]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kernel/kprobes/core.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kernel / kprobes / core.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
41 */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/extable.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 #include <linux/frame.h>
53 #include <linux/kasan.h>
54
55 #include <asm/text-patching.h>
56 #include <asm/cacheflush.h>
57 #include <asm/desc.h>
58 #include <asm/pgtable.h>
59 #include <linux/uaccess.h>
60 #include <asm/alternative.h>
61 #include <asm/insn.h>
62 #include <asm/debugreg.h>
63
64 #include "common.h"
65
66 void jprobe_return_end(void);
67
68 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
69 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
70
71 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
72
73 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
74 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
75 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
76 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
77 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
78 << (row % 32))
79 /*
80 * Undefined/reserved opcodes, conditional jump, Opcode Extension
81 * Groups, and some special opcodes can not boost.
82 * This is non-const and volatile to keep gcc from statically
83 * optimizing it out, as variable_test_bit makes gcc think only
84 * *(unsigned long*) is used.
85 */
86 static volatile u32 twobyte_is_boostable[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
90 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
92 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
96 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
97 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
102 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
103 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
104 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
105 /* ----------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107 };
108 #undef W
109
110 struct kretprobe_blackpoint kretprobe_blacklist[] = {
111 {"__switch_to", }, /* This function switches only current task, but
112 doesn't switch kernel stack.*/
113 {NULL, NULL} /* Terminator */
114 };
115
116 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
117
118 static nokprobe_inline void
119 __synthesize_relative_insn(void *from, void *to, u8 op)
120 {
121 struct __arch_relative_insn {
122 u8 op;
123 s32 raddr;
124 } __packed *insn;
125
126 insn = (struct __arch_relative_insn *)from;
127 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
128 insn->op = op;
129 }
130
131 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
132 void synthesize_reljump(void *from, void *to)
133 {
134 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
135 }
136 NOKPROBE_SYMBOL(synthesize_reljump);
137
138 /* Insert a call instruction at address 'from', which calls address 'to'.*/
139 void synthesize_relcall(void *from, void *to)
140 {
141 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
142 }
143 NOKPROBE_SYMBOL(synthesize_relcall);
144
145 /*
146 * Skip the prefixes of the instruction.
147 */
148 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
149 {
150 insn_attr_t attr;
151
152 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 while (inat_is_legacy_prefix(attr)) {
154 insn++;
155 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
156 }
157 #ifdef CONFIG_X86_64
158 if (inat_is_rex_prefix(attr))
159 insn++;
160 #endif
161 return insn;
162 }
163 NOKPROBE_SYMBOL(skip_prefixes);
164
165 /*
166 * Returns non-zero if opcode is boostable.
167 * RIP relative instructions are adjusted at copying time in 64 bits mode
168 */
169 int can_boost(kprobe_opcode_t *opcodes)
170 {
171 kprobe_opcode_t opcode;
172 kprobe_opcode_t *orig_opcodes = opcodes;
173
174 if (search_exception_tables((unsigned long)opcodes))
175 return 0; /* Page fault may occur on this address. */
176
177 retry:
178 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
179 return 0;
180 opcode = *(opcodes++);
181
182 /* 2nd-byte opcode */
183 if (opcode == 0x0f) {
184 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
185 return 0;
186 return test_bit(*opcodes,
187 (unsigned long *)twobyte_is_boostable);
188 }
189
190 switch (opcode & 0xf0) {
191 #ifdef CONFIG_X86_64
192 case 0x40:
193 goto retry; /* REX prefix is boostable */
194 #endif
195 case 0x60:
196 if (0x63 < opcode && opcode < 0x67)
197 goto retry; /* prefixes */
198 /* can't boost Address-size override and bound */
199 return (opcode != 0x62 && opcode != 0x67);
200 case 0x70:
201 return 0; /* can't boost conditional jump */
202 case 0xc0:
203 /* can't boost software-interruptions */
204 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
205 case 0xd0:
206 /* can boost AA* and XLAT */
207 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
208 case 0xe0:
209 /* can boost in/out and absolute jmps */
210 return ((opcode & 0x04) || opcode == 0xea);
211 case 0xf0:
212 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
213 goto retry; /* lock/rep(ne) prefix */
214 /* clear and set flags are boostable */
215 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
216 default:
217 /* segment override prefixes are boostable */
218 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
219 goto retry; /* prefixes */
220 /* CS override prefix and call are not boostable */
221 return (opcode != 0x2e && opcode != 0x9a);
222 }
223 }
224
225 static unsigned long
226 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
227 {
228 struct kprobe *kp;
229 unsigned long faddr;
230
231 kp = get_kprobe((void *)addr);
232 faddr = ftrace_location(addr);
233 /*
234 * Addresses inside the ftrace location are refused by
235 * arch_check_ftrace_location(). Something went terribly wrong
236 * if such an address is checked here.
237 */
238 if (WARN_ON(faddr && faddr != addr))
239 return 0UL;
240 /*
241 * Use the current code if it is not modified by Kprobe
242 * and it cannot be modified by ftrace.
243 */
244 if (!kp && !faddr)
245 return addr;
246
247 /*
248 * Basically, kp->ainsn.insn has an original instruction.
249 * However, RIP-relative instruction can not do single-stepping
250 * at different place, __copy_instruction() tweaks the displacement of
251 * that instruction. In that case, we can't recover the instruction
252 * from the kp->ainsn.insn.
253 *
254 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
255 * of the first byte of the probed instruction, which is overwritten
256 * by int3. And the instruction at kp->addr is not modified by kprobes
257 * except for the first byte, we can recover the original instruction
258 * from it and kp->opcode.
259 *
260 * In case of Kprobes using ftrace, we do not have a copy of
261 * the original instruction. In fact, the ftrace location might
262 * be modified at anytime and even could be in an inconsistent state.
263 * Fortunately, we know that the original code is the ideal 5-byte
264 * long NOP.
265 */
266 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
267 if (faddr)
268 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
269 else
270 buf[0] = kp->opcode;
271 return (unsigned long)buf;
272 }
273
274 /*
275 * Recover the probed instruction at addr for further analysis.
276 * Caller must lock kprobes by kprobe_mutex, or disable preemption
277 * for preventing to release referencing kprobes.
278 * Returns zero if the instruction can not get recovered.
279 */
280 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
281 {
282 unsigned long __addr;
283
284 __addr = __recover_optprobed_insn(buf, addr);
285 if (__addr != addr)
286 return __addr;
287
288 return __recover_probed_insn(buf, addr);
289 }
290
291 /* Check if paddr is at an instruction boundary */
292 static int can_probe(unsigned long paddr)
293 {
294 unsigned long addr, __addr, offset = 0;
295 struct insn insn;
296 kprobe_opcode_t buf[MAX_INSN_SIZE];
297
298 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
299 return 0;
300
301 /* Decode instructions */
302 addr = paddr - offset;
303 while (addr < paddr) {
304 /*
305 * Check if the instruction has been modified by another
306 * kprobe, in which case we replace the breakpoint by the
307 * original instruction in our buffer.
308 * Also, jump optimization will change the breakpoint to
309 * relative-jump. Since the relative-jump itself is
310 * normally used, we just go through if there is no kprobe.
311 */
312 __addr = recover_probed_instruction(buf, addr);
313 if (!__addr)
314 return 0;
315 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
316 insn_get_length(&insn);
317
318 /*
319 * Another debugging subsystem might insert this breakpoint.
320 * In that case, we can't recover it.
321 */
322 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
323 return 0;
324 addr += insn.length;
325 }
326
327 return (addr == paddr);
328 }
329
330 /*
331 * Returns non-zero if opcode modifies the interrupt flag.
332 */
333 static int is_IF_modifier(kprobe_opcode_t *insn)
334 {
335 /* Skip prefixes */
336 insn = skip_prefixes(insn);
337
338 switch (*insn) {
339 case 0xfa: /* cli */
340 case 0xfb: /* sti */
341 case 0xcf: /* iret/iretd */
342 case 0x9d: /* popf/popfd */
343 return 1;
344 }
345
346 return 0;
347 }
348
349 /*
350 * Copy an instruction and adjust the displacement if the instruction
351 * uses the %rip-relative addressing mode.
352 * If it does, Return the address of the 32-bit displacement word.
353 * If not, return null.
354 * Only applicable to 64-bit x86.
355 */
356 int __copy_instruction(u8 *dest, u8 *src)
357 {
358 struct insn insn;
359 kprobe_opcode_t buf[MAX_INSN_SIZE];
360 int length;
361 unsigned long recovered_insn =
362 recover_probed_instruction(buf, (unsigned long)src);
363
364 if (!recovered_insn)
365 return 0;
366 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
367 insn_get_length(&insn);
368 length = insn.length;
369
370 /* Another subsystem puts a breakpoint, failed to recover */
371 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
372 return 0;
373 memcpy(dest, insn.kaddr, length);
374
375 #ifdef CONFIG_X86_64
376 if (insn_rip_relative(&insn)) {
377 s64 newdisp;
378 u8 *disp;
379 kernel_insn_init(&insn, dest, length);
380 insn_get_displacement(&insn);
381 /*
382 * The copied instruction uses the %rip-relative addressing
383 * mode. Adjust the displacement for the difference between
384 * the original location of this instruction and the location
385 * of the copy that will actually be run. The tricky bit here
386 * is making sure that the sign extension happens correctly in
387 * this calculation, since we need a signed 32-bit result to
388 * be sign-extended to 64 bits when it's added to the %rip
389 * value and yield the same 64-bit result that the sign-
390 * extension of the original signed 32-bit displacement would
391 * have given.
392 */
393 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
394 if ((s64) (s32) newdisp != newdisp) {
395 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
396 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
397 return 0;
398 }
399 disp = (u8 *) dest + insn_offset_displacement(&insn);
400 *(s32 *) disp = (s32) newdisp;
401 }
402 #endif
403 return length;
404 }
405
406 static int arch_copy_kprobe(struct kprobe *p)
407 {
408 int ret;
409
410 /* Copy an instruction with recovering if other optprobe modifies it.*/
411 ret = __copy_instruction(p->ainsn.insn, p->addr);
412 if (!ret)
413 return -EINVAL;
414
415 /*
416 * __copy_instruction can modify the displacement of the instruction,
417 * but it doesn't affect boostable check.
418 */
419 if (can_boost(p->ainsn.insn))
420 p->ainsn.boostable = 0;
421 else
422 p->ainsn.boostable = -1;
423
424 /* Check whether the instruction modifies Interrupt Flag or not */
425 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
426
427 /* Also, displacement change doesn't affect the first byte */
428 p->opcode = p->ainsn.insn[0];
429
430 return 0;
431 }
432
433 int arch_prepare_kprobe(struct kprobe *p)
434 {
435 if (alternatives_text_reserved(p->addr, p->addr))
436 return -EINVAL;
437
438 if (!can_probe((unsigned long)p->addr))
439 return -EILSEQ;
440 /* insn: must be on special executable page on x86. */
441 p->ainsn.insn = get_insn_slot();
442 if (!p->ainsn.insn)
443 return -ENOMEM;
444
445 return arch_copy_kprobe(p);
446 }
447
448 void arch_arm_kprobe(struct kprobe *p)
449 {
450 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
451 }
452
453 void arch_disarm_kprobe(struct kprobe *p)
454 {
455 text_poke(p->addr, &p->opcode, 1);
456 }
457
458 void arch_remove_kprobe(struct kprobe *p)
459 {
460 if (p->ainsn.insn) {
461 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
462 p->ainsn.insn = NULL;
463 }
464 }
465
466 static nokprobe_inline void
467 save_previous_kprobe(struct kprobe_ctlblk *kcb)
468 {
469 kcb->prev_kprobe.kp = kprobe_running();
470 kcb->prev_kprobe.status = kcb->kprobe_status;
471 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
472 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
473 }
474
475 static nokprobe_inline void
476 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
477 {
478 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
479 kcb->kprobe_status = kcb->prev_kprobe.status;
480 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
481 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
482 }
483
484 static nokprobe_inline void
485 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
486 struct kprobe_ctlblk *kcb)
487 {
488 __this_cpu_write(current_kprobe, p);
489 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
490 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
491 if (p->ainsn.if_modifier)
492 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
493 }
494
495 static nokprobe_inline void clear_btf(void)
496 {
497 if (test_thread_flag(TIF_BLOCKSTEP)) {
498 unsigned long debugctl = get_debugctlmsr();
499
500 debugctl &= ~DEBUGCTLMSR_BTF;
501 update_debugctlmsr(debugctl);
502 }
503 }
504
505 static nokprobe_inline void restore_btf(void)
506 {
507 if (test_thread_flag(TIF_BLOCKSTEP)) {
508 unsigned long debugctl = get_debugctlmsr();
509
510 debugctl |= DEBUGCTLMSR_BTF;
511 update_debugctlmsr(debugctl);
512 }
513 }
514
515 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
516 {
517 unsigned long *sara = stack_addr(regs);
518
519 ri->ret_addr = (kprobe_opcode_t *) *sara;
520
521 /* Replace the return addr with trampoline addr */
522 *sara = (unsigned long) &kretprobe_trampoline;
523 }
524 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
525
526 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
527 struct kprobe_ctlblk *kcb, int reenter)
528 {
529 if (setup_detour_execution(p, regs, reenter))
530 return;
531
532 #if !defined(CONFIG_PREEMPT)
533 if (p->ainsn.boostable == 1 && !p->post_handler) {
534 /* Boost up -- we can execute copied instructions directly */
535 if (!reenter)
536 reset_current_kprobe();
537 /*
538 * Reentering boosted probe doesn't reset current_kprobe,
539 * nor set current_kprobe, because it doesn't use single
540 * stepping.
541 */
542 regs->ip = (unsigned long)p->ainsn.insn;
543 preempt_enable_no_resched();
544 return;
545 }
546 #endif
547 if (reenter) {
548 save_previous_kprobe(kcb);
549 set_current_kprobe(p, regs, kcb);
550 kcb->kprobe_status = KPROBE_REENTER;
551 } else
552 kcb->kprobe_status = KPROBE_HIT_SS;
553 /* Prepare real single stepping */
554 clear_btf();
555 regs->flags |= X86_EFLAGS_TF;
556 regs->flags &= ~X86_EFLAGS_IF;
557 /* single step inline if the instruction is an int3 */
558 if (p->opcode == BREAKPOINT_INSTRUCTION)
559 regs->ip = (unsigned long)p->addr;
560 else
561 regs->ip = (unsigned long)p->ainsn.insn;
562 }
563 NOKPROBE_SYMBOL(setup_singlestep);
564
565 /*
566 * We have reentered the kprobe_handler(), since another probe was hit while
567 * within the handler. We save the original kprobes variables and just single
568 * step on the instruction of the new probe without calling any user handlers.
569 */
570 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
571 struct kprobe_ctlblk *kcb)
572 {
573 switch (kcb->kprobe_status) {
574 case KPROBE_HIT_SSDONE:
575 case KPROBE_HIT_ACTIVE:
576 case KPROBE_HIT_SS:
577 kprobes_inc_nmissed_count(p);
578 setup_singlestep(p, regs, kcb, 1);
579 break;
580 case KPROBE_REENTER:
581 /* A probe has been hit in the codepath leading up to, or just
582 * after, single-stepping of a probed instruction. This entire
583 * codepath should strictly reside in .kprobes.text section.
584 * Raise a BUG or we'll continue in an endless reentering loop
585 * and eventually a stack overflow.
586 */
587 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
588 p->addr);
589 dump_kprobe(p);
590 BUG();
591 default:
592 /* impossible cases */
593 WARN_ON(1);
594 return 0;
595 }
596
597 return 1;
598 }
599 NOKPROBE_SYMBOL(reenter_kprobe);
600
601 /*
602 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
603 * remain disabled throughout this function.
604 */
605 int kprobe_int3_handler(struct pt_regs *regs)
606 {
607 kprobe_opcode_t *addr;
608 struct kprobe *p;
609 struct kprobe_ctlblk *kcb;
610
611 if (user_mode(regs))
612 return 0;
613
614 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
615 /*
616 * We don't want to be preempted for the entire
617 * duration of kprobe processing. We conditionally
618 * re-enable preemption at the end of this function,
619 * and also in reenter_kprobe() and setup_singlestep().
620 */
621 preempt_disable();
622
623 kcb = get_kprobe_ctlblk();
624 p = get_kprobe(addr);
625
626 if (p) {
627 if (kprobe_running()) {
628 if (reenter_kprobe(p, regs, kcb))
629 return 1;
630 } else {
631 set_current_kprobe(p, regs, kcb);
632 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
633
634 /*
635 * If we have no pre-handler or it returned 0, we
636 * continue with normal processing. If we have a
637 * pre-handler and it returned non-zero, it prepped
638 * for calling the break_handler below on re-entry
639 * for jprobe processing, so get out doing nothing
640 * more here.
641 */
642 if (!p->pre_handler || !p->pre_handler(p, regs))
643 setup_singlestep(p, regs, kcb, 0);
644 return 1;
645 }
646 } else if (*addr != BREAKPOINT_INSTRUCTION) {
647 /*
648 * The breakpoint instruction was removed right
649 * after we hit it. Another cpu has removed
650 * either a probepoint or a debugger breakpoint
651 * at this address. In either case, no further
652 * handling of this interrupt is appropriate.
653 * Back up over the (now missing) int3 and run
654 * the original instruction.
655 */
656 regs->ip = (unsigned long)addr;
657 preempt_enable_no_resched();
658 return 1;
659 } else if (kprobe_running()) {
660 p = __this_cpu_read(current_kprobe);
661 if (p->break_handler && p->break_handler(p, regs)) {
662 if (!skip_singlestep(p, regs, kcb))
663 setup_singlestep(p, regs, kcb, 0);
664 return 1;
665 }
666 } /* else: not a kprobe fault; let the kernel handle it */
667
668 preempt_enable_no_resched();
669 return 0;
670 }
671 NOKPROBE_SYMBOL(kprobe_int3_handler);
672
673 /*
674 * When a retprobed function returns, this code saves registers and
675 * calls trampoline_handler() runs, which calls the kretprobe's handler.
676 */
677 asm(
678 ".global kretprobe_trampoline\n"
679 ".type kretprobe_trampoline, @function\n"
680 "kretprobe_trampoline:\n"
681 #ifdef CONFIG_X86_64
682 /* We don't bother saving the ss register */
683 " pushq %rsp\n"
684 " pushfq\n"
685 SAVE_REGS_STRING
686 " movq %rsp, %rdi\n"
687 " call trampoline_handler\n"
688 /* Replace saved sp with true return address. */
689 " movq %rax, 152(%rsp)\n"
690 RESTORE_REGS_STRING
691 " popfq\n"
692 #else
693 " pushf\n"
694 SAVE_REGS_STRING
695 " movl %esp, %eax\n"
696 " call trampoline_handler\n"
697 /* Move flags to cs */
698 " movl 56(%esp), %edx\n"
699 " movl %edx, 52(%esp)\n"
700 /* Replace saved flags with true return address. */
701 " movl %eax, 56(%esp)\n"
702 RESTORE_REGS_STRING
703 " popf\n"
704 #endif
705 " ret\n"
706 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
707 );
708 NOKPROBE_SYMBOL(kretprobe_trampoline);
709 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
710
711 /*
712 * Called from kretprobe_trampoline
713 */
714 __visible __used void *trampoline_handler(struct pt_regs *regs)
715 {
716 struct kretprobe_instance *ri = NULL;
717 struct hlist_head *head, empty_rp;
718 struct hlist_node *tmp;
719 unsigned long flags, orig_ret_address = 0;
720 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
721 kprobe_opcode_t *correct_ret_addr = NULL;
722
723 INIT_HLIST_HEAD(&empty_rp);
724 kretprobe_hash_lock(current, &head, &flags);
725 /* fixup registers */
726 #ifdef CONFIG_X86_64
727 regs->cs = __KERNEL_CS;
728 #else
729 regs->cs = __KERNEL_CS | get_kernel_rpl();
730 regs->gs = 0;
731 #endif
732 regs->ip = trampoline_address;
733 regs->orig_ax = ~0UL;
734
735 /*
736 * It is possible to have multiple instances associated with a given
737 * task either because multiple functions in the call path have
738 * return probes installed on them, and/or more than one
739 * return probe was registered for a target function.
740 *
741 * We can handle this because:
742 * - instances are always pushed into the head of the list
743 * - when multiple return probes are registered for the same
744 * function, the (chronologically) first instance's ret_addr
745 * will be the real return address, and all the rest will
746 * point to kretprobe_trampoline.
747 */
748 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
749 if (ri->task != current)
750 /* another task is sharing our hash bucket */
751 continue;
752
753 orig_ret_address = (unsigned long)ri->ret_addr;
754
755 if (orig_ret_address != trampoline_address)
756 /*
757 * This is the real return address. Any other
758 * instances associated with this task are for
759 * other calls deeper on the call stack
760 */
761 break;
762 }
763
764 kretprobe_assert(ri, orig_ret_address, trampoline_address);
765
766 correct_ret_addr = ri->ret_addr;
767 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
768 if (ri->task != current)
769 /* another task is sharing our hash bucket */
770 continue;
771
772 orig_ret_address = (unsigned long)ri->ret_addr;
773 if (ri->rp && ri->rp->handler) {
774 __this_cpu_write(current_kprobe, &ri->rp->kp);
775 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
776 ri->ret_addr = correct_ret_addr;
777 ri->rp->handler(ri, regs);
778 __this_cpu_write(current_kprobe, NULL);
779 }
780
781 recycle_rp_inst(ri, &empty_rp);
782
783 if (orig_ret_address != trampoline_address)
784 /*
785 * This is the real return address. Any other
786 * instances associated with this task are for
787 * other calls deeper on the call stack
788 */
789 break;
790 }
791
792 kretprobe_hash_unlock(current, &flags);
793
794 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
795 hlist_del(&ri->hlist);
796 kfree(ri);
797 }
798 return (void *)orig_ret_address;
799 }
800 NOKPROBE_SYMBOL(trampoline_handler);
801
802 /*
803 * Called after single-stepping. p->addr is the address of the
804 * instruction whose first byte has been replaced by the "int 3"
805 * instruction. To avoid the SMP problems that can occur when we
806 * temporarily put back the original opcode to single-step, we
807 * single-stepped a copy of the instruction. The address of this
808 * copy is p->ainsn.insn.
809 *
810 * This function prepares to return from the post-single-step
811 * interrupt. We have to fix up the stack as follows:
812 *
813 * 0) Except in the case of absolute or indirect jump or call instructions,
814 * the new ip is relative to the copied instruction. We need to make
815 * it relative to the original instruction.
816 *
817 * 1) If the single-stepped instruction was pushfl, then the TF and IF
818 * flags are set in the just-pushed flags, and may need to be cleared.
819 *
820 * 2) If the single-stepped instruction was a call, the return address
821 * that is atop the stack is the address following the copied instruction.
822 * We need to make it the address following the original instruction.
823 *
824 * If this is the first time we've single-stepped the instruction at
825 * this probepoint, and the instruction is boostable, boost it: add a
826 * jump instruction after the copied instruction, that jumps to the next
827 * instruction after the probepoint.
828 */
829 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
830 struct kprobe_ctlblk *kcb)
831 {
832 unsigned long *tos = stack_addr(regs);
833 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
834 unsigned long orig_ip = (unsigned long)p->addr;
835 kprobe_opcode_t *insn = p->ainsn.insn;
836
837 /* Skip prefixes */
838 insn = skip_prefixes(insn);
839
840 regs->flags &= ~X86_EFLAGS_TF;
841 switch (*insn) {
842 case 0x9c: /* pushfl */
843 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
844 *tos |= kcb->kprobe_old_flags;
845 break;
846 case 0xc2: /* iret/ret/lret */
847 case 0xc3:
848 case 0xca:
849 case 0xcb:
850 case 0xcf:
851 case 0xea: /* jmp absolute -- ip is correct */
852 /* ip is already adjusted, no more changes required */
853 p->ainsn.boostable = 1;
854 goto no_change;
855 case 0xe8: /* call relative - Fix return addr */
856 *tos = orig_ip + (*tos - copy_ip);
857 break;
858 #ifdef CONFIG_X86_32
859 case 0x9a: /* call absolute -- same as call absolute, indirect */
860 *tos = orig_ip + (*tos - copy_ip);
861 goto no_change;
862 #endif
863 case 0xff:
864 if ((insn[1] & 0x30) == 0x10) {
865 /*
866 * call absolute, indirect
867 * Fix return addr; ip is correct.
868 * But this is not boostable
869 */
870 *tos = orig_ip + (*tos - copy_ip);
871 goto no_change;
872 } else if (((insn[1] & 0x31) == 0x20) ||
873 ((insn[1] & 0x31) == 0x21)) {
874 /*
875 * jmp near and far, absolute indirect
876 * ip is correct. And this is boostable
877 */
878 p->ainsn.boostable = 1;
879 goto no_change;
880 }
881 default:
882 break;
883 }
884
885 if (p->ainsn.boostable == 0) {
886 if ((regs->ip > copy_ip) &&
887 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
888 /*
889 * These instructions can be executed directly if it
890 * jumps back to correct address.
891 */
892 synthesize_reljump((void *)regs->ip,
893 (void *)orig_ip + (regs->ip - copy_ip));
894 p->ainsn.boostable = 1;
895 } else {
896 p->ainsn.boostable = -1;
897 }
898 }
899
900 regs->ip += orig_ip - copy_ip;
901
902 no_change:
903 restore_btf();
904 }
905 NOKPROBE_SYMBOL(resume_execution);
906
907 /*
908 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
909 * remain disabled throughout this function.
910 */
911 int kprobe_debug_handler(struct pt_regs *regs)
912 {
913 struct kprobe *cur = kprobe_running();
914 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
915
916 if (!cur)
917 return 0;
918
919 resume_execution(cur, regs, kcb);
920 regs->flags |= kcb->kprobe_saved_flags;
921
922 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
923 kcb->kprobe_status = KPROBE_HIT_SSDONE;
924 cur->post_handler(cur, regs, 0);
925 }
926
927 /* Restore back the original saved kprobes variables and continue. */
928 if (kcb->kprobe_status == KPROBE_REENTER) {
929 restore_previous_kprobe(kcb);
930 goto out;
931 }
932 reset_current_kprobe();
933 out:
934 preempt_enable_no_resched();
935
936 /*
937 * if somebody else is singlestepping across a probe point, flags
938 * will have TF set, in which case, continue the remaining processing
939 * of do_debug, as if this is not a probe hit.
940 */
941 if (regs->flags & X86_EFLAGS_TF)
942 return 0;
943
944 return 1;
945 }
946 NOKPROBE_SYMBOL(kprobe_debug_handler);
947
948 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
949 {
950 struct kprobe *cur = kprobe_running();
951 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
952
953 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
954 /* This must happen on single-stepping */
955 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
956 kcb->kprobe_status != KPROBE_REENTER);
957 /*
958 * We are here because the instruction being single
959 * stepped caused a page fault. We reset the current
960 * kprobe and the ip points back to the probe address
961 * and allow the page fault handler to continue as a
962 * normal page fault.
963 */
964 regs->ip = (unsigned long)cur->addr;
965 /*
966 * Trap flag (TF) has been set here because this fault
967 * happened where the single stepping will be done.
968 * So clear it by resetting the current kprobe:
969 */
970 regs->flags &= ~X86_EFLAGS_TF;
971
972 /*
973 * If the TF flag was set before the kprobe hit,
974 * don't touch it:
975 */
976 regs->flags |= kcb->kprobe_old_flags;
977
978 if (kcb->kprobe_status == KPROBE_REENTER)
979 restore_previous_kprobe(kcb);
980 else
981 reset_current_kprobe();
982 preempt_enable_no_resched();
983 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
984 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
985 /*
986 * We increment the nmissed count for accounting,
987 * we can also use npre/npostfault count for accounting
988 * these specific fault cases.
989 */
990 kprobes_inc_nmissed_count(cur);
991
992 /*
993 * We come here because instructions in the pre/post
994 * handler caused the page_fault, this could happen
995 * if handler tries to access user space by
996 * copy_from_user(), get_user() etc. Let the
997 * user-specified handler try to fix it first.
998 */
999 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1000 return 1;
1001
1002 /*
1003 * In case the user-specified fault handler returned
1004 * zero, try to fix up.
1005 */
1006 if (fixup_exception(regs, trapnr))
1007 return 1;
1008
1009 /*
1010 * fixup routine could not handle it,
1011 * Let do_page_fault() fix it.
1012 */
1013 }
1014
1015 return 0;
1016 }
1017 NOKPROBE_SYMBOL(kprobe_fault_handler);
1018
1019 /*
1020 * Wrapper routine for handling exceptions.
1021 */
1022 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1023 void *data)
1024 {
1025 struct die_args *args = data;
1026 int ret = NOTIFY_DONE;
1027
1028 if (args->regs && user_mode(args->regs))
1029 return ret;
1030
1031 if (val == DIE_GPF) {
1032 /*
1033 * To be potentially processing a kprobe fault and to
1034 * trust the result from kprobe_running(), we have
1035 * be non-preemptible.
1036 */
1037 if (!preemptible() && kprobe_running() &&
1038 kprobe_fault_handler(args->regs, args->trapnr))
1039 ret = NOTIFY_STOP;
1040 }
1041 return ret;
1042 }
1043 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1044
1045 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1046 {
1047 struct jprobe *jp = container_of(p, struct jprobe, kp);
1048 unsigned long addr;
1049 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1050
1051 kcb->jprobe_saved_regs = *regs;
1052 kcb->jprobe_saved_sp = stack_addr(regs);
1053 addr = (unsigned long)(kcb->jprobe_saved_sp);
1054
1055 /*
1056 * As Linus pointed out, gcc assumes that the callee
1057 * owns the argument space and could overwrite it, e.g.
1058 * tailcall optimization. So, to be absolutely safe
1059 * we also save and restore enough stack bytes to cover
1060 * the argument area.
1061 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1062 * raw stack chunk with redzones:
1063 */
1064 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1065 regs->flags &= ~X86_EFLAGS_IF;
1066 trace_hardirqs_off();
1067 regs->ip = (unsigned long)(jp->entry);
1068
1069 /*
1070 * jprobes use jprobe_return() which skips the normal return
1071 * path of the function, and this messes up the accounting of the
1072 * function graph tracer to get messed up.
1073 *
1074 * Pause function graph tracing while performing the jprobe function.
1075 */
1076 pause_graph_tracing();
1077 return 1;
1078 }
1079 NOKPROBE_SYMBOL(setjmp_pre_handler);
1080
1081 void jprobe_return(void)
1082 {
1083 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084
1085 /* Unpoison stack redzones in the frames we are going to jump over. */
1086 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1087
1088 asm volatile (
1089 #ifdef CONFIG_X86_64
1090 " xchg %%rbx,%%rsp \n"
1091 #else
1092 " xchgl %%ebx,%%esp \n"
1093 #endif
1094 " int3 \n"
1095 " .globl jprobe_return_end\n"
1096 " jprobe_return_end: \n"
1097 " nop \n"::"b"
1098 (kcb->jprobe_saved_sp):"memory");
1099 }
1100 NOKPROBE_SYMBOL(jprobe_return);
1101 NOKPROBE_SYMBOL(jprobe_return_end);
1102
1103 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1104 {
1105 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1106 u8 *addr = (u8 *) (regs->ip - 1);
1107 struct jprobe *jp = container_of(p, struct jprobe, kp);
1108 void *saved_sp = kcb->jprobe_saved_sp;
1109
1110 if ((addr > (u8 *) jprobe_return) &&
1111 (addr < (u8 *) jprobe_return_end)) {
1112 if (stack_addr(regs) != saved_sp) {
1113 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1114 printk(KERN_ERR
1115 "current sp %p does not match saved sp %p\n",
1116 stack_addr(regs), saved_sp);
1117 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1118 show_regs(saved_regs);
1119 printk(KERN_ERR "Current registers\n");
1120 show_regs(regs);
1121 BUG();
1122 }
1123 /* It's OK to start function graph tracing again */
1124 unpause_graph_tracing();
1125 *regs = kcb->jprobe_saved_regs;
1126 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1127 preempt_enable_no_resched();
1128 return 1;
1129 }
1130 return 0;
1131 }
1132 NOKPROBE_SYMBOL(longjmp_break_handler);
1133
1134 bool arch_within_kprobe_blacklist(unsigned long addr)
1135 {
1136 return (addr >= (unsigned long)__kprobes_text_start &&
1137 addr < (unsigned long)__kprobes_text_end) ||
1138 (addr >= (unsigned long)__entry_text_start &&
1139 addr < (unsigned long)__entry_text_end);
1140 }
1141
1142 int __init arch_init_kprobes(void)
1143 {
1144 return 0;
1145 }
1146
1147 int arch_trampoline_kprobe(struct kprobe *p)
1148 {
1149 return 0;
1150 }