]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/kgdb.c
x86: Fix misspellings in comments
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / kgdb.c
1 /*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14 /*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22 /****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/smp.h>
43 #include <linux/nmi.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/uaccess.h>
46 #include <linux/memory.h>
47
48 #include <asm/debugreg.h>
49 #include <asm/apicdef.h>
50 #include <asm/apic.h>
51 #include <asm/nmi.h>
52
53 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54 {
55 #ifdef CONFIG_X86_32
56 { "ax", 4, offsetof(struct pt_regs, ax) },
57 { "cx", 4, offsetof(struct pt_regs, cx) },
58 { "dx", 4, offsetof(struct pt_regs, dx) },
59 { "bx", 4, offsetof(struct pt_regs, bx) },
60 { "sp", 4, offsetof(struct pt_regs, sp) },
61 { "bp", 4, offsetof(struct pt_regs, bp) },
62 { "si", 4, offsetof(struct pt_regs, si) },
63 { "di", 4, offsetof(struct pt_regs, di) },
64 { "ip", 4, offsetof(struct pt_regs, ip) },
65 { "flags", 4, offsetof(struct pt_regs, flags) },
66 { "cs", 4, offsetof(struct pt_regs, cs) },
67 { "ss", 4, offsetof(struct pt_regs, ss) },
68 { "ds", 4, offsetof(struct pt_regs, ds) },
69 { "es", 4, offsetof(struct pt_regs, es) },
70 #else
71 { "ax", 8, offsetof(struct pt_regs, ax) },
72 { "bx", 8, offsetof(struct pt_regs, bx) },
73 { "cx", 8, offsetof(struct pt_regs, cx) },
74 { "dx", 8, offsetof(struct pt_regs, dx) },
75 { "si", 8, offsetof(struct pt_regs, si) },
76 { "di", 8, offsetof(struct pt_regs, di) },
77 { "bp", 8, offsetof(struct pt_regs, bp) },
78 { "sp", 8, offsetof(struct pt_regs, sp) },
79 { "r8", 8, offsetof(struct pt_regs, r8) },
80 { "r9", 8, offsetof(struct pt_regs, r9) },
81 { "r10", 8, offsetof(struct pt_regs, r10) },
82 { "r11", 8, offsetof(struct pt_regs, r11) },
83 { "r12", 8, offsetof(struct pt_regs, r12) },
84 { "r13", 8, offsetof(struct pt_regs, r13) },
85 { "r14", 8, offsetof(struct pt_regs, r14) },
86 { "r15", 8, offsetof(struct pt_regs, r15) },
87 { "ip", 8, offsetof(struct pt_regs, ip) },
88 { "flags", 4, offsetof(struct pt_regs, flags) },
89 { "cs", 4, offsetof(struct pt_regs, cs) },
90 { "ss", 4, offsetof(struct pt_regs, ss) },
91 { "ds", 4, -1 },
92 { "es", 4, -1 },
93 #endif
94 { "fs", 4, -1 },
95 { "gs", 4, -1 },
96 };
97
98 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
99 {
100 if (
101 #ifdef CONFIG_X86_32
102 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
103 #endif
104 regno == GDB_SP || regno == GDB_ORIG_AX)
105 return 0;
106
107 if (dbg_reg_def[regno].offset != -1)
108 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
109 dbg_reg_def[regno].size);
110 return 0;
111 }
112
113 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
114 {
115 if (regno == GDB_ORIG_AX) {
116 memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
117 return "orig_ax";
118 }
119 if (regno >= DBG_MAX_REG_NUM || regno < 0)
120 return NULL;
121
122 if (dbg_reg_def[regno].offset != -1)
123 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
124 dbg_reg_def[regno].size);
125
126 #ifdef CONFIG_X86_32
127 switch (regno) {
128 case GDB_SS:
129 if (!user_mode(regs))
130 *(unsigned long *)mem = __KERNEL_DS;
131 break;
132 case GDB_SP:
133 if (!user_mode(regs))
134 *(unsigned long *)mem = kernel_stack_pointer(regs);
135 break;
136 case GDB_GS:
137 case GDB_FS:
138 *(unsigned long *)mem = 0xFFFF;
139 break;
140 }
141 #endif
142 return dbg_reg_def[regno].name;
143 }
144
145 /**
146 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
148 * @p: The &struct task_struct of the desired process.
149 *
150 * Convert the register values of the sleeping process in @p to
151 * the format that GDB expects.
152 * This function is called when kgdb does not have access to the
153 * &struct pt_regs and therefore it should fill the gdb registers
154 * @gdb_regs with what has been saved in &struct thread_struct
155 * thread field during switch_to.
156 */
157 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
158 {
159 #ifndef CONFIG_X86_32
160 u32 *gdb_regs32 = (u32 *)gdb_regs;
161 #endif
162 gdb_regs[GDB_AX] = 0;
163 gdb_regs[GDB_BX] = 0;
164 gdb_regs[GDB_CX] = 0;
165 gdb_regs[GDB_DX] = 0;
166 gdb_regs[GDB_SI] = 0;
167 gdb_regs[GDB_DI] = 0;
168 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
169 #ifdef CONFIG_X86_32
170 gdb_regs[GDB_DS] = __KERNEL_DS;
171 gdb_regs[GDB_ES] = __KERNEL_DS;
172 gdb_regs[GDB_PS] = 0;
173 gdb_regs[GDB_CS] = __KERNEL_CS;
174 gdb_regs[GDB_PC] = p->thread.ip;
175 gdb_regs[GDB_SS] = __KERNEL_DS;
176 gdb_regs[GDB_FS] = 0xFFFF;
177 gdb_regs[GDB_GS] = 0xFFFF;
178 #else
179 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
180 gdb_regs32[GDB_CS] = __KERNEL_CS;
181 gdb_regs32[GDB_SS] = __KERNEL_DS;
182 gdb_regs[GDB_PC] = 0;
183 gdb_regs[GDB_R8] = 0;
184 gdb_regs[GDB_R9] = 0;
185 gdb_regs[GDB_R10] = 0;
186 gdb_regs[GDB_R11] = 0;
187 gdb_regs[GDB_R12] = 0;
188 gdb_regs[GDB_R13] = 0;
189 gdb_regs[GDB_R14] = 0;
190 gdb_regs[GDB_R15] = 0;
191 #endif
192 gdb_regs[GDB_SP] = p->thread.sp;
193 }
194
195 static struct hw_breakpoint {
196 unsigned enabled;
197 unsigned long addr;
198 int len;
199 int type;
200 struct perf_event * __percpu *pev;
201 } breakinfo[HBP_NUM];
202
203 static unsigned long early_dr7;
204
205 static void kgdb_correct_hw_break(void)
206 {
207 int breakno;
208
209 for (breakno = 0; breakno < HBP_NUM; breakno++) {
210 struct perf_event *bp;
211 struct arch_hw_breakpoint *info;
212 int val;
213 int cpu = raw_smp_processor_id();
214 if (!breakinfo[breakno].enabled)
215 continue;
216 if (dbg_is_early) {
217 set_debugreg(breakinfo[breakno].addr, breakno);
218 early_dr7 |= encode_dr7(breakno,
219 breakinfo[breakno].len,
220 breakinfo[breakno].type);
221 set_debugreg(early_dr7, 7);
222 continue;
223 }
224 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
225 info = counter_arch_bp(bp);
226 if (bp->attr.disabled != 1)
227 continue;
228 bp->attr.bp_addr = breakinfo[breakno].addr;
229 bp->attr.bp_len = breakinfo[breakno].len;
230 bp->attr.bp_type = breakinfo[breakno].type;
231 info->address = breakinfo[breakno].addr;
232 info->len = breakinfo[breakno].len;
233 info->type = breakinfo[breakno].type;
234 val = arch_install_hw_breakpoint(bp);
235 if (!val)
236 bp->attr.disabled = 0;
237 }
238 if (!dbg_is_early)
239 hw_breakpoint_restore();
240 }
241
242 static int hw_break_reserve_slot(int breakno)
243 {
244 int cpu;
245 int cnt = 0;
246 struct perf_event **pevent;
247
248 if (dbg_is_early)
249 return 0;
250
251 for_each_online_cpu(cpu) {
252 cnt++;
253 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
254 if (dbg_reserve_bp_slot(*pevent))
255 goto fail;
256 }
257
258 return 0;
259
260 fail:
261 for_each_online_cpu(cpu) {
262 cnt--;
263 if (!cnt)
264 break;
265 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
266 dbg_release_bp_slot(*pevent);
267 }
268 return -1;
269 }
270
271 static int hw_break_release_slot(int breakno)
272 {
273 struct perf_event **pevent;
274 int cpu;
275
276 if (dbg_is_early)
277 return 0;
278
279 for_each_online_cpu(cpu) {
280 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
281 if (dbg_release_bp_slot(*pevent))
282 /*
283 * The debugger is responsible for handing the retry on
284 * remove failure.
285 */
286 return -1;
287 }
288 return 0;
289 }
290
291 static int
292 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
293 {
294 int i;
295
296 for (i = 0; i < HBP_NUM; i++)
297 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
298 break;
299 if (i == HBP_NUM)
300 return -1;
301
302 if (hw_break_release_slot(i)) {
303 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
304 return -1;
305 }
306 breakinfo[i].enabled = 0;
307
308 return 0;
309 }
310
311 static void kgdb_remove_all_hw_break(void)
312 {
313 int i;
314 int cpu = raw_smp_processor_id();
315 struct perf_event *bp;
316
317 for (i = 0; i < HBP_NUM; i++) {
318 if (!breakinfo[i].enabled)
319 continue;
320 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
321 if (!bp->attr.disabled) {
322 arch_uninstall_hw_breakpoint(bp);
323 bp->attr.disabled = 1;
324 continue;
325 }
326 if (dbg_is_early)
327 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
328 breakinfo[i].type);
329 else if (hw_break_release_slot(i))
330 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
331 breakinfo[i].addr);
332 breakinfo[i].enabled = 0;
333 }
334 }
335
336 static int
337 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
338 {
339 int i;
340
341 for (i = 0; i < HBP_NUM; i++)
342 if (!breakinfo[i].enabled)
343 break;
344 if (i == HBP_NUM)
345 return -1;
346
347 switch (bptype) {
348 case BP_HARDWARE_BREAKPOINT:
349 len = 1;
350 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
351 break;
352 case BP_WRITE_WATCHPOINT:
353 breakinfo[i].type = X86_BREAKPOINT_WRITE;
354 break;
355 case BP_ACCESS_WATCHPOINT:
356 breakinfo[i].type = X86_BREAKPOINT_RW;
357 break;
358 default:
359 return -1;
360 }
361 switch (len) {
362 case 1:
363 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
364 break;
365 case 2:
366 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
367 break;
368 case 4:
369 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
370 break;
371 #ifdef CONFIG_X86_64
372 case 8:
373 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
374 break;
375 #endif
376 default:
377 return -1;
378 }
379 breakinfo[i].addr = addr;
380 if (hw_break_reserve_slot(i)) {
381 breakinfo[i].addr = 0;
382 return -1;
383 }
384 breakinfo[i].enabled = 1;
385
386 return 0;
387 }
388
389 /**
390 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391 * @regs: Current &struct pt_regs.
392 *
393 * This function will be called if the particular architecture must
394 * disable hardware debugging while it is processing gdb packets or
395 * handling exception.
396 */
397 static void kgdb_disable_hw_debug(struct pt_regs *regs)
398 {
399 int i;
400 int cpu = raw_smp_processor_id();
401 struct perf_event *bp;
402
403 /* Disable hardware debugging while we are in kgdb: */
404 set_debugreg(0UL, 7);
405 for (i = 0; i < HBP_NUM; i++) {
406 if (!breakinfo[i].enabled)
407 continue;
408 if (dbg_is_early) {
409 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
410 breakinfo[i].type);
411 continue;
412 }
413 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
414 if (bp->attr.disabled == 1)
415 continue;
416 arch_uninstall_hw_breakpoint(bp);
417 bp->attr.disabled = 1;
418 }
419 }
420
421 #ifdef CONFIG_SMP
422 /**
423 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
424 * @flags: Current IRQ state
425 *
426 * On SMP systems, we need to get the attention of the other CPUs
427 * and get them be in a known state. This should do what is needed
428 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
429 * the NMI approach is not used for rounding up all the CPUs. For example,
430 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
431 * this case, we have to make sure that interrupts are enabled before
432 * calling smp_call_function(). The argument to this function is
433 * the flags that will be used when restoring the interrupts. There is
434 * local_irq_save() call before kgdb_roundup_cpus().
435 *
436 * On non-SMP systems, this is not called.
437 */
438 void kgdb_roundup_cpus(unsigned long flags)
439 {
440 apic->send_IPI_allbutself(APIC_DM_NMI);
441 }
442 #endif
443
444 /**
445 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446 * @e_vector: The error vector of the exception that happened.
447 * @signo: The signal number of the exception that happened.
448 * @err_code: The error code of the exception that happened.
449 * @remcomInBuffer: The buffer of the packet we have read.
450 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451 * @linux_regs: The &struct pt_regs of the current process.
452 *
453 * This function MUST handle the 'c' and 's' command packets,
454 * as well packets to set / remove a hardware breakpoint, if used.
455 * If there are additional packets which the hardware needs to handle,
456 * they are handled here. The code should return -1 if it wants to
457 * process more packets, and a %0 or %1 if it wants to exit from the
458 * kgdb callback.
459 */
460 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
461 char *remcomInBuffer, char *remcomOutBuffer,
462 struct pt_regs *linux_regs)
463 {
464 unsigned long addr;
465 char *ptr;
466
467 switch (remcomInBuffer[0]) {
468 case 'c':
469 case 's':
470 /* try to read optional parameter, pc unchanged if no parm */
471 ptr = &remcomInBuffer[1];
472 if (kgdb_hex2long(&ptr, &addr))
473 linux_regs->ip = addr;
474 case 'D':
475 case 'k':
476 /* clear the trace bit */
477 linux_regs->flags &= ~X86_EFLAGS_TF;
478 atomic_set(&kgdb_cpu_doing_single_step, -1);
479
480 /* set the trace bit if we're stepping */
481 if (remcomInBuffer[0] == 's') {
482 linux_regs->flags |= X86_EFLAGS_TF;
483 atomic_set(&kgdb_cpu_doing_single_step,
484 raw_smp_processor_id());
485 }
486
487 return 0;
488 }
489
490 /* this means that we do not want to exit from the handler: */
491 return -1;
492 }
493
494 static inline int
495 single_step_cont(struct pt_regs *regs, struct die_args *args)
496 {
497 /*
498 * Single step exception from kernel space to user space so
499 * eat the exception and continue the process:
500 */
501 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
502 "resuming...\n");
503 kgdb_arch_handle_exception(args->trapnr, args->signr,
504 args->err, "c", "", regs);
505 /*
506 * Reset the BS bit in dr6 (pointed by args->err) to
507 * denote completion of processing
508 */
509 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
510
511 return NOTIFY_STOP;
512 }
513
514 static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
515
516 static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
517 {
518 int cpu;
519
520 switch (cmd) {
521 case NMI_LOCAL:
522 if (atomic_read(&kgdb_active) != -1) {
523 /* KGDB CPU roundup */
524 cpu = raw_smp_processor_id();
525 kgdb_nmicallback(cpu, regs);
526 set_bit(cpu, was_in_debug_nmi);
527 touch_nmi_watchdog();
528
529 return NMI_HANDLED;
530 }
531 break;
532
533 case NMI_UNKNOWN:
534 cpu = raw_smp_processor_id();
535
536 if (__test_and_clear_bit(cpu, was_in_debug_nmi))
537 return NMI_HANDLED;
538
539 break;
540 default:
541 /* do nothing */
542 break;
543 }
544 return NMI_DONE;
545 }
546
547 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
548 {
549 struct pt_regs *regs = args->regs;
550
551 switch (cmd) {
552 case DIE_DEBUG:
553 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
554 if (user_mode(regs))
555 return single_step_cont(regs, args);
556 break;
557 } else if (test_thread_flag(TIF_SINGLESTEP))
558 /* This means a user thread is single stepping
559 * a system call which should be ignored
560 */
561 return NOTIFY_DONE;
562 /* fall through */
563 default:
564 if (user_mode(regs))
565 return NOTIFY_DONE;
566 }
567
568 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
569 return NOTIFY_DONE;
570
571 /* Must touch watchdog before return to normal operation */
572 touch_nmi_watchdog();
573 return NOTIFY_STOP;
574 }
575
576 int kgdb_ll_trap(int cmd, const char *str,
577 struct pt_regs *regs, long err, int trap, int sig)
578 {
579 struct die_args args = {
580 .regs = regs,
581 .str = str,
582 .err = err,
583 .trapnr = trap,
584 .signr = sig,
585
586 };
587
588 if (!kgdb_io_module_registered)
589 return NOTIFY_DONE;
590
591 return __kgdb_notify(&args, cmd);
592 }
593
594 static int
595 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
596 {
597 unsigned long flags;
598 int ret;
599
600 local_irq_save(flags);
601 ret = __kgdb_notify(ptr, cmd);
602 local_irq_restore(flags);
603
604 return ret;
605 }
606
607 static struct notifier_block kgdb_notifier = {
608 .notifier_call = kgdb_notify,
609 };
610
611 /**
612 * kgdb_arch_init - Perform any architecture specific initialization.
613 *
614 * This function will handle the initialization of any architecture
615 * specific callbacks.
616 */
617 int kgdb_arch_init(void)
618 {
619 int retval;
620
621 retval = register_die_notifier(&kgdb_notifier);
622 if (retval)
623 goto out;
624
625 retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
626 0, "kgdb");
627 if (retval)
628 goto out1;
629
630 retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
631 0, "kgdb");
632
633 if (retval)
634 goto out2;
635
636 return retval;
637
638 out2:
639 unregister_nmi_handler(NMI_LOCAL, "kgdb");
640 out1:
641 unregister_die_notifier(&kgdb_notifier);
642 out:
643 return retval;
644 }
645
646 static void kgdb_hw_overflow_handler(struct perf_event *event,
647 struct perf_sample_data *data, struct pt_regs *regs)
648 {
649 struct task_struct *tsk = current;
650 int i;
651
652 for (i = 0; i < 4; i++)
653 if (breakinfo[i].enabled)
654 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
655 }
656
657 void kgdb_arch_late(void)
658 {
659 int i, cpu;
660 struct perf_event_attr attr;
661 struct perf_event **pevent;
662
663 /*
664 * Pre-allocate the hw breakpoint structions in the non-atomic
665 * portion of kgdb because this operation requires mutexs to
666 * complete.
667 */
668 hw_breakpoint_init(&attr);
669 attr.bp_addr = (unsigned long)kgdb_arch_init;
670 attr.bp_len = HW_BREAKPOINT_LEN_1;
671 attr.bp_type = HW_BREAKPOINT_W;
672 attr.disabled = 1;
673 for (i = 0; i < HBP_NUM; i++) {
674 if (breakinfo[i].pev)
675 continue;
676 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
677 if (IS_ERR((void * __force)breakinfo[i].pev)) {
678 printk(KERN_ERR "kgdb: Could not allocate hw"
679 "breakpoints\nDisabling the kernel debugger\n");
680 breakinfo[i].pev = NULL;
681 kgdb_arch_exit();
682 return;
683 }
684 for_each_online_cpu(cpu) {
685 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
686 pevent[0]->hw.sample_period = 1;
687 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
688 if (pevent[0]->destroy != NULL) {
689 pevent[0]->destroy = NULL;
690 release_bp_slot(*pevent);
691 }
692 }
693 }
694 }
695
696 /**
697 * kgdb_arch_exit - Perform any architecture specific uninitalization.
698 *
699 * This function will handle the uninitalization of any architecture
700 * specific callbacks, for dynamic registration and unregistration.
701 */
702 void kgdb_arch_exit(void)
703 {
704 int i;
705 for (i = 0; i < 4; i++) {
706 if (breakinfo[i].pev) {
707 unregister_wide_hw_breakpoint(breakinfo[i].pev);
708 breakinfo[i].pev = NULL;
709 }
710 }
711 unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
712 unregister_nmi_handler(NMI_LOCAL, "kgdb");
713 unregister_die_notifier(&kgdb_notifier);
714 }
715
716 /**
717 *
718 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
719 * @exception: Exception vector number
720 * @regs: Current &struct pt_regs.
721 *
722 * On some architectures we need to skip a breakpoint exception when
723 * it occurs after a breakpoint has been removed.
724 *
725 * Skip an int3 exception when it occurs after a breakpoint has been
726 * removed. Backtrack eip by 1 since the int3 would have caused it to
727 * increment by 1.
728 */
729 int kgdb_skipexception(int exception, struct pt_regs *regs)
730 {
731 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
732 regs->ip -= 1;
733 return 1;
734 }
735 return 0;
736 }
737
738 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
739 {
740 if (exception == 3)
741 return instruction_pointer(regs) - 1;
742 return instruction_pointer(regs);
743 }
744
745 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
746 {
747 regs->ip = ip;
748 }
749
750 int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
751 {
752 int err;
753 #ifdef CONFIG_DEBUG_RODATA
754 char opc[BREAK_INSTR_SIZE];
755 #endif /* CONFIG_DEBUG_RODATA */
756
757 bpt->type = BP_BREAKPOINT;
758 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
759 BREAK_INSTR_SIZE);
760 if (err)
761 return err;
762 err = probe_kernel_write((char *)bpt->bpt_addr,
763 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
764 #ifdef CONFIG_DEBUG_RODATA
765 if (!err)
766 return err;
767 /*
768 * It is safe to call text_poke() because normal kernel execution
769 * is stopped on all cores, so long as the text_mutex is not locked.
770 */
771 if (mutex_is_locked(&text_mutex))
772 return -EBUSY;
773 text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
774 BREAK_INSTR_SIZE);
775 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
776 if (err)
777 return err;
778 if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
779 return -EINVAL;
780 bpt->type = BP_POKE_BREAKPOINT;
781 #endif /* CONFIG_DEBUG_RODATA */
782 return err;
783 }
784
785 int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
786 {
787 #ifdef CONFIG_DEBUG_RODATA
788 int err;
789 char opc[BREAK_INSTR_SIZE];
790
791 if (bpt->type != BP_POKE_BREAKPOINT)
792 goto knl_write;
793 /*
794 * It is safe to call text_poke() because normal kernel execution
795 * is stopped on all cores, so long as the text_mutex is not locked.
796 */
797 if (mutex_is_locked(&text_mutex))
798 goto knl_write;
799 text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
800 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
801 if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
802 goto knl_write;
803 return err;
804 knl_write:
805 #endif /* CONFIG_DEBUG_RODATA */
806 return probe_kernel_write((char *)bpt->bpt_addr,
807 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
808 }
809
810 struct kgdb_arch arch_kgdb_ops = {
811 /* Breakpoint instruction: */
812 .gdb_bpt_instr = { 0xcc },
813 .flags = KGDB_HW_BREAKPOINT,
814 .set_hw_breakpoint = kgdb_set_hw_break,
815 .remove_hw_breakpoint = kgdb_remove_hw_break,
816 .disable_hw_break = kgdb_disable_hw_debug,
817 .remove_all_hw_break = kgdb_remove_all_hw_break,
818 .correct_hw_break = kgdb_correct_hw_break,
819 };