]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/hw_breakpoint.c
012ed82e5bd324d491ba83f666bfc0088dd63df3
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / hw_breakpoint.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Copyright (C) 2007 Alan Stern
5 * Copyright (C) 2009 IBM Corporation
6 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
7 *
8 * Authors: Alan Stern <stern@rowland.harvard.edu>
9 * K.Prasad <prasad@linux.vnet.ibm.com>
10 * Frederic Weisbecker <fweisbec@gmail.com>
11 */
12
13 /*
14 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
15 * using the CPU's debug registers.
16 */
17
18 #include <linux/perf_event.h>
19 #include <linux/hw_breakpoint.h>
20 #include <linux/irqflags.h>
21 #include <linux/notifier.h>
22 #include <linux/kallsyms.h>
23 #include <linux/kprobes.h>
24 #include <linux/percpu.h>
25 #include <linux/kdebug.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/sched.h>
29 #include <linux/smp.h>
30
31 #include <asm/hw_breakpoint.h>
32 #include <asm/processor.h>
33 #include <asm/debugreg.h>
34 #include <asm/user.h>
35 #include <asm/desc.h>
36 #include <asm/tlbflush.h>
37
38 /* Per cpu debug control register value */
39 DEFINE_PER_CPU(unsigned long, cpu_dr7);
40 EXPORT_PER_CPU_SYMBOL(cpu_dr7);
41
42 /* Per cpu debug address registers values */
43 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
44
45 /*
46 * Stores the breakpoints currently in use on each breakpoint address
47 * register for each cpus
48 */
49 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
50
51
52 static inline unsigned long
53 __encode_dr7(int drnum, unsigned int len, unsigned int type)
54 {
55 unsigned long bp_info;
56
57 bp_info = (len | type) & 0xf;
58 bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
59 bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
60
61 return bp_info;
62 }
63
64 /*
65 * Encode the length, type, Exact, and Enable bits for a particular breakpoint
66 * as stored in debug register 7.
67 */
68 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
69 {
70 return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
71 }
72
73 /*
74 * Decode the length and type bits for a particular breakpoint as
75 * stored in debug register 7. Return the "enabled" status.
76 */
77 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
78 {
79 int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
80
81 *len = (bp_info & 0xc) | 0x40;
82 *type = (bp_info & 0x3) | 0x80;
83
84 return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
85 }
86
87 /*
88 * Install a perf counter breakpoint.
89 *
90 * We seek a free debug address register and use it for this
91 * breakpoint. Eventually we enable it in the debug control register.
92 *
93 * Atomic: we hold the counter->ctx->lock and we only handle variables
94 * and registers local to this cpu.
95 */
96 int arch_install_hw_breakpoint(struct perf_event *bp)
97 {
98 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
99 unsigned long *dr7;
100 int i;
101
102 lockdep_assert_irqs_disabled();
103
104 for (i = 0; i < HBP_NUM; i++) {
105 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
106
107 if (!*slot) {
108 *slot = bp;
109 break;
110 }
111 }
112
113 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
114 return -EBUSY;
115
116 set_debugreg(info->address, i);
117 __this_cpu_write(cpu_debugreg[i], info->address);
118
119 dr7 = this_cpu_ptr(&cpu_dr7);
120 *dr7 |= encode_dr7(i, info->len, info->type);
121
122 /*
123 * Ensure we first write cpu_dr7 before we set the DR7 register.
124 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
125 */
126 barrier();
127
128 set_debugreg(*dr7, 7);
129 if (info->mask)
130 set_dr_addr_mask(info->mask, i);
131
132 return 0;
133 }
134
135 /*
136 * Uninstall the breakpoint contained in the given counter.
137 *
138 * First we search the debug address register it uses and then we disable
139 * it.
140 *
141 * Atomic: we hold the counter->ctx->lock and we only handle variables
142 * and registers local to this cpu.
143 */
144 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
145 {
146 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
147 unsigned long dr7;
148 int i;
149
150 lockdep_assert_irqs_disabled();
151
152 for (i = 0; i < HBP_NUM; i++) {
153 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
154
155 if (*slot == bp) {
156 *slot = NULL;
157 break;
158 }
159 }
160
161 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
162 return;
163
164 dr7 = this_cpu_read(cpu_dr7);
165 dr7 &= ~__encode_dr7(i, info->len, info->type);
166
167 set_debugreg(dr7, 7);
168 if (info->mask)
169 set_dr_addr_mask(0, i);
170
171 /*
172 * Ensure the write to cpu_dr7 is after we've set the DR7 register.
173 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
174 */
175 barrier();
176
177 this_cpu_write(cpu_dr7, dr7);
178 }
179
180 static int arch_bp_generic_len(int x86_len)
181 {
182 switch (x86_len) {
183 case X86_BREAKPOINT_LEN_1:
184 return HW_BREAKPOINT_LEN_1;
185 case X86_BREAKPOINT_LEN_2:
186 return HW_BREAKPOINT_LEN_2;
187 case X86_BREAKPOINT_LEN_4:
188 return HW_BREAKPOINT_LEN_4;
189 #ifdef CONFIG_X86_64
190 case X86_BREAKPOINT_LEN_8:
191 return HW_BREAKPOINT_LEN_8;
192 #endif
193 default:
194 return -EINVAL;
195 }
196 }
197
198 int arch_bp_generic_fields(int x86_len, int x86_type,
199 int *gen_len, int *gen_type)
200 {
201 int len;
202
203 /* Type */
204 switch (x86_type) {
205 case X86_BREAKPOINT_EXECUTE:
206 if (x86_len != X86_BREAKPOINT_LEN_X)
207 return -EINVAL;
208
209 *gen_type = HW_BREAKPOINT_X;
210 *gen_len = sizeof(long);
211 return 0;
212 case X86_BREAKPOINT_WRITE:
213 *gen_type = HW_BREAKPOINT_W;
214 break;
215 case X86_BREAKPOINT_RW:
216 *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
217 break;
218 default:
219 return -EINVAL;
220 }
221
222 /* Len */
223 len = arch_bp_generic_len(x86_len);
224 if (len < 0)
225 return -EINVAL;
226 *gen_len = len;
227
228 return 0;
229 }
230
231 /*
232 * Check for virtual address in kernel space.
233 */
234 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
235 {
236 unsigned long va;
237 int len;
238
239 va = hw->address;
240 len = arch_bp_generic_len(hw->len);
241 WARN_ON_ONCE(len < 0);
242
243 /*
244 * We don't need to worry about va + len - 1 overflowing:
245 * we already require that va is aligned to a multiple of len.
246 */
247 return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
248 }
249
250 /*
251 * Checks whether the range [addr, end], overlaps the area [base, base + size).
252 */
253 static inline bool within_area(unsigned long addr, unsigned long end,
254 unsigned long base, unsigned long size)
255 {
256 return end >= base && addr < (base + size);
257 }
258
259 /*
260 * Checks whether the range from addr to end, inclusive, overlaps the fixed
261 * mapped CPU entry area range or other ranges used for CPU entry.
262 */
263 static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
264 {
265 int cpu;
266
267 /* CPU entry erea is always used for CPU entry */
268 if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
269 CPU_ENTRY_AREA_TOTAL_SIZE))
270 return true;
271
272 /*
273 * When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU
274 * GSBASE value via __per_cpu_offset or pcpu_unit_offsets.
275 */
276 #ifdef CONFIG_SMP
277 if (within_area(addr, end, (unsigned long)__per_cpu_offset,
278 sizeof(unsigned long) * nr_cpu_ids))
279 return true;
280 #else
281 if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets,
282 sizeof(pcpu_unit_offsets)))
283 return true;
284 #endif
285
286 for_each_possible_cpu(cpu) {
287 /* The original rw GDT is being used after load_direct_gdt() */
288 if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
289 GDT_SIZE))
290 return true;
291
292 /*
293 * cpu_tss_rw is not directly referenced by hardware, but
294 * cpu_tss_rw is also used in CPU entry code,
295 */
296 if (within_area(addr, end,
297 (unsigned long)&per_cpu(cpu_tss_rw, cpu),
298 sizeof(struct tss_struct)))
299 return true;
300
301 /*
302 * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry.
303 * If a data breakpoint on it, it will cause an unwanted #DB.
304 * Protect the full cpu_tlbstate structure to be sure.
305 */
306 if (within_area(addr, end,
307 (unsigned long)&per_cpu(cpu_tlbstate, cpu),
308 sizeof(struct tlb_state)))
309 return true;
310 }
311
312 return false;
313 }
314
315 static int arch_build_bp_info(struct perf_event *bp,
316 const struct perf_event_attr *attr,
317 struct arch_hw_breakpoint *hw)
318 {
319 unsigned long bp_end;
320
321 bp_end = attr->bp_addr + attr->bp_len - 1;
322 if (bp_end < attr->bp_addr)
323 return -EINVAL;
324
325 /*
326 * Prevent any breakpoint of any type that overlaps the CPU
327 * entry area and data. This protects the IST stacks and also
328 * reduces the chance that we ever find out what happens if
329 * there's a data breakpoint on the GDT, IDT, or TSS.
330 */
331 if (within_cpu_entry(attr->bp_addr, bp_end))
332 return -EINVAL;
333
334 hw->address = attr->bp_addr;
335 hw->mask = 0;
336
337 /* Type */
338 switch (attr->bp_type) {
339 case HW_BREAKPOINT_W:
340 hw->type = X86_BREAKPOINT_WRITE;
341 break;
342 case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
343 hw->type = X86_BREAKPOINT_RW;
344 break;
345 case HW_BREAKPOINT_X:
346 /*
347 * We don't allow kernel breakpoints in places that are not
348 * acceptable for kprobes. On non-kprobes kernels, we don't
349 * allow kernel breakpoints at all.
350 */
351 if (attr->bp_addr >= TASK_SIZE_MAX) {
352 if (within_kprobe_blacklist(attr->bp_addr))
353 return -EINVAL;
354 }
355
356 hw->type = X86_BREAKPOINT_EXECUTE;
357 /*
358 * x86 inst breakpoints need to have a specific undefined len.
359 * But we still need to check userspace is not trying to setup
360 * an unsupported length, to get a range breakpoint for example.
361 */
362 if (attr->bp_len == sizeof(long)) {
363 hw->len = X86_BREAKPOINT_LEN_X;
364 return 0;
365 }
366 fallthrough;
367 default:
368 return -EINVAL;
369 }
370
371 /* Len */
372 switch (attr->bp_len) {
373 case HW_BREAKPOINT_LEN_1:
374 hw->len = X86_BREAKPOINT_LEN_1;
375 break;
376 case HW_BREAKPOINT_LEN_2:
377 hw->len = X86_BREAKPOINT_LEN_2;
378 break;
379 case HW_BREAKPOINT_LEN_4:
380 hw->len = X86_BREAKPOINT_LEN_4;
381 break;
382 #ifdef CONFIG_X86_64
383 case HW_BREAKPOINT_LEN_8:
384 hw->len = X86_BREAKPOINT_LEN_8;
385 break;
386 #endif
387 default:
388 /* AMD range breakpoint */
389 if (!is_power_of_2(attr->bp_len))
390 return -EINVAL;
391 if (attr->bp_addr & (attr->bp_len - 1))
392 return -EINVAL;
393
394 if (!boot_cpu_has(X86_FEATURE_BPEXT))
395 return -EOPNOTSUPP;
396
397 /*
398 * It's impossible to use a range breakpoint to fake out
399 * user vs kernel detection because bp_len - 1 can't
400 * have the high bit set. If we ever allow range instruction
401 * breakpoints, then we'll have to check for kprobe-blacklisted
402 * addresses anywhere in the range.
403 */
404 hw->mask = attr->bp_len - 1;
405 hw->len = X86_BREAKPOINT_LEN_1;
406 }
407
408 return 0;
409 }
410
411 /*
412 * Validate the arch-specific HW Breakpoint register settings
413 */
414 int hw_breakpoint_arch_parse(struct perf_event *bp,
415 const struct perf_event_attr *attr,
416 struct arch_hw_breakpoint *hw)
417 {
418 unsigned int align;
419 int ret;
420
421
422 ret = arch_build_bp_info(bp, attr, hw);
423 if (ret)
424 return ret;
425
426 switch (hw->len) {
427 case X86_BREAKPOINT_LEN_1:
428 align = 0;
429 if (hw->mask)
430 align = hw->mask;
431 break;
432 case X86_BREAKPOINT_LEN_2:
433 align = 1;
434 break;
435 case X86_BREAKPOINT_LEN_4:
436 align = 3;
437 break;
438 #ifdef CONFIG_X86_64
439 case X86_BREAKPOINT_LEN_8:
440 align = 7;
441 break;
442 #endif
443 default:
444 WARN_ON_ONCE(1);
445 return -EINVAL;
446 }
447
448 /*
449 * Check that the low-order bits of the address are appropriate
450 * for the alignment implied by len.
451 */
452 if (hw->address & align)
453 return -EINVAL;
454
455 return 0;
456 }
457
458 /*
459 * Release the user breakpoints used by ptrace
460 */
461 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
462 {
463 int i;
464 struct thread_struct *t = &tsk->thread;
465
466 for (i = 0; i < HBP_NUM; i++) {
467 unregister_hw_breakpoint(t->ptrace_bps[i]);
468 t->ptrace_bps[i] = NULL;
469 }
470
471 t->virtual_dr6 = 0;
472 t->ptrace_dr7 = 0;
473 }
474
475 void hw_breakpoint_restore(void)
476 {
477 set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
478 set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
479 set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
480 set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
481 set_debugreg(DR6_RESERVED, 6);
482 set_debugreg(__this_cpu_read(cpu_dr7), 7);
483 }
484 EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
485
486 /*
487 * Handle debug exception notifications.
488 *
489 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
490 *
491 * NOTIFY_DONE returned if one of the following conditions is true.
492 * i) When the causative address is from user-space and the exception
493 * is a valid one, i.e. not triggered as a result of lazy debug register
494 * switching
495 * ii) When there are more bits than trap<n> set in DR6 register (such
496 * as BD, BS or BT) indicating that more than one debug condition is
497 * met and requires some more action in do_debug().
498 *
499 * NOTIFY_STOP returned for all other cases
500 *
501 */
502 static int hw_breakpoint_handler(struct die_args *args)
503 {
504 int i, rc = NOTIFY_STOP;
505 struct perf_event *bp;
506 unsigned long *dr6_p;
507 unsigned long dr6;
508 bool bpx;
509
510 /* The DR6 value is pointed by args->err */
511 dr6_p = (unsigned long *)ERR_PTR(args->err);
512 dr6 = *dr6_p;
513
514 /* Do an early return if no trap bits are set in DR6 */
515 if ((dr6 & DR_TRAP_BITS) == 0)
516 return NOTIFY_DONE;
517
518 /* Handle all the breakpoints that were triggered */
519 for (i = 0; i < HBP_NUM; ++i) {
520 if (likely(!(dr6 & (DR_TRAP0 << i))))
521 continue;
522
523 bp = this_cpu_read(bp_per_reg[i]);
524 if (!bp)
525 continue;
526
527 bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE;
528
529 /*
530 * TF and data breakpoints are traps and can be merged, however
531 * instruction breakpoints are faults and will be raised
532 * separately.
533 *
534 * However DR6 can indicate both TF and instruction
535 * breakpoints. In that case take TF as that has precedence and
536 * delay the instruction breakpoint for the next exception.
537 */
538 if (bpx && (dr6 & DR_STEP))
539 continue;
540
541 /*
542 * Reset the 'i'th TRAP bit in dr6 to denote completion of
543 * exception handling
544 */
545 (*dr6_p) &= ~(DR_TRAP0 << i);
546
547 perf_bp_event(bp, args->regs);
548
549 /*
550 * Set up resume flag to avoid breakpoint recursion when
551 * returning back to origin.
552 */
553 if (bpx)
554 args->regs->flags |= X86_EFLAGS_RF;
555 }
556
557 /*
558 * Further processing in do_debug() is needed for a) user-space
559 * breakpoints (to generate signals) and b) when the system has
560 * taken exception due to multiple causes
561 */
562 if ((current->thread.virtual_dr6 & DR_TRAP_BITS) ||
563 (dr6 & (~DR_TRAP_BITS)))
564 rc = NOTIFY_DONE;
565
566 return rc;
567 }
568
569 /*
570 * Handle debug exception notifications.
571 */
572 int hw_breakpoint_exceptions_notify(
573 struct notifier_block *unused, unsigned long val, void *data)
574 {
575 if (val != DIE_DEBUG)
576 return NOTIFY_DONE;
577
578 return hw_breakpoint_handler(data);
579 }
580
581 void hw_breakpoint_pmu_read(struct perf_event *bp)
582 {
583 /* TODO */
584 }