]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/irq_32.c
x86: janitor stack overflow warning patch
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / irq_32.c
1 /*
2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
3 *
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
8 * io_apic.c.)
9 */
10
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
18
19 #include <asm/apic.h>
20 #include <asm/uaccess.h>
21
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
24
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
27
28 /*
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
31 */
32 void ack_bad_irq(unsigned int irq)
33 {
34 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
35
36 #ifdef CONFIG_X86_LOCAL_APIC
37 /*
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
43 * completely.
44 * But only ack when the APIC is enabled -AK
45 */
46 if (cpu_has_apic)
47 ack_APIC_irq();
48 #endif
49 }
50
51 #ifdef CONFIG_DEBUG_STACKOVERFLOW
52 /* Debugging check for stack overflow: is there less than 1KB free? */
53 static int check_stack_overflow(void)
54 {
55 long sp;
56
57 __asm__ __volatile__("andl %%esp,%0" :
58 "=r" (sp) : "0" (THREAD_SIZE - 1));
59
60 return sp < (sizeof(struct thread_info) + STACK_WARN);
61 }
62
63 static void print_stack_overflow(void)
64 {
65 printk(KERN_WARNING "low stack detected by irq handler\n");
66 dump_stack();
67 }
68
69 #else
70 static inline int check_stack_overflow(void) { return 0; }
71 static inline void print_stack_overflow(void) { }
72 #endif
73
74 #ifdef CONFIG_4KSTACKS
75 /*
76 * per-CPU IRQ handling contexts (thread information and stack)
77 */
78 union irq_ctx {
79 struct thread_info tinfo;
80 u32 stack[THREAD_SIZE/sizeof(u32)];
81 };
82
83 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
84 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
85
86 static inline void call_on_stack(void *func, void *stack,
87 unsigned long arg1, void *arg2)
88 {
89 unsigned long bx;
90
91 asm volatile(
92 " xchgl %%ebx,%%esp \n"
93 " call *%%edi \n"
94 " movl %%ebx,%%esp \n"
95 : "=a" (arg1), "=d" (arg2), "=b" (bx)
96 : "0" (arg1), "1" (arg2), "2" (stack),
97 "D" (func)
98 : "memory", "cc", "ecx");
99 }
100
101 static inline int
102 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
103 {
104 union irq_ctx *curctx, *irqctx;
105 u32 *isp;
106
107 curctx = (union irq_ctx *) current_thread_info();
108 irqctx = hardirq_ctx[smp_processor_id()];
109
110 /*
111 * this is where we switch to the IRQ stack. However, if we are
112 * already using the IRQ stack (because we interrupted a hardirq
113 * handler) we can't do that and just have to keep using the
114 * current stack (which is the irq stack already after all)
115 */
116 if (unlikely(curctx == irqctx))
117 return 0;
118
119 /* build the stack frame on the IRQ stack */
120 isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
121 irqctx->tinfo.task = curctx->tinfo.task;
122 irqctx->tinfo.previous_esp = current_stack_pointer;
123
124 /*
125 * Copy the softirq bits in preempt_count so that the
126 * softirq checks work in the hardirq context.
127 */
128 irqctx->tinfo.preempt_count =
129 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
130 (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
131
132 if (unlikely(overflow))
133 call_on_stack(print_stack_overflow, isp, 0, NULL);
134
135 call_on_stack(desc->handle_irq, isp, irq, desc);
136
137 return 1;
138 }
139
140 #else
141 static inline int
142 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
143 #endif
144
145 /*
146 * do_IRQ handles all normal device IRQ's (the special
147 * SMP cross-CPU interrupts have their own specific
148 * handlers).
149 */
150 unsigned int do_IRQ(struct pt_regs *regs)
151 {
152 struct pt_regs *old_regs;
153 /* high bit used in ret_from_ code */
154 int overflow, irq = ~regs->orig_ax;
155 struct irq_desc *desc = irq_desc + irq;
156
157 if (unlikely((unsigned)irq >= NR_IRQS)) {
158 printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
159 __func__, irq);
160 BUG();
161 }
162
163 old_regs = set_irq_regs(regs);
164 irq_enter();
165
166 overflow = check_stack_overflow();
167
168 if (!execute_on_irq_stack(overflow, desc, irq)) {
169 if (unlikely(overflow))
170 print_stack_overflow();
171 desc->handle_irq(irq, desc);
172 }
173
174 irq_exit();
175 set_irq_regs(old_regs);
176 return 1;
177 }
178
179 #ifdef CONFIG_4KSTACKS
180
181 static char softirq_stack[NR_CPUS * THREAD_SIZE]
182 __attribute__((__section__(".bss.page_aligned")));
183
184 static char hardirq_stack[NR_CPUS * THREAD_SIZE]
185 __attribute__((__section__(".bss.page_aligned")));
186
187 /*
188 * allocate per-cpu stacks for hardirq and for softirq processing
189 */
190 void irq_ctx_init(int cpu)
191 {
192 union irq_ctx *irqctx;
193
194 if (hardirq_ctx[cpu])
195 return;
196
197 irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
198 irqctx->tinfo.task = NULL;
199 irqctx->tinfo.exec_domain = NULL;
200 irqctx->tinfo.cpu = cpu;
201 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
202 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
203
204 hardirq_ctx[cpu] = irqctx;
205
206 irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
207 irqctx->tinfo.task = NULL;
208 irqctx->tinfo.exec_domain = NULL;
209 irqctx->tinfo.cpu = cpu;
210 irqctx->tinfo.preempt_count = 0;
211 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
212
213 softirq_ctx[cpu] = irqctx;
214
215 printk("CPU %u irqstacks, hard=%p soft=%p\n",
216 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
217 }
218
219 void irq_ctx_exit(int cpu)
220 {
221 hardirq_ctx[cpu] = NULL;
222 }
223
224 asmlinkage void do_softirq(void)
225 {
226 unsigned long flags;
227 struct thread_info *curctx;
228 union irq_ctx *irqctx;
229 u32 *isp;
230
231 if (in_interrupt())
232 return;
233
234 local_irq_save(flags);
235
236 if (local_softirq_pending()) {
237 curctx = current_thread_info();
238 irqctx = softirq_ctx[smp_processor_id()];
239 irqctx->tinfo.task = curctx->task;
240 irqctx->tinfo.previous_esp = current_stack_pointer;
241
242 /* build the stack frame on the softirq stack */
243 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
244
245 asm volatile(
246 " xchgl %%ebx,%%esp \n"
247 " call __do_softirq \n"
248 " movl %%ebx,%%esp \n"
249 : "=b"(isp)
250 : "0"(isp)
251 : "memory", "cc", "edx", "ecx", "eax"
252 );
253 /*
254 * Shouldnt happen, we returned above if in_interrupt():
255 */
256 WARN_ON_ONCE(softirq_count());
257 }
258
259 local_irq_restore(flags);
260 }
261 #endif
262
263 /*
264 * Interrupt statistics:
265 */
266
267 atomic_t irq_err_count;
268
269 /*
270 * /proc/interrupts printing:
271 */
272
273 int show_interrupts(struct seq_file *p, void *v)
274 {
275 int i = *(loff_t *) v, j;
276 struct irqaction * action;
277 unsigned long flags;
278
279 if (i == 0) {
280 seq_printf(p, " ");
281 for_each_online_cpu(j)
282 seq_printf(p, "CPU%-8d",j);
283 seq_putc(p, '\n');
284 }
285
286 if (i < NR_IRQS) {
287 unsigned any_count = 0;
288
289 spin_lock_irqsave(&irq_desc[i].lock, flags);
290 #ifndef CONFIG_SMP
291 any_count = kstat_irqs(i);
292 #else
293 for_each_online_cpu(j)
294 any_count |= kstat_cpu(j).irqs[i];
295 #endif
296 action = irq_desc[i].action;
297 if (!action && !any_count)
298 goto skip;
299 seq_printf(p, "%3d: ",i);
300 #ifndef CONFIG_SMP
301 seq_printf(p, "%10u ", kstat_irqs(i));
302 #else
303 for_each_online_cpu(j)
304 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
305 #endif
306 seq_printf(p, " %8s", irq_desc[i].chip->name);
307 seq_printf(p, "-%-8s", irq_desc[i].name);
308
309 if (action) {
310 seq_printf(p, " %s", action->name);
311 while ((action = action->next) != NULL)
312 seq_printf(p, ", %s", action->name);
313 }
314
315 seq_putc(p, '\n');
316 skip:
317 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
318 } else if (i == NR_IRQS) {
319 seq_printf(p, "NMI: ");
320 for_each_online_cpu(j)
321 seq_printf(p, "%10u ", nmi_count(j));
322 seq_printf(p, " Non-maskable interrupts\n");
323 #ifdef CONFIG_X86_LOCAL_APIC
324 seq_printf(p, "LOC: ");
325 for_each_online_cpu(j)
326 seq_printf(p, "%10u ",
327 per_cpu(irq_stat,j).apic_timer_irqs);
328 seq_printf(p, " Local timer interrupts\n");
329 #endif
330 #ifdef CONFIG_SMP
331 seq_printf(p, "RES: ");
332 for_each_online_cpu(j)
333 seq_printf(p, "%10u ",
334 per_cpu(irq_stat,j).irq_resched_count);
335 seq_printf(p, " Rescheduling interrupts\n");
336 seq_printf(p, "CAL: ");
337 for_each_online_cpu(j)
338 seq_printf(p, "%10u ",
339 per_cpu(irq_stat,j).irq_call_count);
340 seq_printf(p, " function call interrupts\n");
341 seq_printf(p, "TLB: ");
342 for_each_online_cpu(j)
343 seq_printf(p, "%10u ",
344 per_cpu(irq_stat,j).irq_tlb_count);
345 seq_printf(p, " TLB shootdowns\n");
346 #endif
347 seq_printf(p, "TRM: ");
348 for_each_online_cpu(j)
349 seq_printf(p, "%10u ",
350 per_cpu(irq_stat,j).irq_thermal_count);
351 seq_printf(p, " Thermal event interrupts\n");
352 seq_printf(p, "SPU: ");
353 for_each_online_cpu(j)
354 seq_printf(p, "%10u ",
355 per_cpu(irq_stat,j).irq_spurious_count);
356 seq_printf(p, " Spurious interrupts\n");
357 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
358 #if defined(CONFIG_X86_IO_APIC)
359 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
360 #endif
361 }
362 return 0;
363 }
364
365 #ifdef CONFIG_HOTPLUG_CPU
366 #include <mach_apic.h>
367
368 void fixup_irqs(cpumask_t map)
369 {
370 unsigned int irq;
371 static int warned;
372
373 for (irq = 0; irq < NR_IRQS; irq++) {
374 cpumask_t mask;
375 if (irq == 2)
376 continue;
377
378 cpus_and(mask, irq_desc[irq].affinity, map);
379 if (any_online_cpu(mask) == NR_CPUS) {
380 printk("Breaking affinity for irq %i\n", irq);
381 mask = map;
382 }
383 if (irq_desc[irq].chip->set_affinity)
384 irq_desc[irq].chip->set_affinity(irq, mask);
385 else if (irq_desc[irq].action && !(warned++))
386 printk("Cannot set affinity for irq %i\n", irq);
387 }
388
389 #if 0
390 barrier();
391 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
392 [note the nop - the interrupt-enable boundary on x86 is two
393 instructions from sti] - to flush out pending hardirqs and
394 IPIs. After this point nothing is supposed to reach this CPU." */
395 __asm__ __volatile__("sti; nop; cli");
396 barrier();
397 #else
398 /* That doesn't seem sufficient. Give it 1ms. */
399 local_irq_enable();
400 mdelay(1);
401 local_irq_disable();
402 #endif
403 }
404 #endif
405