]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/kprobes/core.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / kprobes / core.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
41 */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55
56 #include <asm/text-patching.h>
57 #include <asm/cacheflush.h>
58 #include <asm/desc.h>
59 #include <asm/pgtable.h>
60 #include <linux/uaccess.h>
61 #include <asm/alternative.h>
62 #include <asm/insn.h>
63 #include <asm/debugreg.h>
64 #include <asm/set_memory.h>
65
66 #include "common.h"
67
68 void jprobe_return_end(void);
69
70 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
71 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
72
73 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
74
75 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
76 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
77 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
78 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
79 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
80 << (row % 32))
81 /*
82 * Undefined/reserved opcodes, conditional jump, Opcode Extension
83 * Groups, and some special opcodes can not boost.
84 * This is non-const and volatile to keep gcc from statically
85 * optimizing it out, as variable_test_bit makes gcc think only
86 * *(unsigned long*) is used.
87 */
88 static volatile u32 twobyte_is_boostable[256 / 32] = {
89 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
90 /* ---------------------------------------------- */
91 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
92 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
93 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
94 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
95 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
96 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
97 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
98 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
99 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
100 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
101 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
102 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
103 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
104 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
105 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
106 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
107 /* ----------------------------------------------- */
108 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
109 };
110 #undef W
111
112 struct kretprobe_blackpoint kretprobe_blacklist[] = {
113 {"__switch_to", }, /* This function switches only current task, but
114 doesn't switch kernel stack.*/
115 {NULL, NULL} /* Terminator */
116 };
117
118 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
119
120 static nokprobe_inline void
121 __synthesize_relative_insn(void *from, void *to, u8 op)
122 {
123 struct __arch_relative_insn {
124 u8 op;
125 s32 raddr;
126 } __packed *insn;
127
128 insn = (struct __arch_relative_insn *)from;
129 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
130 insn->op = op;
131 }
132
133 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
134 void synthesize_reljump(void *from, void *to)
135 {
136 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
137 }
138 NOKPROBE_SYMBOL(synthesize_reljump);
139
140 /* Insert a call instruction at address 'from', which calls address 'to'.*/
141 void synthesize_relcall(void *from, void *to)
142 {
143 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
144 }
145 NOKPROBE_SYMBOL(synthesize_relcall);
146
147 /*
148 * Skip the prefixes of the instruction.
149 */
150 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
151 {
152 insn_attr_t attr;
153
154 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
155 while (inat_is_legacy_prefix(attr)) {
156 insn++;
157 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
158 }
159 #ifdef CONFIG_X86_64
160 if (inat_is_rex_prefix(attr))
161 insn++;
162 #endif
163 return insn;
164 }
165 NOKPROBE_SYMBOL(skip_prefixes);
166
167 /*
168 * Returns non-zero if INSN is boostable.
169 * RIP relative instructions are adjusted at copying time in 64 bits mode
170 */
171 int can_boost(struct insn *insn, void *addr)
172 {
173 kprobe_opcode_t opcode;
174
175 if (search_exception_tables((unsigned long)addr))
176 return 0; /* Page fault may occur on this address. */
177
178 /* 2nd-byte opcode */
179 if (insn->opcode.nbytes == 2)
180 return test_bit(insn->opcode.bytes[1],
181 (unsigned long *)twobyte_is_boostable);
182
183 if (insn->opcode.nbytes != 1)
184 return 0;
185
186 /* Can't boost Address-size override prefix */
187 if (unlikely(inat_is_address_size_prefix(insn->attr)))
188 return 0;
189
190 opcode = insn->opcode.bytes[0];
191
192 switch (opcode & 0xf0) {
193 case 0x60:
194 /* can't boost "bound" */
195 return (opcode != 0x62);
196 case 0x70:
197 return 0; /* can't boost conditional jump */
198 case 0x90:
199 return opcode != 0x9a; /* can't boost call far */
200 case 0xc0:
201 /* can't boost software-interruptions */
202 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
203 case 0xd0:
204 /* can boost AA* and XLAT */
205 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
206 case 0xe0:
207 /* can boost in/out and absolute jmps */
208 return ((opcode & 0x04) || opcode == 0xea);
209 case 0xf0:
210 /* clear and set flags are boostable */
211 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
212 default:
213 /* CS override prefix and call are not boostable */
214 return (opcode != 0x2e && opcode != 0x9a);
215 }
216 }
217
218 static unsigned long
219 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
220 {
221 struct kprobe *kp;
222 unsigned long faddr;
223
224 kp = get_kprobe((void *)addr);
225 faddr = ftrace_location(addr);
226 /*
227 * Addresses inside the ftrace location are refused by
228 * arch_check_ftrace_location(). Something went terribly wrong
229 * if such an address is checked here.
230 */
231 if (WARN_ON(faddr && faddr != addr))
232 return 0UL;
233 /*
234 * Use the current code if it is not modified by Kprobe
235 * and it cannot be modified by ftrace.
236 */
237 if (!kp && !faddr)
238 return addr;
239
240 /*
241 * Basically, kp->ainsn.insn has an original instruction.
242 * However, RIP-relative instruction can not do single-stepping
243 * at different place, __copy_instruction() tweaks the displacement of
244 * that instruction. In that case, we can't recover the instruction
245 * from the kp->ainsn.insn.
246 *
247 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
248 * of the first byte of the probed instruction, which is overwritten
249 * by int3. And the instruction at kp->addr is not modified by kprobes
250 * except for the first byte, we can recover the original instruction
251 * from it and kp->opcode.
252 *
253 * In case of Kprobes using ftrace, we do not have a copy of
254 * the original instruction. In fact, the ftrace location might
255 * be modified at anytime and even could be in an inconsistent state.
256 * Fortunately, we know that the original code is the ideal 5-byte
257 * long NOP.
258 */
259 if (probe_kernel_read(buf, (void *)addr,
260 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
261 return 0UL;
262
263 if (faddr)
264 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
265 else
266 buf[0] = kp->opcode;
267 return (unsigned long)buf;
268 }
269
270 /*
271 * Recover the probed instruction at addr for further analysis.
272 * Caller must lock kprobes by kprobe_mutex, or disable preemption
273 * for preventing to release referencing kprobes.
274 * Returns zero if the instruction can not get recovered (or access failed).
275 */
276 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
277 {
278 unsigned long __addr;
279
280 __addr = __recover_optprobed_insn(buf, addr);
281 if (__addr != addr)
282 return __addr;
283
284 return __recover_probed_insn(buf, addr);
285 }
286
287 /* Check if paddr is at an instruction boundary */
288 static int can_probe(unsigned long paddr)
289 {
290 unsigned long addr, __addr, offset = 0;
291 struct insn insn;
292 kprobe_opcode_t buf[MAX_INSN_SIZE];
293
294 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
295 return 0;
296
297 /* Decode instructions */
298 addr = paddr - offset;
299 while (addr < paddr) {
300 /*
301 * Check if the instruction has been modified by another
302 * kprobe, in which case we replace the breakpoint by the
303 * original instruction in our buffer.
304 * Also, jump optimization will change the breakpoint to
305 * relative-jump. Since the relative-jump itself is
306 * normally used, we just go through if there is no kprobe.
307 */
308 __addr = recover_probed_instruction(buf, addr);
309 if (!__addr)
310 return 0;
311 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
312 insn_get_length(&insn);
313
314 /*
315 * Another debugging subsystem might insert this breakpoint.
316 * In that case, we can't recover it.
317 */
318 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
319 return 0;
320 addr += insn.length;
321 }
322
323 return (addr == paddr);
324 }
325
326 /*
327 * Returns non-zero if opcode modifies the interrupt flag.
328 */
329 static int is_IF_modifier(kprobe_opcode_t *insn)
330 {
331 /* Skip prefixes */
332 insn = skip_prefixes(insn);
333
334 switch (*insn) {
335 case 0xfa: /* cli */
336 case 0xfb: /* sti */
337 case 0xcf: /* iret/iretd */
338 case 0x9d: /* popf/popfd */
339 return 1;
340 }
341
342 return 0;
343 }
344
345 /*
346 * Copy an instruction with recovering modified instruction by kprobes
347 * and adjust the displacement if the instruction uses the %rip-relative
348 * addressing mode.
349 * This returns the length of copied instruction, or 0 if it has an error.
350 */
351 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
352 {
353 kprobe_opcode_t buf[MAX_INSN_SIZE];
354 unsigned long recovered_insn =
355 recover_probed_instruction(buf, (unsigned long)src);
356
357 if (!recovered_insn || !insn)
358 return 0;
359
360 /* This can access kernel text if given address is not recovered */
361 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
362 return 0;
363
364 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
365 insn_get_length(insn);
366
367 /* Another subsystem puts a breakpoint, failed to recover */
368 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
369 return 0;
370
371 #ifdef CONFIG_X86_64
372 /* Only x86_64 has RIP relative instructions */
373 if (insn_rip_relative(insn)) {
374 s64 newdisp;
375 u8 *disp;
376 /*
377 * The copied instruction uses the %rip-relative addressing
378 * mode. Adjust the displacement for the difference between
379 * the original location of this instruction and the location
380 * of the copy that will actually be run. The tricky bit here
381 * is making sure that the sign extension happens correctly in
382 * this calculation, since we need a signed 32-bit result to
383 * be sign-extended to 64 bits when it's added to the %rip
384 * value and yield the same 64-bit result that the sign-
385 * extension of the original signed 32-bit displacement would
386 * have given.
387 */
388 newdisp = (u8 *) src + (s64) insn->displacement.value
389 - (u8 *) dest;
390 if ((s64) (s32) newdisp != newdisp) {
391 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
392 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n",
393 src, dest, insn->displacement.value);
394 return 0;
395 }
396 disp = (u8 *) dest + insn_offset_displacement(insn);
397 *(s32 *) disp = (s32) newdisp;
398 }
399 #endif
400 return insn->length;
401 }
402
403 /* Prepare reljump right after instruction to boost */
404 static void prepare_boost(struct kprobe *p, struct insn *insn)
405 {
406 if (can_boost(insn, p->addr) &&
407 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
408 /*
409 * These instructions can be executed directly if it
410 * jumps back to correct address.
411 */
412 synthesize_reljump(p->ainsn.insn + insn->length,
413 p->addr + insn->length);
414 p->ainsn.boostable = true;
415 } else {
416 p->ainsn.boostable = false;
417 }
418 }
419
420 static int arch_copy_kprobe(struct kprobe *p)
421 {
422 struct insn insn;
423 int len;
424
425 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
426
427 /* Copy an instruction with recovering if other optprobe modifies it.*/
428 len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
429 if (!len)
430 return -EINVAL;
431
432 /*
433 * __copy_instruction can modify the displacement of the instruction,
434 * but it doesn't affect boostable check.
435 */
436 prepare_boost(p, &insn);
437
438 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
439
440 /* Check whether the instruction modifies Interrupt Flag or not */
441 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
442
443 /* Also, displacement change doesn't affect the first byte */
444 p->opcode = p->ainsn.insn[0];
445
446 return 0;
447 }
448
449 int arch_prepare_kprobe(struct kprobe *p)
450 {
451 if (alternatives_text_reserved(p->addr, p->addr))
452 return -EINVAL;
453
454 if (!can_probe((unsigned long)p->addr))
455 return -EILSEQ;
456 /* insn: must be on special executable page on x86. */
457 p->ainsn.insn = get_insn_slot();
458 if (!p->ainsn.insn)
459 return -ENOMEM;
460
461 return arch_copy_kprobe(p);
462 }
463
464 void arch_arm_kprobe(struct kprobe *p)
465 {
466 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
467 }
468
469 void arch_disarm_kprobe(struct kprobe *p)
470 {
471 text_poke(p->addr, &p->opcode, 1);
472 }
473
474 void arch_remove_kprobe(struct kprobe *p)
475 {
476 if (p->ainsn.insn) {
477 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
478 p->ainsn.insn = NULL;
479 }
480 }
481
482 static nokprobe_inline void
483 save_previous_kprobe(struct kprobe_ctlblk *kcb)
484 {
485 kcb->prev_kprobe.kp = kprobe_running();
486 kcb->prev_kprobe.status = kcb->kprobe_status;
487 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
488 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
489 }
490
491 static nokprobe_inline void
492 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
493 {
494 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
495 kcb->kprobe_status = kcb->prev_kprobe.status;
496 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
497 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
498 }
499
500 static nokprobe_inline void
501 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
502 struct kprobe_ctlblk *kcb)
503 {
504 __this_cpu_write(current_kprobe, p);
505 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
506 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
507 if (p->ainsn.if_modifier)
508 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
509 }
510
511 static nokprobe_inline void clear_btf(void)
512 {
513 if (test_thread_flag(TIF_BLOCKSTEP)) {
514 unsigned long debugctl = get_debugctlmsr();
515
516 debugctl &= ~DEBUGCTLMSR_BTF;
517 update_debugctlmsr(debugctl);
518 }
519 }
520
521 static nokprobe_inline void restore_btf(void)
522 {
523 if (test_thread_flag(TIF_BLOCKSTEP)) {
524 unsigned long debugctl = get_debugctlmsr();
525
526 debugctl |= DEBUGCTLMSR_BTF;
527 update_debugctlmsr(debugctl);
528 }
529 }
530
531 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
532 {
533 unsigned long *sara = stack_addr(regs);
534
535 ri->ret_addr = (kprobe_opcode_t *) *sara;
536
537 /* Replace the return addr with trampoline addr */
538 *sara = (unsigned long) &kretprobe_trampoline;
539 }
540 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
541
542 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
543 struct kprobe_ctlblk *kcb, int reenter)
544 {
545 if (setup_detour_execution(p, regs, reenter))
546 return;
547
548 #if !defined(CONFIG_PREEMPT)
549 if (p->ainsn.boostable && !p->post_handler) {
550 /* Boost up -- we can execute copied instructions directly */
551 if (!reenter)
552 reset_current_kprobe();
553 /*
554 * Reentering boosted probe doesn't reset current_kprobe,
555 * nor set current_kprobe, because it doesn't use single
556 * stepping.
557 */
558 regs->ip = (unsigned long)p->ainsn.insn;
559 preempt_enable_no_resched();
560 return;
561 }
562 #endif
563 if (reenter) {
564 save_previous_kprobe(kcb);
565 set_current_kprobe(p, regs, kcb);
566 kcb->kprobe_status = KPROBE_REENTER;
567 } else
568 kcb->kprobe_status = KPROBE_HIT_SS;
569 /* Prepare real single stepping */
570 clear_btf();
571 regs->flags |= X86_EFLAGS_TF;
572 regs->flags &= ~X86_EFLAGS_IF;
573 /* single step inline if the instruction is an int3 */
574 if (p->opcode == BREAKPOINT_INSTRUCTION)
575 regs->ip = (unsigned long)p->addr;
576 else
577 regs->ip = (unsigned long)p->ainsn.insn;
578 }
579 NOKPROBE_SYMBOL(setup_singlestep);
580
581 /*
582 * We have reentered the kprobe_handler(), since another probe was hit while
583 * within the handler. We save the original kprobes variables and just single
584 * step on the instruction of the new probe without calling any user handlers.
585 */
586 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
587 struct kprobe_ctlblk *kcb)
588 {
589 switch (kcb->kprobe_status) {
590 case KPROBE_HIT_SSDONE:
591 case KPROBE_HIT_ACTIVE:
592 case KPROBE_HIT_SS:
593 kprobes_inc_nmissed_count(p);
594 setup_singlestep(p, regs, kcb, 1);
595 break;
596 case KPROBE_REENTER:
597 /* A probe has been hit in the codepath leading up to, or just
598 * after, single-stepping of a probed instruction. This entire
599 * codepath should strictly reside in .kprobes.text section.
600 * Raise a BUG or we'll continue in an endless reentering loop
601 * and eventually a stack overflow.
602 */
603 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
604 p->addr);
605 dump_kprobe(p);
606 BUG();
607 default:
608 /* impossible cases */
609 WARN_ON(1);
610 return 0;
611 }
612
613 return 1;
614 }
615 NOKPROBE_SYMBOL(reenter_kprobe);
616
617 /*
618 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
619 * remain disabled throughout this function.
620 */
621 int kprobe_int3_handler(struct pt_regs *regs)
622 {
623 kprobe_opcode_t *addr;
624 struct kprobe *p;
625 struct kprobe_ctlblk *kcb;
626
627 if (user_mode(regs))
628 return 0;
629
630 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
631 /*
632 * We don't want to be preempted for the entire
633 * duration of kprobe processing. We conditionally
634 * re-enable preemption at the end of this function,
635 * and also in reenter_kprobe() and setup_singlestep().
636 */
637 preempt_disable();
638
639 kcb = get_kprobe_ctlblk();
640 p = get_kprobe(addr);
641
642 if (p) {
643 if (kprobe_running()) {
644 if (reenter_kprobe(p, regs, kcb))
645 return 1;
646 } else {
647 set_current_kprobe(p, regs, kcb);
648 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
649
650 /*
651 * If we have no pre-handler or it returned 0, we
652 * continue with normal processing. If we have a
653 * pre-handler and it returned non-zero, it prepped
654 * for calling the break_handler below on re-entry
655 * for jprobe processing, so get out doing nothing
656 * more here.
657 */
658 if (!p->pre_handler || !p->pre_handler(p, regs))
659 setup_singlestep(p, regs, kcb, 0);
660 return 1;
661 }
662 } else if (*addr != BREAKPOINT_INSTRUCTION) {
663 /*
664 * The breakpoint instruction was removed right
665 * after we hit it. Another cpu has removed
666 * either a probepoint or a debugger breakpoint
667 * at this address. In either case, no further
668 * handling of this interrupt is appropriate.
669 * Back up over the (now missing) int3 and run
670 * the original instruction.
671 */
672 regs->ip = (unsigned long)addr;
673 preempt_enable_no_resched();
674 return 1;
675 } else if (kprobe_running()) {
676 p = __this_cpu_read(current_kprobe);
677 if (p->break_handler && p->break_handler(p, regs)) {
678 if (!skip_singlestep(p, regs, kcb))
679 setup_singlestep(p, regs, kcb, 0);
680 return 1;
681 }
682 } /* else: not a kprobe fault; let the kernel handle it */
683
684 preempt_enable_no_resched();
685 return 0;
686 }
687 NOKPROBE_SYMBOL(kprobe_int3_handler);
688
689 /*
690 * When a retprobed function returns, this code saves registers and
691 * calls trampoline_handler() runs, which calls the kretprobe's handler.
692 */
693 asm(
694 ".global kretprobe_trampoline\n"
695 ".type kretprobe_trampoline, @function\n"
696 "kretprobe_trampoline:\n"
697 #ifdef CONFIG_X86_64
698 /* We don't bother saving the ss register */
699 " pushq %rsp\n"
700 " pushfq\n"
701 SAVE_REGS_STRING
702 " movq %rsp, %rdi\n"
703 " call trampoline_handler\n"
704 /* Replace saved sp with true return address. */
705 " movq %rax, 152(%rsp)\n"
706 RESTORE_REGS_STRING
707 " popfq\n"
708 #else
709 " pushf\n"
710 SAVE_REGS_STRING
711 " movl %esp, %eax\n"
712 " call trampoline_handler\n"
713 /* Move flags to cs */
714 " movl 56(%esp), %edx\n"
715 " movl %edx, 52(%esp)\n"
716 /* Replace saved flags with true return address. */
717 " movl %eax, 56(%esp)\n"
718 RESTORE_REGS_STRING
719 " popf\n"
720 #endif
721 " ret\n"
722 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
723 );
724 NOKPROBE_SYMBOL(kretprobe_trampoline);
725 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
726
727 /*
728 * Called from kretprobe_trampoline
729 */
730 __visible __used void *trampoline_handler(struct pt_regs *regs)
731 {
732 struct kretprobe_instance *ri = NULL;
733 struct hlist_head *head, empty_rp;
734 struct hlist_node *tmp;
735 unsigned long flags, orig_ret_address = 0;
736 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737 kprobe_opcode_t *correct_ret_addr = NULL;
738
739 INIT_HLIST_HEAD(&empty_rp);
740 kretprobe_hash_lock(current, &head, &flags);
741 /* fixup registers */
742 #ifdef CONFIG_X86_64
743 regs->cs = __KERNEL_CS;
744 #else
745 regs->cs = __KERNEL_CS | get_kernel_rpl();
746 regs->gs = 0;
747 #endif
748 regs->ip = trampoline_address;
749 regs->orig_ax = ~0UL;
750
751 /*
752 * It is possible to have multiple instances associated with a given
753 * task either because multiple functions in the call path have
754 * return probes installed on them, and/or more than one
755 * return probe was registered for a target function.
756 *
757 * We can handle this because:
758 * - instances are always pushed into the head of the list
759 * - when multiple return probes are registered for the same
760 * function, the (chronologically) first instance's ret_addr
761 * will be the real return address, and all the rest will
762 * point to kretprobe_trampoline.
763 */
764 hlist_for_each_entry(ri, head, hlist) {
765 if (ri->task != current)
766 /* another task is sharing our hash bucket */
767 continue;
768
769 orig_ret_address = (unsigned long)ri->ret_addr;
770
771 if (orig_ret_address != trampoline_address)
772 /*
773 * This is the real return address. Any other
774 * instances associated with this task are for
775 * other calls deeper on the call stack
776 */
777 break;
778 }
779
780 kretprobe_assert(ri, orig_ret_address, trampoline_address);
781
782 correct_ret_addr = ri->ret_addr;
783 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
784 if (ri->task != current)
785 /* another task is sharing our hash bucket */
786 continue;
787
788 orig_ret_address = (unsigned long)ri->ret_addr;
789 if (ri->rp && ri->rp->handler) {
790 __this_cpu_write(current_kprobe, &ri->rp->kp);
791 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
792 ri->ret_addr = correct_ret_addr;
793 ri->rp->handler(ri, regs);
794 __this_cpu_write(current_kprobe, NULL);
795 }
796
797 recycle_rp_inst(ri, &empty_rp);
798
799 if (orig_ret_address != trampoline_address)
800 /*
801 * This is the real return address. Any other
802 * instances associated with this task are for
803 * other calls deeper on the call stack
804 */
805 break;
806 }
807
808 kretprobe_hash_unlock(current, &flags);
809
810 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
811 hlist_del(&ri->hlist);
812 kfree(ri);
813 }
814 return (void *)orig_ret_address;
815 }
816 NOKPROBE_SYMBOL(trampoline_handler);
817
818 /*
819 * Called after single-stepping. p->addr is the address of the
820 * instruction whose first byte has been replaced by the "int 3"
821 * instruction. To avoid the SMP problems that can occur when we
822 * temporarily put back the original opcode to single-step, we
823 * single-stepped a copy of the instruction. The address of this
824 * copy is p->ainsn.insn.
825 *
826 * This function prepares to return from the post-single-step
827 * interrupt. We have to fix up the stack as follows:
828 *
829 * 0) Except in the case of absolute or indirect jump or call instructions,
830 * the new ip is relative to the copied instruction. We need to make
831 * it relative to the original instruction.
832 *
833 * 1) If the single-stepped instruction was pushfl, then the TF and IF
834 * flags are set in the just-pushed flags, and may need to be cleared.
835 *
836 * 2) If the single-stepped instruction was a call, the return address
837 * that is atop the stack is the address following the copied instruction.
838 * We need to make it the address following the original instruction.
839 *
840 * If this is the first time we've single-stepped the instruction at
841 * this probepoint, and the instruction is boostable, boost it: add a
842 * jump instruction after the copied instruction, that jumps to the next
843 * instruction after the probepoint.
844 */
845 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
846 struct kprobe_ctlblk *kcb)
847 {
848 unsigned long *tos = stack_addr(regs);
849 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
850 unsigned long orig_ip = (unsigned long)p->addr;
851 kprobe_opcode_t *insn = p->ainsn.insn;
852
853 /* Skip prefixes */
854 insn = skip_prefixes(insn);
855
856 regs->flags &= ~X86_EFLAGS_TF;
857 switch (*insn) {
858 case 0x9c: /* pushfl */
859 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
860 *tos |= kcb->kprobe_old_flags;
861 break;
862 case 0xc2: /* iret/ret/lret */
863 case 0xc3:
864 case 0xca:
865 case 0xcb:
866 case 0xcf:
867 case 0xea: /* jmp absolute -- ip is correct */
868 /* ip is already adjusted, no more changes required */
869 p->ainsn.boostable = true;
870 goto no_change;
871 case 0xe8: /* call relative - Fix return addr */
872 *tos = orig_ip + (*tos - copy_ip);
873 break;
874 #ifdef CONFIG_X86_32
875 case 0x9a: /* call absolute -- same as call absolute, indirect */
876 *tos = orig_ip + (*tos - copy_ip);
877 goto no_change;
878 #endif
879 case 0xff:
880 if ((insn[1] & 0x30) == 0x10) {
881 /*
882 * call absolute, indirect
883 * Fix return addr; ip is correct.
884 * But this is not boostable
885 */
886 *tos = orig_ip + (*tos - copy_ip);
887 goto no_change;
888 } else if (((insn[1] & 0x31) == 0x20) ||
889 ((insn[1] & 0x31) == 0x21)) {
890 /*
891 * jmp near and far, absolute indirect
892 * ip is correct. And this is boostable
893 */
894 p->ainsn.boostable = true;
895 goto no_change;
896 }
897 default:
898 break;
899 }
900
901 regs->ip += orig_ip - copy_ip;
902
903 no_change:
904 restore_btf();
905 }
906 NOKPROBE_SYMBOL(resume_execution);
907
908 /*
909 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
910 * remain disabled throughout this function.
911 */
912 int kprobe_debug_handler(struct pt_regs *regs)
913 {
914 struct kprobe *cur = kprobe_running();
915 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
916
917 if (!cur)
918 return 0;
919
920 resume_execution(cur, regs, kcb);
921 regs->flags |= kcb->kprobe_saved_flags;
922
923 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
924 kcb->kprobe_status = KPROBE_HIT_SSDONE;
925 cur->post_handler(cur, regs, 0);
926 }
927
928 /* Restore back the original saved kprobes variables and continue. */
929 if (kcb->kprobe_status == KPROBE_REENTER) {
930 restore_previous_kprobe(kcb);
931 goto out;
932 }
933 reset_current_kprobe();
934 out:
935 preempt_enable_no_resched();
936
937 /*
938 * if somebody else is singlestepping across a probe point, flags
939 * will have TF set, in which case, continue the remaining processing
940 * of do_debug, as if this is not a probe hit.
941 */
942 if (regs->flags & X86_EFLAGS_TF)
943 return 0;
944
945 return 1;
946 }
947 NOKPROBE_SYMBOL(kprobe_debug_handler);
948
949 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
950 {
951 struct kprobe *cur = kprobe_running();
952 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
953
954 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
955 /* This must happen on single-stepping */
956 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
957 kcb->kprobe_status != KPROBE_REENTER);
958 /*
959 * We are here because the instruction being single
960 * stepped caused a page fault. We reset the current
961 * kprobe and the ip points back to the probe address
962 * and allow the page fault handler to continue as a
963 * normal page fault.
964 */
965 regs->ip = (unsigned long)cur->addr;
966 /*
967 * Trap flag (TF) has been set here because this fault
968 * happened where the single stepping will be done.
969 * So clear it by resetting the current kprobe:
970 */
971 regs->flags &= ~X86_EFLAGS_TF;
972
973 /*
974 * If the TF flag was set before the kprobe hit,
975 * don't touch it:
976 */
977 regs->flags |= kcb->kprobe_old_flags;
978
979 if (kcb->kprobe_status == KPROBE_REENTER)
980 restore_previous_kprobe(kcb);
981 else
982 reset_current_kprobe();
983 preempt_enable_no_resched();
984 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
985 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
986 /*
987 * We increment the nmissed count for accounting,
988 * we can also use npre/npostfault count for accounting
989 * these specific fault cases.
990 */
991 kprobes_inc_nmissed_count(cur);
992
993 /*
994 * We come here because instructions in the pre/post
995 * handler caused the page_fault, this could happen
996 * if handler tries to access user space by
997 * copy_from_user(), get_user() etc. Let the
998 * user-specified handler try to fix it first.
999 */
1000 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1001 return 1;
1002
1003 /*
1004 * In case the user-specified fault handler returned
1005 * zero, try to fix up.
1006 */
1007 if (fixup_exception(regs, trapnr))
1008 return 1;
1009
1010 /*
1011 * fixup routine could not handle it,
1012 * Let do_page_fault() fix it.
1013 */
1014 }
1015
1016 return 0;
1017 }
1018 NOKPROBE_SYMBOL(kprobe_fault_handler);
1019
1020 /*
1021 * Wrapper routine for handling exceptions.
1022 */
1023 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1024 void *data)
1025 {
1026 struct die_args *args = data;
1027 int ret = NOTIFY_DONE;
1028
1029 if (args->regs && user_mode(args->regs))
1030 return ret;
1031
1032 if (val == DIE_GPF) {
1033 /*
1034 * To be potentially processing a kprobe fault and to
1035 * trust the result from kprobe_running(), we have
1036 * be non-preemptible.
1037 */
1038 if (!preemptible() && kprobe_running() &&
1039 kprobe_fault_handler(args->regs, args->trapnr))
1040 ret = NOTIFY_STOP;
1041 }
1042 return ret;
1043 }
1044 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1045
1046 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1047 {
1048 struct jprobe *jp = container_of(p, struct jprobe, kp);
1049 unsigned long addr;
1050 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1051
1052 kcb->jprobe_saved_regs = *regs;
1053 kcb->jprobe_saved_sp = stack_addr(regs);
1054 addr = (unsigned long)(kcb->jprobe_saved_sp);
1055
1056 /*
1057 * As Linus pointed out, gcc assumes that the callee
1058 * owns the argument space and could overwrite it, e.g.
1059 * tailcall optimization. So, to be absolutely safe
1060 * we also save and restore enough stack bytes to cover
1061 * the argument area.
1062 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1063 * raw stack chunk with redzones:
1064 */
1065 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1066 regs->flags &= ~X86_EFLAGS_IF;
1067 trace_hardirqs_off();
1068 regs->ip = (unsigned long)(jp->entry);
1069
1070 /*
1071 * jprobes use jprobe_return() which skips the normal return
1072 * path of the function, and this messes up the accounting of the
1073 * function graph tracer to get messed up.
1074 *
1075 * Pause function graph tracing while performing the jprobe function.
1076 */
1077 pause_graph_tracing();
1078 return 1;
1079 }
1080 NOKPROBE_SYMBOL(setjmp_pre_handler);
1081
1082 void jprobe_return(void)
1083 {
1084 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1085
1086 /* Unpoison stack redzones in the frames we are going to jump over. */
1087 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1088
1089 asm volatile (
1090 #ifdef CONFIG_X86_64
1091 " xchg %%rbx,%%rsp \n"
1092 #else
1093 " xchgl %%ebx,%%esp \n"
1094 #endif
1095 " int3 \n"
1096 " .globl jprobe_return_end\n"
1097 " jprobe_return_end: \n"
1098 " nop \n"::"b"
1099 (kcb->jprobe_saved_sp):"memory");
1100 }
1101 NOKPROBE_SYMBOL(jprobe_return);
1102 NOKPROBE_SYMBOL(jprobe_return_end);
1103
1104 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1105 {
1106 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1107 u8 *addr = (u8 *) (regs->ip - 1);
1108 struct jprobe *jp = container_of(p, struct jprobe, kp);
1109 void *saved_sp = kcb->jprobe_saved_sp;
1110
1111 if ((addr > (u8 *) jprobe_return) &&
1112 (addr < (u8 *) jprobe_return_end)) {
1113 if (stack_addr(regs) != saved_sp) {
1114 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1115 printk(KERN_ERR
1116 "current sp %p does not match saved sp %p\n",
1117 stack_addr(regs), saved_sp);
1118 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1119 show_regs(saved_regs);
1120 printk(KERN_ERR "Current registers\n");
1121 show_regs(regs);
1122 BUG();
1123 }
1124 /* It's OK to start function graph tracing again */
1125 unpause_graph_tracing();
1126 *regs = kcb->jprobe_saved_regs;
1127 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1128 preempt_enable_no_resched();
1129 return 1;
1130 }
1131 return 0;
1132 }
1133 NOKPROBE_SYMBOL(longjmp_break_handler);
1134
1135 bool arch_within_kprobe_blacklist(unsigned long addr)
1136 {
1137 return (addr >= (unsigned long)__kprobes_text_start &&
1138 addr < (unsigned long)__kprobes_text_end) ||
1139 (addr >= (unsigned long)__entry_text_start &&
1140 addr < (unsigned long)__entry_text_end);
1141 }
1142
1143 int __init arch_init_kprobes(void)
1144 {
1145 return 0;
1146 }
1147
1148 int arch_trampoline_kprobe(struct kprobe *p)
1149 {
1150 return 0;
1151 }