]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/irq.c
Merge tag 'xtensa-20150416' of git://github.com/czankel/xtensa-linux
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / irq.c
1 /*
2 * Common interrupt code for 32 and 64 bit
3 */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24
25 atomic_t irq_err_count;
26
27 /* Function pointer for generic interrupt vector handling */
28 void (*x86_platform_ipi_callback)(void) = NULL;
29
30 /*
31 * 'what should we do if we get a hw irq event on an illegal vector'.
32 * each architecture has to answer this themselves.
33 */
34 void ack_bad_irq(unsigned int irq)
35 {
36 if (printk_ratelimit())
37 pr_err("unexpected IRQ trap at vector %02x\n", irq);
38
39 /*
40 * Currently unexpected vectors happen only on SMP and APIC.
41 * We _must_ ack these because every local APIC has only N
42 * irq slots per priority level, and a 'hanging, unacked' IRQ
43 * holds up an irq slot - in excessive cases (when multiple
44 * unexpected vectors occur) that might lock up the APIC
45 * completely.
46 * But only ack when the APIC is enabled -AK
47 */
48 ack_APIC_irq();
49 }
50
51 #define irq_stats(x) (&per_cpu(irq_stat, x))
52 /*
53 * /proc/interrupts printing for arch specific interrupts
54 */
55 int arch_show_interrupts(struct seq_file *p, int prec)
56 {
57 int j;
58
59 seq_printf(p, "%*s: ", prec, "NMI");
60 for_each_online_cpu(j)
61 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
62 seq_puts(p, " Non-maskable interrupts\n");
63 #ifdef CONFIG_X86_LOCAL_APIC
64 seq_printf(p, "%*s: ", prec, "LOC");
65 for_each_online_cpu(j)
66 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
67 seq_puts(p, " Local timer interrupts\n");
68
69 seq_printf(p, "%*s: ", prec, "SPU");
70 for_each_online_cpu(j)
71 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
72 seq_puts(p, " Spurious interrupts\n");
73 seq_printf(p, "%*s: ", prec, "PMI");
74 for_each_online_cpu(j)
75 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
76 seq_puts(p, " Performance monitoring interrupts\n");
77 seq_printf(p, "%*s: ", prec, "IWI");
78 for_each_online_cpu(j)
79 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
80 seq_puts(p, " IRQ work interrupts\n");
81 seq_printf(p, "%*s: ", prec, "RTR");
82 for_each_online_cpu(j)
83 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
84 seq_puts(p, " APIC ICR read retries\n");
85 #endif
86 if (x86_platform_ipi_callback) {
87 seq_printf(p, "%*s: ", prec, "PLT");
88 for_each_online_cpu(j)
89 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
90 seq_puts(p, " Platform interrupts\n");
91 }
92 #ifdef CONFIG_SMP
93 seq_printf(p, "%*s: ", prec, "RES");
94 for_each_online_cpu(j)
95 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
96 seq_puts(p, " Rescheduling interrupts\n");
97 seq_printf(p, "%*s: ", prec, "CAL");
98 for_each_online_cpu(j)
99 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
100 irq_stats(j)->irq_tlb_count);
101 seq_puts(p, " Function call interrupts\n");
102 seq_printf(p, "%*s: ", prec, "TLB");
103 for_each_online_cpu(j)
104 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
105 seq_puts(p, " TLB shootdowns\n");
106 #endif
107 #ifdef CONFIG_X86_THERMAL_VECTOR
108 seq_printf(p, "%*s: ", prec, "TRM");
109 for_each_online_cpu(j)
110 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
111 seq_puts(p, " Thermal event interrupts\n");
112 #endif
113 #ifdef CONFIG_X86_MCE_THRESHOLD
114 seq_printf(p, "%*s: ", prec, "THR");
115 for_each_online_cpu(j)
116 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
117 seq_puts(p, " Threshold APIC interrupts\n");
118 #endif
119 #ifdef CONFIG_X86_MCE
120 seq_printf(p, "%*s: ", prec, "MCE");
121 for_each_online_cpu(j)
122 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
123 seq_puts(p, " Machine check exceptions\n");
124 seq_printf(p, "%*s: ", prec, "MCP");
125 for_each_online_cpu(j)
126 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
127 seq_puts(p, " Machine check polls\n");
128 #endif
129 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
130 seq_printf(p, "%*s: ", prec, "HYP");
131 for_each_online_cpu(j)
132 seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count);
133 seq_puts(p, " Hypervisor callback interrupts\n");
134 #endif
135 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
136 #if defined(CONFIG_X86_IO_APIC)
137 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
138 #endif
139 return 0;
140 }
141
142 /*
143 * /proc/stat helpers
144 */
145 u64 arch_irq_stat_cpu(unsigned int cpu)
146 {
147 u64 sum = irq_stats(cpu)->__nmi_count;
148
149 #ifdef CONFIG_X86_LOCAL_APIC
150 sum += irq_stats(cpu)->apic_timer_irqs;
151 sum += irq_stats(cpu)->irq_spurious_count;
152 sum += irq_stats(cpu)->apic_perf_irqs;
153 sum += irq_stats(cpu)->apic_irq_work_irqs;
154 sum += irq_stats(cpu)->icr_read_retry_count;
155 #endif
156 if (x86_platform_ipi_callback)
157 sum += irq_stats(cpu)->x86_platform_ipis;
158 #ifdef CONFIG_SMP
159 sum += irq_stats(cpu)->irq_resched_count;
160 sum += irq_stats(cpu)->irq_call_count;
161 #endif
162 #ifdef CONFIG_X86_THERMAL_VECTOR
163 sum += irq_stats(cpu)->irq_thermal_count;
164 #endif
165 #ifdef CONFIG_X86_MCE_THRESHOLD
166 sum += irq_stats(cpu)->irq_threshold_count;
167 #endif
168 #ifdef CONFIG_X86_MCE
169 sum += per_cpu(mce_exception_count, cpu);
170 sum += per_cpu(mce_poll_count, cpu);
171 #endif
172 return sum;
173 }
174
175 u64 arch_irq_stat(void)
176 {
177 u64 sum = atomic_read(&irq_err_count);
178 return sum;
179 }
180
181
182 /*
183 * do_IRQ handles all normal device IRQ's (the special
184 * SMP cross-CPU interrupts have their own specific
185 * handlers).
186 */
187 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
188 {
189 struct pt_regs *old_regs = set_irq_regs(regs);
190
191 /* high bit used in ret_from_ code */
192 unsigned vector = ~regs->orig_ax;
193 unsigned irq;
194
195 irq_enter();
196 exit_idle();
197
198 irq = __this_cpu_read(vector_irq[vector]);
199
200 if (!handle_irq(irq, regs)) {
201 ack_APIC_irq();
202
203 if (irq != VECTOR_RETRIGGERED) {
204 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n",
205 __func__, smp_processor_id(),
206 vector, irq);
207 } else {
208 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
209 }
210 }
211
212 irq_exit();
213
214 set_irq_regs(old_regs);
215 return 1;
216 }
217
218 /*
219 * Handler for X86_PLATFORM_IPI_VECTOR.
220 */
221 void __smp_x86_platform_ipi(void)
222 {
223 inc_irq_stat(x86_platform_ipis);
224
225 if (x86_platform_ipi_callback)
226 x86_platform_ipi_callback();
227 }
228
229 __visible void smp_x86_platform_ipi(struct pt_regs *regs)
230 {
231 struct pt_regs *old_regs = set_irq_regs(regs);
232
233 entering_ack_irq();
234 __smp_x86_platform_ipi();
235 exiting_irq();
236 set_irq_regs(old_regs);
237 }
238
239 #ifdef CONFIG_HAVE_KVM
240 /*
241 * Handler for POSTED_INTERRUPT_VECTOR.
242 */
243 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
244 {
245 struct pt_regs *old_regs = set_irq_regs(regs);
246
247 ack_APIC_irq();
248
249 irq_enter();
250
251 exit_idle();
252
253 inc_irq_stat(kvm_posted_intr_ipis);
254
255 irq_exit();
256
257 set_irq_regs(old_regs);
258 }
259 #endif
260
261 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
262 {
263 struct pt_regs *old_regs = set_irq_regs(regs);
264
265 entering_ack_irq();
266 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
267 __smp_x86_platform_ipi();
268 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
269 exiting_irq();
270 set_irq_regs(old_regs);
271 }
272
273 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
274
275 #ifdef CONFIG_HOTPLUG_CPU
276
277 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
278 * below, which is protected by stop_machine(). Putting them on the stack
279 * results in a stack frame overflow. Dynamically allocating could result in a
280 * failure so declare these two cpumasks as global.
281 */
282 static struct cpumask affinity_new, online_new;
283
284 /*
285 * This cpu is going to be removed and its vectors migrated to the remaining
286 * online cpus. Check to see if there are enough vectors in the remaining cpus.
287 * This function is protected by stop_machine().
288 */
289 int check_irq_vectors_for_cpu_disable(void)
290 {
291 int irq, cpu;
292 unsigned int this_cpu, vector, this_count, count;
293 struct irq_desc *desc;
294 struct irq_data *data;
295
296 this_cpu = smp_processor_id();
297 cpumask_copy(&online_new, cpu_online_mask);
298 cpumask_clear_cpu(this_cpu, &online_new);
299
300 this_count = 0;
301 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
302 irq = __this_cpu_read(vector_irq[vector]);
303 if (irq >= 0) {
304 desc = irq_to_desc(irq);
305 if (!desc)
306 continue;
307
308 data = irq_desc_get_irq_data(desc);
309 cpumask_copy(&affinity_new, data->affinity);
310 cpumask_clear_cpu(this_cpu, &affinity_new);
311
312 /* Do not count inactive or per-cpu irqs. */
313 if (!irq_has_action(irq) || irqd_is_per_cpu(data))
314 continue;
315
316 /*
317 * A single irq may be mapped to multiple
318 * cpu's vector_irq[] (for example IOAPIC cluster
319 * mode). In this case we have two
320 * possibilities:
321 *
322 * 1) the resulting affinity mask is empty; that is
323 * this the down'd cpu is the last cpu in the irq's
324 * affinity mask, or
325 *
326 * 2) the resulting affinity mask is no longer
327 * a subset of the online cpus but the affinity
328 * mask is not zero; that is the down'd cpu is the
329 * last online cpu in a user set affinity mask.
330 */
331 if (cpumask_empty(&affinity_new) ||
332 !cpumask_subset(&affinity_new, &online_new))
333 this_count++;
334 }
335 }
336
337 count = 0;
338 for_each_online_cpu(cpu) {
339 if (cpu == this_cpu)
340 continue;
341 /*
342 * We scan from FIRST_EXTERNAL_VECTOR to first system
343 * vector. If the vector is marked in the used vectors
344 * bitmap or an irq is assigned to it, we don't count
345 * it as available.
346 */
347 for (vector = FIRST_EXTERNAL_VECTOR;
348 vector < first_system_vector; vector++) {
349 if (!test_bit(vector, used_vectors) &&
350 per_cpu(vector_irq, cpu)[vector] < 0)
351 count++;
352 }
353 }
354
355 if (count < this_count) {
356 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
357 this_cpu, this_count, count);
358 return -ERANGE;
359 }
360 return 0;
361 }
362
363 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
364 void fixup_irqs(void)
365 {
366 unsigned int irq, vector;
367 static int warned;
368 struct irq_desc *desc;
369 struct irq_data *data;
370 struct irq_chip *chip;
371 int ret;
372
373 for_each_irq_desc(irq, desc) {
374 int break_affinity = 0;
375 int set_affinity = 1;
376 const struct cpumask *affinity;
377
378 if (!desc)
379 continue;
380 if (irq == 2)
381 continue;
382
383 /* interrupt's are disabled at this point */
384 raw_spin_lock(&desc->lock);
385
386 data = irq_desc_get_irq_data(desc);
387 affinity = data->affinity;
388 if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
389 cpumask_subset(affinity, cpu_online_mask)) {
390 raw_spin_unlock(&desc->lock);
391 continue;
392 }
393
394 /*
395 * Complete the irq move. This cpu is going down and for
396 * non intr-remapping case, we can't wait till this interrupt
397 * arrives at this cpu before completing the irq move.
398 */
399 irq_force_complete_move(irq);
400
401 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
402 break_affinity = 1;
403 affinity = cpu_online_mask;
404 }
405
406 chip = irq_data_get_irq_chip(data);
407 if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
408 chip->irq_mask(data);
409
410 if (chip->irq_set_affinity) {
411 ret = chip->irq_set_affinity(data, affinity, true);
412 if (ret == -ENOSPC)
413 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq);
414 } else {
415 if (!(warned++))
416 set_affinity = 0;
417 }
418
419 /*
420 * We unmask if the irq was not marked masked by the
421 * core code. That respects the lazy irq disable
422 * behaviour.
423 */
424 if (!irqd_can_move_in_process_context(data) &&
425 !irqd_irq_masked(data) && chip->irq_unmask)
426 chip->irq_unmask(data);
427
428 raw_spin_unlock(&desc->lock);
429
430 if (break_affinity && set_affinity)
431 pr_notice("Broke affinity for irq %i\n", irq);
432 else if (!set_affinity)
433 pr_notice("Cannot set affinity for irq %i\n", irq);
434 }
435
436 /*
437 * We can remove mdelay() and then send spuriuous interrupts to
438 * new cpu targets for all the irqs that were handled previously by
439 * this cpu. While it works, I have seen spurious interrupt messages
440 * (nothing wrong but still...).
441 *
442 * So for now, retain mdelay(1) and check the IRR and then send those
443 * interrupts to new targets as this cpu is already offlined...
444 */
445 mdelay(1);
446
447 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
448 unsigned int irr;
449
450 if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED)
451 continue;
452
453 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
454 if (irr & (1 << (vector % 32))) {
455 irq = __this_cpu_read(vector_irq[vector]);
456
457 desc = irq_to_desc(irq);
458 data = irq_desc_get_irq_data(desc);
459 chip = irq_data_get_irq_chip(data);
460 raw_spin_lock(&desc->lock);
461 if (chip->irq_retrigger) {
462 chip->irq_retrigger(data);
463 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
464 }
465 raw_spin_unlock(&desc->lock);
466 }
467 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
468 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
469 }
470 }
471 #endif