(&timer->hpet_config) &
202 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
203 }
204
205 hpet_reserve_msi_timers(&hd);
206
207 hpet_alloc(&hd);
208
209 }
210 #else
211 static void hpet_reserve_platform_timers(unsigned int id) { }
212 #endif
213
214 /*
215 * Common hpet info
216 */
217 static unsigned long hpet_period;
218
219 static void hpet_legacy_set_mode(enum clock_event_mode mode,
220 struct clock_event_device *evt);
221 static int hpet_legacy_next_event(unsigned long delta,
222 struct clock_event_device *evt);
223
224 /*
225 * The hpet clock event device
226 */
227 static struct clock_event_device hpet_clockevent = {
228 .name = "hpet",
229 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
230 .set_mode = hpet_legacy_set_mode,
231 .set_next_event = hpet_legacy_next_event,
232 .shift = 32,
233 .irq = 0,
234 .rating = 50,
235 };
236
237 static void hpet_stop_counter(void)
238 {
239 unsigned long cfg = hpet_readl(HPET_CFG);
240 cfg &= ~HPET_CFG_ENABLE;
241 hpet_writel(cfg, HPET_CFG);
242 }
243
244 static void hpet_reset_counter(void)
245 {
246 hpet_writel(0, HPET_COUNTER);
247 hpet_writel(0, HPET_COUNTER + 4);
248 }
249
250 static void hpet_start_counter(void)
251 {
252 unsigned int cfg = hpet_readl(HPET_CFG);
253 cfg |= HPET_CFG_ENABLE;
254 hpet_writel(cfg, HPET_CFG);
255 }
256
257 static void hpet_restart_counter(void)
258 {
259 hpet_stop_counter();
260 hpet_reset_counter();
261 hpet_start_counter();
262 }
263
264 static void hpet_resume_device(void)
265 {
266 force_hpet_resume();
267 }
268
269 static void hpet_resume_counter(struct clocksource *cs)
270 {
271 hpet_resume_device();
272 hpet_restart_counter();
273 }
274
275 static void hpet_enable_legacy_int(void)
276 {
277 unsigned int cfg = hpet_readl(HPET_CFG);
278
279 cfg |= HPET_CFG_LEGACY;
280 hpet_writel(cfg, HPET_CFG);
281 hpet_legacy_int_enabled = 1;
282 }
283
284 static void hpet_legacy_clockevent_register(void)
285 {
286 /* Start HPET legacy interrupts */
287 hpet_enable_legacy_int();
288
289 /*
290 * The mult factor is defined as (include/linux/clockchips.h)
291 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292 * hpet_period is in units of femtoseconds (per cycle), so
293 * mult/2^shift = cyc/ns = 10^6/hpet_period
294 * mult = (10^6 * 2^shift)/hpet_period
295 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
296 */
297 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298 hpet_period, hpet_clockevent.shift);
299 /* Calculate the min / max delta */
300 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301 &hpet_clockevent);
302 /* 5 usec minimum reprogramming delta. */
303 hpet_clockevent.min_delta_ns = 5000;
304
305 /*
306 * Start hpet with the boot cpu mask and make it
307 * global after the IO_APIC has been initialized.
308 */
309 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
310 clockevents_register_device(&hpet_clockevent);
311 global_clock_event = &hpet_clockevent;
312 printk(KERN_DEBUG "hpet clockevent registered\n");
313 }
314
315 static int hpet_setup_msi_irq(unsigned int irq);
316
317 static void hpet_set_mode(enum clock_event_mode mode,
318 struct clock_event_device *evt, int timer)
319 {
320 unsigned int cfg, cmp, now;
321 uint64_t delta;
322
323 switch (mode) {
324 case CLOCK_EVT_MODE_PERIODIC:
325 hpet_stop_counter();
326 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327 delta >>= evt->shift;
328 now = hpet_readl(HPET_COUNTER);
329 cmp = now + (unsigned int) delta;
330 cfg = hpet_readl(HPET_Tn_CFG(timer));
331 /* Make sure we use edge triggered interrupts */
332 cfg &= ~HPET_TN_LEVEL;
333 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334 HPET_TN_SETVAL | HPET_TN_32BIT;
335 hpet_writel(cfg, HPET_Tn_CFG(timer));
336 hpet_writel(cmp, HPET_Tn_CMP(timer));
337 udelay(1);
338 /*
339 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341 * bit is automatically cleared after the first write.
342 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343 * Publication # 24674)
344 */
345 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
346 hpet_start_counter();
347 hpet_print_config();
348 break;
349
350 case CLOCK_EVT_MODE_ONESHOT:
351 cfg = hpet_readl(HPET_Tn_CFG(timer));
352 cfg &= ~HPET_TN_PERIODIC;
353 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
354 hpet_writel(cfg, HPET_Tn_CFG(timer));
355 break;
356
357 case CLOCK_EVT_MODE_UNUSED:
358 case CLOCK_EVT_MODE_SHUTDOWN:
359 cfg = hpet_readl(HPET_Tn_CFG(timer));
360 cfg &= ~HPET_TN_ENABLE;
361 hpet_writel(cfg, HPET_Tn_CFG(timer));
362 break;
363
364 case CLOCK_EVT_MODE_RESUME:
365 if (timer == 0) {
366 hpet_enable_legacy_int();
367 } else {
368 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369 hpet_setup_msi_irq(hdev->irq);
370 disable_irq(hdev->irq);
371 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
372 enable_irq(hdev->irq);
373 }
374 hpet_print_config();
375 break;
376 }
377 }
378
379 static int hpet_next_event(unsigned long delta,
380 struct clock_event_device *evt, int timer)
381 {
382 u32 cnt;
383
384 cnt = hpet_readl(HPET_COUNTER);
385 cnt += (u32) delta;
386 hpet_writel(cnt, HPET_Tn_CMP(timer));
387
388 /*
389 * We need to read back the CMP register on certain HPET
390 * implementations (ATI chipsets) which seem to delay the
391 * transfer of the compare register into the internal compare
392 * logic. With small deltas this might actually be too late as
393 * the counter could already be higher than the compare value
394 * at that point and we would wait for the next hpet interrupt
395 * forever. We found out that reading the CMP register back
396 * forces the transfer so we can rely on the comparison with
397 * the counter register below. If the read back from the
398 * compare register does not match the value we programmed
399 * then we might have a real hardware problem. We can not do
400 * much about it here, but at least alert the user/admin with
401 * a prominent warning.
402 *
403 * An erratum on some chipsets (ICH9,..), results in
404 * comparator read immediately following a write returning old
405 * value. Workaround for this is to read this value second
406 * time, when first read returns old value.
407 *
408 * In fact the write to the comparator register is delayed up
409 * to two HPET cycles so the workaround we tried to restrict
410 * the readback to those known to be borked ATI chipsets
411 * failed miserably. So we give up on optimizations forever
412 * and penalize all HPET incarnations unconditionally.
413 */
414 if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
415 if (hpet_readl(HPET_Tn_CMP(timer)) != cnt)
416 printk_once(KERN_WARNING
417 "hpet: compare register read back failed.\n");
418 }
419
420 return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
421 }
422
423 static void hpet_legacy_set_mode(enum clock_event_mode mode,
424 struct clock_event_device *evt)
425 {
426 hpet_set_mode(mode, evt, 0);
427 }
428
429 static int hpet_legacy_next_event(unsigned long delta,
430 struct clock_event_device *evt)
431 {
432 return hpet_next_event(delta, evt, 0);
433 }
434
435 /*
436 * HPET MSI Support
437 */
438 #ifdef CONFIG_PCI_MSI
439
440 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
441 static struct hpet_dev *hpet_devs;
442
443 void hpet_msi_unmask(unsigned int irq)
444 {
445 struct hpet_dev *hdev = get_irq_data(irq);
446 unsigned int cfg;
447
448 /* unmask it */
449 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
450 cfg |= HPET_TN_FSB;
451 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
452 }
453
454 void hpet_msi_mask(unsigned int irq)
455 {
456 unsigned int cfg;
457 struct hpet_dev *hdev = get_irq_data(irq);
458
459 /* mask it */
460 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 cfg &= ~HPET_TN_FSB;
462 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464
465 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
466 {
467 struct hpet_dev *hdev = get_irq_data(irq);
468
469 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
470 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
471 }
472
473 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
474 {
475 struct hpet_dev *hdev = get_irq_data(irq);
476
477 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
478 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
479 msg->address_hi = 0;
480 }
481
482 static void hpet_msi_set_mode(enum clock_event_mode mode,
483 struct clock_event_device *evt)
484 {
485 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
486 hpet_set_mode(mode, evt, hdev->num);
487 }
488
489 static int hpet_msi_next_event(unsigned long delta,
490 struct clock_event_device *evt)
491 {
492 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
493 return hpet_next_event(delta, evt, hdev->num);
494 }
495
496 static int hpet_setup_msi_irq(unsigned int irq)
497 {
498 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
499 destroy_irq(irq);
500 return -EINVAL;
501 }
502 return 0;
503 }
504
505 static int hpet_assign_irq(struct hpet_dev *dev)
506 {
507 unsigned int irq;
508
509 irq = create_irq();
510 if (!irq)
511 return -EINVAL;
512
513 set_irq_data(irq, dev);
514
515 if (hpet_setup_msi_irq(irq))
516 return -EINVAL;
517
518 dev->irq = irq;
519 return 0;
520 }
521
522 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
523 {
524 struct hpet_dev *dev = (struct hpet_dev *)data;
525 struct clock_event_device *hevt = &dev->evt;
526
527 if (!hevt->event_handler) {
528 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
529 dev->num);
530 return IRQ_HANDLED;
531 }
532
533 hevt->event_handler(hevt);
534 return IRQ_HANDLED;
535 }
536
537 static int hpet_setup_irq(struct hpet_dev *dev)
538 {
539
540 if (request_irq(dev->irq, hpet_interrupt_handler,
541 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
542 dev->name, dev))
543 return -1;
544
545 disable_irq(dev->irq);
546 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
547 enable_irq(dev->irq);
548
549 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
550 dev->name, dev->irq);
551
552 return 0;
553 }
554
555 /* This should be called in specific @cpu */
556 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
557 {
558 struct clock_event_device *evt = &hdev->evt;
559 uint64_t hpet_freq;
560
561 WARN_ON(cpu != smp_processor_id());
562 if (!(hdev->flags & HPET_DEV_VALID))
563 return;
564
565 if (hpet_setup_msi_irq(hdev->irq))
566 return;
567
568 hdev->cpu = cpu;
569 per_cpu(cpu_hpet_dev, cpu) = hdev;
570 evt->name = hdev->name;
571 hpet_setup_irq(hdev);
572 evt->irq = hdev->irq;
573
574 evt->rating = 110;
575 evt->features = CLOCK_EVT_FEAT_ONESHOT;
576 if (hdev->flags & HPET_DEV_PERI_CAP)
577 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
578
579 evt->set_mode = hpet_msi_set_mode;
580 evt->set_next_event = hpet_msi_next_event;
581 evt->shift = 32;
582
583 /*
584 * The period is a femto seconds value. We need to calculate the
585 * scaled math multiplication factor for nanosecond to hpet tick
586 * conversion.
587 */
588 hpet_freq = FSEC_PER_SEC;
589 do_div(hpet_freq, hpet_period);
590 evt->mult = div_sc((unsigned long) hpet_freq,
591 NSEC_PER_SEC, evt->shift);
592 /* Calculate the max delta */
593 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
594 /* 5 usec minimum reprogramming delta. */
595 evt->min_delta_ns = 5000;
596
597 evt->cpumask = cpumask_of(hdev->cpu);
598 clockevents_register_device(evt);
599 }
600
601 #ifdef CONFIG_HPET
602 /* Reserve at least one timer for userspace (/dev/hpet) */
603 #define RESERVE_TIMERS 1
604 #else
605 #define RESERVE_TIMERS 0
606 #endif
607
608 static void hpet_msi_capability_lookup(unsigned int start_timer)
609 {
610 unsigned int id;
611 unsigned int num_timers;
612 unsigned int num_timers_used = 0;
613 int i;
614
615 if (hpet_msi_disable)
616 return;
617
618 if (boot_cpu_has(X86_FEATURE_ARAT))
619 return;
620 id = hpet_readl(HPET_ID);
621
622 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
623 num_timers++; /* Value read out starts from 0 */
624 hpet_print_config();
625
626 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
627 if (!hpet_devs)
628 return;
629
630 hpet_num_timers = num_timers;
631
632 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
633 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
634 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
635
636 /* Only consider HPET timer with MSI support */
637 if (!(cfg & HPET_TN_FSB_CAP))
638 continue;
639
640 hdev->flags = 0;
641 if (cfg & HPET_TN_PERIODIC_CAP)
642 hdev->flags |= HPET_DEV_PERI_CAP;
643 hdev->num = i;
644
645 sprintf(hdev->name, "hpet%d", i);
646 if (hpet_assign_irq(hdev))
647 continue;
648
649 hdev->flags |= HPET_DEV_FSB_CAP;
650 hdev->flags |= HPET_DEV_VALID;
651 num_timers_used++;
652 if (num_timers_used == num_possible_cpus())
653 break;
654 }
655
656 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
657 num_timers, num_timers_used);
658 }
659
660 #ifdef CONFIG_HPET
661 static void hpet_reserve_msi_timers(struct hpet_data *hd)
662 {
663 int i;
664
665 if (!hpet_devs)
666 return;
667
668 for (i = 0; i < hpet_num_timers; i++) {
669 struct hpet_dev *hdev = &hpet_devs[i];
670
671 if (!(hdev->flags & HPET_DEV_VALID))
672 continue;
673
674 hd->hd_irq[hdev->num] = hdev->irq;
675 hpet_reserve_timer(hd, hdev->num);
676 }
677 }
678 #endif
679
680 static struct hpet_dev *hpet_get_unused_timer(void)
681 {
682 int i;
683
684 if (!hpet_devs)
685 return NULL;
686
687 for (i = 0; i < hpet_num_timers; i++) {
688 struct hpet_dev *hdev = &hpet_devs[i];
689
690 if (!(hdev->flags & HPET_DEV_VALID))
691 continue;
692 if (test_and_set_bit(HPET_DEV_USED_BIT,
693 (unsigned long *)&hdev->flags))
694 continue;
695 return hdev;
696 }
697 return NULL;
698 }
699
700 struct hpet_work_struct {
701 struct delayed_work work;
702 struct completion complete;
703 };
704
705 static void hpet_work(struct work_struct *w)
706 {
707 struct hpet_dev *hdev;
708 int cpu = smp_processor_id();
709 struct hpet_work_struct *hpet_work;
710
711 hpet_work = container_of(w, struct hpet_work_struct, work.work);
712
713 hdev = hpet_get_unused_timer();
714 if (hdev)
715 init_one_hpet_msi_clockevent(hdev, cpu);
716
717 complete(&hpet_work->complete);
718 }
719
720 static int hpet_cpuhp_notify(struct notifier_block *n,
721 unsigned long action, void *hcpu)
722 {
723 unsigned long cpu = (unsigned long)hcpu;
724 struct hpet_work_struct work;
725 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
726
727 switch (action & 0xf) {
728 case CPU_ONLINE:
729 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
730 init_completion(&work.complete);
731 /* FIXME: add schedule_work_on() */
732 schedule_delayed_work_on(cpu, &work.work, 0);
733 wait_for_completion(&work.complete);
734 destroy_timer_on_stack(&work.work.timer);
735 break;
736 case CPU_DEAD:
737 if (hdev) {
738 free_irq(hdev->irq, hdev);
739 hdev->flags &= ~HPET_DEV_USED;
740 per_cpu(cpu_hpet_dev, cpu) = NULL;
741 }
742 break;
743 }
744 return NOTIFY_OK;
745 }
746 #else
747
748 static int hpet_setup_msi_irq(unsigned int irq)
749 {
750 return 0;
751 }
752 static void hpet_msi_capability_lookup(unsigned int start_timer)
753 {
754 return;
755 }
756
757 #ifdef CONFIG_HPET
758 static void hpet_reserve_msi_timers(struct hpet_data *hd)
759 {
760 return;
761 }
762 #endif
763
764 static int hpet_cpuhp_notify(struct notifier_block *n,
765 unsigned long action, void *hcpu)
766 {
767 return NOTIFY_OK;
768 }
769
770 #endif
771
772 /*
773 * Clock source related code
774 */
775 static cycle_t read_hpet(struct clocksource *cs)
776 {
777 return (cycle_t)hpet_readl(HPET_COUNTER);
778 }
779
780 #ifdef CONFIG_X86_64
781 static cycle_t __vsyscall_fn vread_hpet(void)
782 {
783 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
784 }
785 #endif
786
787 static struct clocksource clocksource_hpet = {
788 .name = "hpet",
789 .rating = 250,
790 .read = read_hpet,
791 .mask = HPET_MASK,
792 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
793 .resume = hpet_resume_counter,
794 #ifdef CONFIG_X86_64
795 .vread = vread_hpet,
796 #endif
797 };
798
799 static int hpet_clocksource_register(void)
800 {
801 u64 start, now;
802 u64 hpet_freq;
803 cycle_t t1;
804
805 /* Start the counter */
806 hpet_restart_counter();
807
808 /* Verify whether hpet counter works */
809 t1 = hpet_readl(HPET_COUNTER);
810 rdtscll(start);
811
812 /*
813 * We don't know the TSC frequency yet, but waiting for
814 * 200000 TSC cycles is safe:
815 * 4 GHz == 50us
816 * 1 GHz == 200us
817 */
818 do {
819 rep_nop();
820 rdtscll(now);
821 } while ((now - start) < 200000UL);
822
823 if (t1 == hpet_readl(HPET_COUNTER)) {
824 printk(KERN_WARNING
825 "HPET counter not counting. HPET disabled\n");
826 return -ENODEV;
827 }
828
829 /*
830 * The definition of mult is (include/linux/clocksource.h)
831 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
832 * so we first need to convert hpet_period to ns/cyc units:
833 * mult/2^shift = ns/cyc = hpet_period/10^6
834 * mult = (hpet_period * 2^shift)/10^6
835 * mult = (hpet_period << shift)/FSEC_PER_NSEC
836 */
837
838 /* Need to convert hpet_period (fsec/cyc) to cyc/sec:
839 *
840 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
841 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
842 */
843 hpet_freq = FSEC_PER_SEC;
844 do_div(hpet_freq, hpet_period);
845 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
846
847 return 0;
848 }
849
850 /**
851 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
852 */
853 int __init hpet_enable(void)
854 {
855 unsigned int id;
856 int i;
857
858 if (!is_hpet_capable())
859 return 0;
860
861 hpet_set_mapping();
862
863 /*
864 * Read the period and check for a sane value:
865 */
866 hpet_period = hpet_readl(HPET_PERIOD);
867
868 /*
869 * AMD SB700 based systems with spread spectrum enabled use a
870 * SMM based HPET emulation to provide proper frequency
871 * setting. The SMM code is initialized with the first HPET
872 * register access and takes some time to complete. During
873 * this time the config register reads 0xffffffff. We check
874 * for max. 1000 loops whether the config register reads a non
875 * 0xffffffff value to make sure that HPET is up and running
876 * before we go further. A counting loop is safe, as the HPET
877 * access takes thousands of CPU cycles. On non SB700 based
878 * machines this check is only done once and has no side
879 * effects.
880 */
881 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
882 if (i == 1000) {
883 printk(KERN_WARNING
884 "HPET config register value = 0xFFFFFFFF. "
885 "Disabling HPET\n");
886 goto out_nohpet;
887 }
888 }
889
890 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
891 goto out_nohpet;
892
893 /*
894 * Read the HPET ID register to retrieve the IRQ routing
895 * information and the number of channels
896 */
897 id = hpet_readl(HPET_ID);
898 hpet_print_config();
899
900 #ifdef CONFIG_HPET_EMULATE_RTC
901 /*
902 * The legacy routing mode needs at least two channels, tick timer
903 * and the rtc emulation channel.
904 */
905 if (!(id & HPET_ID_NUMBER))
906 goto out_nohpet;
907 #endif
908
909 if (hpet_clocksource_register())
910 goto out_nohpet;
911
912 if (id & HPET_ID_LEGSUP) {
913 hpet_legacy_clockevent_register();
914 return 1;
915 }
916 return 0;
917
918 out_nohpet:
919 hpet_clear_mapping();
920 hpet_address = 0;
921 return 0;
922 }
923
924 /*
925 * Needs to be late, as the reserve_timer code calls kalloc !
926 *
927 * Not a problem on i386 as hpet_enable is called from late_time_init,
928 * but on x86_64 it is necessary !
929 */
930 static __init int hpet_late_init(void)
931 {
932 int cpu;
933
934 if (boot_hpet_disable)
935 return -ENODEV;
936
937 if (!hpet_address) {
938 if (!force_hpet_address)
939 return -ENODEV;
940
941 hpet_address = force_hpet_address;
942 hpet_enable();
943 }
944
945 if (!hpet_virt_address)
946 return -ENODEV;
947
948 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
949 hpet_msi_capability_lookup(2);
950 else
951 hpet_msi_capability_lookup(0);
952
953 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
954 hpet_print_config();
955
956 if (hpet_msi_disable)
957 return 0;
958
959 if (boot_cpu_has(X86_FEATURE_ARAT))
960 return 0;
961
962 for_each_online_cpu(cpu) {
963 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
964 }
965
966 /* This notifier should be called after workqueue is ready */
967 hotcpu_notifier(hpet_cpuhp_notify, -20);
968
969 return 0;
970 }
971 fs_initcall(hpet_late_init);
972
973 void hpet_disable(void)
974 {
975 if (is_hpet_capable() && hpet_virt_address) {
976 unsigned int cfg = hpet_readl(HPET_CFG);
977
978 if (hpet_legacy_int_enabled) {
979 cfg &= ~HPET_CFG_LEGACY;
980 hpet_legacy_int_enabled = 0;
981 }
982 cfg &= ~HPET_CFG_ENABLE;
983 hpet_writel(cfg, HPET_CFG);
984 }
985 }
986
987 #ifdef CONFIG_HPET_EMULATE_RTC
988
989 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
990 * is enabled, we support RTC interrupt functionality in software.
991 * RTC has 3 kinds of interrupts:
992 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
993 * is updated
994 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
995 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
996 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
997 * (1) and (2) above are implemented using polling at a frequency of
998 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
999 * overhead. (DEFAULT_RTC_INT_FREQ)
1000 * For (3), we use interrupts at 64Hz or user specified periodic
1001 * frequency, whichever is higher.
1002 */
1003 #include <linux/mc146818rtc.h>
1004 #include <linux/rtc.h>
1005 #include <asm/rtc.h>
1006
1007 #define DEFAULT_RTC_INT_FREQ 64
1008 #define DEFAULT_RTC_SHIFT 6
1009 #define RTC_NUM_INTS 1
1010
1011 static unsigned long hpet_rtc_flags;
1012 static int hpet_prev_update_sec;
1013 static struct rtc_time hpet_alarm_time;
1014 static unsigned long hpet_pie_count;
1015 static u32 hpet_t1_cmp;
1016 static u32 hpet_default_delta;
1017 static u32 hpet_pie_delta;
1018 static unsigned long hpet_pie_limit;
1019
1020 static rtc_irq_handler irq_handler;
1021
1022 /*
1023 * Check that the hpet counter c1 is ahead of the c2
1024 */
1025 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1026 {
1027 return (s32)(c2 - c1) < 0;
1028 }
1029
1030 /*
1031 * Registers a IRQ handler.
1032 */
1033 int hpet_register_irq_handler(rtc_irq_handler handler)
1034 {
1035 if (!is_hpet_enabled())
1036 return -ENODEV;
1037 if (irq_handler)
1038 return -EBUSY;
1039
1040 irq_handler = handler;
1041
1042 return 0;
1043 }
1044 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1045
1046 /*
1047 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1048 * and does cleanup.
1049 */
1050 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1051 {
1052 if (!is_hpet_enabled())
1053 return;
1054
1055 irq_handler = NULL;
1056 hpet_rtc_flags = 0;
1057 }
1058 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1059
1060 /*
1061 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1062 * is not supported by all HPET implementations for timer 1.
1063 *
1064 * hpet_rtc_timer_init() is called when the rtc is initialized.
1065 */
1066 int hpet_rtc_timer_init(void)
1067 {
1068 unsigned int cfg, cnt, delta;
1069 unsigned long flags;
1070
1071 if (!is_hpet_enabled())
1072 return 0;
1073
1074 if (!hpet_default_delta) {
1075 uint64_t clc;
1076
1077 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1078 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1079 hpet_default_delta = clc;
1080 }
1081
1082 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1083 delta = hpet_default_delta;
1084 else
1085 delta = hpet_pie_delta;
1086
1087 local_irq_save(flags);
1088
1089 cnt = delta + hpet_readl(HPET_COUNTER);
1090 hpet_writel(cnt, HPET_T1_CMP);
1091 hpet_t1_cmp = cnt;
1092
1093 cfg = hpet_readl(HPET_T1_CFG);
1094 cfg &= ~HPET_TN_PERIODIC;
1095 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1096 hpet_writel(cfg, HPET_T1_CFG);
1097
1098 local_irq_restore(flags);
1099
1100 return 1;
1101 }
1102 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1103
1104 /*
1105 * The functions below are called from rtc driver.
1106 * Return 0 if HPET is not being used.
1107 * Otherwise do the necessary changes and return 1.
1108 */
1109 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1110 {
1111 if (!is_hpet_enabled())
1112 return 0;
1113
1114 hpet_rtc_flags &= ~bit_mask;
1115 return 1;
1116 }
1117 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1118
1119 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1120 {
1121 unsigned long oldbits = hpet_rtc_flags;
1122
1123 if (!is_hpet_enabled())
1124 return 0;
1125
1126 hpet_rtc_flags |= bit_mask;
1127
1128 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1129 hpet_prev_update_sec = -1;
1130
1131 if (!oldbits)
1132 hpet_rtc_timer_init();
1133
1134 return 1;
1135 }
1136 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1137
1138 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1139 unsigned char sec)
1140 {
1141 if (!is_hpet_enabled())
1142 return 0;
1143
1144 hpet_alarm_time.tm_hour = hrs;
1145 hpet_alarm_time.tm_min = min;
1146 hpet_alarm_time.tm_sec = sec;
1147
1148 return 1;
1149 }
1150 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1151
1152 int hpet_set_periodic_freq(unsigned long freq)
1153 {
1154 uint64_t clc;
1155
1156 if (!is_hpet_enabled())
1157 return 0;
1158
1159 if (freq <= DEFAULT_RTC_INT_FREQ)
1160 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1161 else {
1162 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1163 do_div(clc, freq);
1164 clc >>= hpet_clockevent.shift;
1165 hpet_pie_delta = clc;
1166 hpet_pie_limit = 0;
1167 }
1168 return 1;
1169 }
1170 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1171
1172 int hpet_rtc_dropped_irq(void)
1173 {
1174 return is_hpet_enabled();
1175 }
1176 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1177
1178 static void hpet_rtc_timer_reinit(void)
1179 {
1180 unsigned int cfg, delta;
1181 int lost_ints = -1;
1182
1183 if (unlikely(!hpet_rtc_flags)) {
1184 cfg = hpet_readl(HPET_T1_CFG);
1185 cfg &= ~HPET_TN_ENABLE;
1186 hpet_writel(cfg, HPET_T1_CFG);
1187 return;
1188 }
1189
1190 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1191 delta = hpet_default_delta;
1192 else
1193 delta = hpet_pie_delta;
1194
1195 /*
1196 * Increment the comparator value until we are ahead of the
1197 * current count.
1198 */
1199 do {
1200 hpet_t1_cmp += delta;
1201 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1202 lost_ints++;
1203 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1204
1205 if (lost_ints) {
1206 if (hpet_rtc_flags & RTC_PIE)
1207 hpet_pie_count += lost_ints;
1208 if (printk_ratelimit())
1209 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1210 lost_ints);
1211 }
1212 }
1213
1214 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1215 {
1216 struct rtc_time curr_time;
1217 unsigned long rtc_int_flag = 0;
1218
1219 hpet_rtc_timer_reinit();
1220 memset(&curr_time, 0, sizeof(struct rtc_time));
1221
1222 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1223 get_rtc_time(&curr_time);
1224
1225 if (hpet_rtc_flags & RTC_UIE &&
1226 curr_time.tm_sec != hpet_prev_update_sec) {
1227 if (hpet_prev_update_sec >= 0)
1228 rtc_int_flag = RTC_UF;
1229 hpet_prev_update_sec = curr_time.tm_sec;
1230 }
1231
1232 if (hpet_rtc_flags & RTC_PIE &&
1233 ++hpet_pie_count >= hpet_pie_limit) {
1234 rtc_int_flag |= RTC_PF;
1235 hpet_pie_count = 0;
1236 }
1237
1238 if (hpet_rtc_flags & RTC_AIE &&
1239 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1240 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1241 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1242 rtc_int_flag |= RTC_AF;
1243
1244 if (rtc_int_flag) {
1245 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1246 if (irq_handler)
1247 irq_handler(rtc_int_flag, dev_id);
1248 }
1249 return IRQ_HANDLED;
1250 }
1251 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1252 #endif