]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/kvm.c
Merge branch 'mw-3.1-jul25' of git://oss.oracle.com/git/smushran/linux-2.6 into ocfs2...
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / kvm.c
1 /*
2 * KVM paravirt_ops implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 *
18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19 * Copyright IBM Corporation, 2007
20 * Authors: Anthony Liguori <aliguori@us.ibm.com>
21 */
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/hash.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/kprobes.h>
36 #include <asm/timer.h>
37 #include <asm/cpu.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
41
42 #define MMU_QUEUE_SIZE 1024
43
44 static int kvmapf = 1;
45
46 static int parse_no_kvmapf(char *arg)
47 {
48 kvmapf = 0;
49 return 0;
50 }
51
52 early_param("no-kvmapf", parse_no_kvmapf);
53
54 static int steal_acc = 1;
55 static int parse_no_stealacc(char *arg)
56 {
57 steal_acc = 0;
58 return 0;
59 }
60
61 early_param("no-steal-acc", parse_no_stealacc);
62
63 struct kvm_para_state {
64 u8 mmu_queue[MMU_QUEUE_SIZE];
65 int mmu_queue_len;
66 };
67
68 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
69 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
70 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
71 static int has_steal_clock = 0;
72
73 static struct kvm_para_state *kvm_para_state(void)
74 {
75 return &per_cpu(para_state, raw_smp_processor_id());
76 }
77
78 /*
79 * No need for any "IO delay" on KVM
80 */
81 static void kvm_io_delay(void)
82 {
83 }
84
85 #define KVM_TASK_SLEEP_HASHBITS 8
86 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
87
88 struct kvm_task_sleep_node {
89 struct hlist_node link;
90 wait_queue_head_t wq;
91 u32 token;
92 int cpu;
93 bool halted;
94 struct mm_struct *mm;
95 };
96
97 static struct kvm_task_sleep_head {
98 spinlock_t lock;
99 struct hlist_head list;
100 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
101
102 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
103 u32 token)
104 {
105 struct hlist_node *p;
106
107 hlist_for_each(p, &b->list) {
108 struct kvm_task_sleep_node *n =
109 hlist_entry(p, typeof(*n), link);
110 if (n->token == token)
111 return n;
112 }
113
114 return NULL;
115 }
116
117 void kvm_async_pf_task_wait(u32 token)
118 {
119 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
120 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
121 struct kvm_task_sleep_node n, *e;
122 DEFINE_WAIT(wait);
123 int cpu, idle;
124
125 cpu = get_cpu();
126 idle = idle_cpu(cpu);
127 put_cpu();
128
129 spin_lock(&b->lock);
130 e = _find_apf_task(b, token);
131 if (e) {
132 /* dummy entry exist -> wake up was delivered ahead of PF */
133 hlist_del(&e->link);
134 kfree(e);
135 spin_unlock(&b->lock);
136 return;
137 }
138
139 n.token = token;
140 n.cpu = smp_processor_id();
141 n.mm = current->active_mm;
142 n.halted = idle || preempt_count() > 1;
143 atomic_inc(&n.mm->mm_count);
144 init_waitqueue_head(&n.wq);
145 hlist_add_head(&n.link, &b->list);
146 spin_unlock(&b->lock);
147
148 for (;;) {
149 if (!n.halted)
150 prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151 if (hlist_unhashed(&n.link))
152 break;
153
154 if (!n.halted) {
155 local_irq_enable();
156 schedule();
157 local_irq_disable();
158 } else {
159 /*
160 * We cannot reschedule. So halt.
161 */
162 native_safe_halt();
163 local_irq_disable();
164 }
165 }
166 if (!n.halted)
167 finish_wait(&n.wq, &wait);
168
169 return;
170 }
171 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
172
173 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
174 {
175 hlist_del_init(&n->link);
176 if (!n->mm)
177 return;
178 mmdrop(n->mm);
179 if (n->halted)
180 smp_send_reschedule(n->cpu);
181 else if (waitqueue_active(&n->wq))
182 wake_up(&n->wq);
183 }
184
185 static void apf_task_wake_all(void)
186 {
187 int i;
188
189 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190 struct hlist_node *p, *next;
191 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192 spin_lock(&b->lock);
193 hlist_for_each_safe(p, next, &b->list) {
194 struct kvm_task_sleep_node *n =
195 hlist_entry(p, typeof(*n), link);
196 if (n->cpu == smp_processor_id())
197 apf_task_wake_one(n);
198 }
199 spin_unlock(&b->lock);
200 }
201 }
202
203 void kvm_async_pf_task_wake(u32 token)
204 {
205 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207 struct kvm_task_sleep_node *n;
208
209 if (token == ~0) {
210 apf_task_wake_all();
211 return;
212 }
213
214 again:
215 spin_lock(&b->lock);
216 n = _find_apf_task(b, token);
217 if (!n) {
218 /*
219 * async PF was not yet handled.
220 * Add dummy entry for the token.
221 */
222 n = kmalloc(sizeof(*n), GFP_ATOMIC);
223 if (!n) {
224 /*
225 * Allocation failed! Busy wait while other cpu
226 * handles async PF.
227 */
228 spin_unlock(&b->lock);
229 cpu_relax();
230 goto again;
231 }
232 n->token = token;
233 n->cpu = smp_processor_id();
234 n->mm = NULL;
235 init_waitqueue_head(&n->wq);
236 hlist_add_head(&n->link, &b->list);
237 } else
238 apf_task_wake_one(n);
239 spin_unlock(&b->lock);
240 return;
241 }
242 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243
244 u32 kvm_read_and_reset_pf_reason(void)
245 {
246 u32 reason = 0;
247
248 if (__get_cpu_var(apf_reason).enabled) {
249 reason = __get_cpu_var(apf_reason).reason;
250 __get_cpu_var(apf_reason).reason = 0;
251 }
252
253 return reason;
254 }
255 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256
257 dotraplinkage void __kprobes
258 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259 {
260 switch (kvm_read_and_reset_pf_reason()) {
261 default:
262 do_page_fault(regs, error_code);
263 break;
264 case KVM_PV_REASON_PAGE_NOT_PRESENT:
265 /* page is swapped out by the host. */
266 kvm_async_pf_task_wait((u32)read_cr2());
267 break;
268 case KVM_PV_REASON_PAGE_READY:
269 kvm_async_pf_task_wake((u32)read_cr2());
270 break;
271 }
272 }
273
274 static void kvm_mmu_op(void *buffer, unsigned len)
275 {
276 int r;
277 unsigned long a1, a2;
278
279 do {
280 a1 = __pa(buffer);
281 a2 = 0; /* on i386 __pa() always returns <4G */
282 r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
283 buffer += r;
284 len -= r;
285 } while (len);
286 }
287
288 static void mmu_queue_flush(struct kvm_para_state *state)
289 {
290 if (state->mmu_queue_len) {
291 kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
292 state->mmu_queue_len = 0;
293 }
294 }
295
296 static void kvm_deferred_mmu_op(void *buffer, int len)
297 {
298 struct kvm_para_state *state = kvm_para_state();
299
300 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
301 kvm_mmu_op(buffer, len);
302 return;
303 }
304 if (state->mmu_queue_len + len > sizeof state->mmu_queue)
305 mmu_queue_flush(state);
306 memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
307 state->mmu_queue_len += len;
308 }
309
310 static void kvm_mmu_write(void *dest, u64 val)
311 {
312 __u64 pte_phys;
313 struct kvm_mmu_op_write_pte wpte;
314
315 #ifdef CONFIG_HIGHPTE
316 struct page *page;
317 unsigned long dst = (unsigned long) dest;
318
319 page = kmap_atomic_to_page(dest);
320 pte_phys = page_to_pfn(page);
321 pte_phys <<= PAGE_SHIFT;
322 pte_phys += (dst & ~(PAGE_MASK));
323 #else
324 pte_phys = (unsigned long)__pa(dest);
325 #endif
326 wpte.header.op = KVM_MMU_OP_WRITE_PTE;
327 wpte.pte_val = val;
328 wpte.pte_phys = pte_phys;
329
330 kvm_deferred_mmu_op(&wpte, sizeof wpte);
331 }
332
333 /*
334 * We only need to hook operations that are MMU writes. We hook these so that
335 * we can use lazy MMU mode to batch these operations. We could probably
336 * improve the performance of the host code if we used some of the information
337 * here to simplify processing of batched writes.
338 */
339 static void kvm_set_pte(pte_t *ptep, pte_t pte)
340 {
341 kvm_mmu_write(ptep, pte_val(pte));
342 }
343
344 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
345 pte_t *ptep, pte_t pte)
346 {
347 kvm_mmu_write(ptep, pte_val(pte));
348 }
349
350 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
351 {
352 kvm_mmu_write(pmdp, pmd_val(pmd));
353 }
354
355 #if PAGETABLE_LEVELS >= 3
356 #ifdef CONFIG_X86_PAE
357 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
358 {
359 kvm_mmu_write(ptep, pte_val(pte));
360 }
361
362 static void kvm_pte_clear(struct mm_struct *mm,
363 unsigned long addr, pte_t *ptep)
364 {
365 kvm_mmu_write(ptep, 0);
366 }
367
368 static void kvm_pmd_clear(pmd_t *pmdp)
369 {
370 kvm_mmu_write(pmdp, 0);
371 }
372 #endif
373
374 static void kvm_set_pud(pud_t *pudp, pud_t pud)
375 {
376 kvm_mmu_write(pudp, pud_val(pud));
377 }
378
379 #if PAGETABLE_LEVELS == 4
380 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
381 {
382 kvm_mmu_write(pgdp, pgd_val(pgd));
383 }
384 #endif
385 #endif /* PAGETABLE_LEVELS >= 3 */
386
387 static void kvm_flush_tlb(void)
388 {
389 struct kvm_mmu_op_flush_tlb ftlb = {
390 .header.op = KVM_MMU_OP_FLUSH_TLB,
391 };
392
393 kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
394 }
395
396 static void kvm_release_pt(unsigned long pfn)
397 {
398 struct kvm_mmu_op_release_pt rpt = {
399 .header.op = KVM_MMU_OP_RELEASE_PT,
400 .pt_phys = (u64)pfn << PAGE_SHIFT,
401 };
402
403 kvm_mmu_op(&rpt, sizeof rpt);
404 }
405
406 static void kvm_enter_lazy_mmu(void)
407 {
408 paravirt_enter_lazy_mmu();
409 }
410
411 static void kvm_leave_lazy_mmu(void)
412 {
413 struct kvm_para_state *state = kvm_para_state();
414
415 mmu_queue_flush(state);
416 paravirt_leave_lazy_mmu();
417 }
418
419 static void __init paravirt_ops_setup(void)
420 {
421 pv_info.name = "KVM";
422 pv_info.paravirt_enabled = 1;
423
424 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
425 pv_cpu_ops.io_delay = kvm_io_delay;
426
427 if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
428 pv_mmu_ops.set_pte = kvm_set_pte;
429 pv_mmu_ops.set_pte_at = kvm_set_pte_at;
430 pv_mmu_ops.set_pmd = kvm_set_pmd;
431 #if PAGETABLE_LEVELS >= 3
432 #ifdef CONFIG_X86_PAE
433 pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
434 pv_mmu_ops.pte_clear = kvm_pte_clear;
435 pv_mmu_ops.pmd_clear = kvm_pmd_clear;
436 #endif
437 pv_mmu_ops.set_pud = kvm_set_pud;
438 #if PAGETABLE_LEVELS == 4
439 pv_mmu_ops.set_pgd = kvm_set_pgd;
440 #endif
441 #endif
442 pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
443 pv_mmu_ops.release_pte = kvm_release_pt;
444 pv_mmu_ops.release_pmd = kvm_release_pt;
445 pv_mmu_ops.release_pud = kvm_release_pt;
446
447 pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
448 pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
449 }
450 #ifdef CONFIG_X86_IO_APIC
451 no_timer_check = 1;
452 #endif
453 }
454
455 static void kvm_register_steal_time(void)
456 {
457 int cpu = smp_processor_id();
458 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
459
460 if (!has_steal_clock)
461 return;
462
463 memset(st, 0, sizeof(*st));
464
465 wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
466 printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
467 cpu, __pa(st));
468 }
469
470 void __cpuinit kvm_guest_cpu_init(void)
471 {
472 if (!kvm_para_available())
473 return;
474
475 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
476 u64 pa = __pa(&__get_cpu_var(apf_reason));
477
478 #ifdef CONFIG_PREEMPT
479 pa |= KVM_ASYNC_PF_SEND_ALWAYS;
480 #endif
481 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
482 __get_cpu_var(apf_reason).enabled = 1;
483 printk(KERN_INFO"KVM setup async PF for cpu %d\n",
484 smp_processor_id());
485 }
486
487 if (has_steal_clock)
488 kvm_register_steal_time();
489 }
490
491 static void kvm_pv_disable_apf(void *unused)
492 {
493 if (!__get_cpu_var(apf_reason).enabled)
494 return;
495
496 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
497 __get_cpu_var(apf_reason).enabled = 0;
498
499 printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
500 smp_processor_id());
501 }
502
503 static int kvm_pv_reboot_notify(struct notifier_block *nb,
504 unsigned long code, void *unused)
505 {
506 if (code == SYS_RESTART)
507 on_each_cpu(kvm_pv_disable_apf, NULL, 1);
508 return NOTIFY_DONE;
509 }
510
511 static struct notifier_block kvm_pv_reboot_nb = {
512 .notifier_call = kvm_pv_reboot_notify,
513 };
514
515 static u64 kvm_steal_clock(int cpu)
516 {
517 u64 steal;
518 struct kvm_steal_time *src;
519 int version;
520
521 src = &per_cpu(steal_time, cpu);
522 do {
523 version = src->version;
524 rmb();
525 steal = src->steal;
526 rmb();
527 } while ((version & 1) || (version != src->version));
528
529 return steal;
530 }
531
532 void kvm_disable_steal_time(void)
533 {
534 if (!has_steal_clock)
535 return;
536
537 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
538 }
539
540 #ifdef CONFIG_SMP
541 static void __init kvm_smp_prepare_boot_cpu(void)
542 {
543 #ifdef CONFIG_KVM_CLOCK
544 WARN_ON(kvm_register_clock("primary cpu clock"));
545 #endif
546 kvm_guest_cpu_init();
547 native_smp_prepare_boot_cpu();
548 }
549
550 static void __cpuinit kvm_guest_cpu_online(void *dummy)
551 {
552 kvm_guest_cpu_init();
553 }
554
555 static void kvm_guest_cpu_offline(void *dummy)
556 {
557 kvm_disable_steal_time();
558 kvm_pv_disable_apf(NULL);
559 apf_task_wake_all();
560 }
561
562 static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
563 unsigned long action, void *hcpu)
564 {
565 int cpu = (unsigned long)hcpu;
566 switch (action) {
567 case CPU_ONLINE:
568 case CPU_DOWN_FAILED:
569 case CPU_ONLINE_FROZEN:
570 smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
571 break;
572 case CPU_DOWN_PREPARE:
573 case CPU_DOWN_PREPARE_FROZEN:
574 smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
575 break;
576 default:
577 break;
578 }
579 return NOTIFY_OK;
580 }
581
582 static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
583 .notifier_call = kvm_cpu_notify,
584 };
585 #endif
586
587 static void __init kvm_apf_trap_init(void)
588 {
589 set_intr_gate(14, &async_page_fault);
590 }
591
592 void __init kvm_guest_init(void)
593 {
594 int i;
595
596 if (!kvm_para_available())
597 return;
598
599 paravirt_ops_setup();
600 register_reboot_notifier(&kvm_pv_reboot_nb);
601 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
602 spin_lock_init(&async_pf_sleepers[i].lock);
603 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
604 x86_init.irqs.trap_init = kvm_apf_trap_init;
605
606 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
607 has_steal_clock = 1;
608 pv_time_ops.steal_clock = kvm_steal_clock;
609 }
610
611 #ifdef CONFIG_SMP
612 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
613 register_cpu_notifier(&kvm_cpu_notifier);
614 #else
615 kvm_guest_cpu_init();
616 #endif
617 }
618
619 static __init int activate_jump_labels(void)
620 {
621 if (has_steal_clock) {
622 jump_label_inc(&paravirt_steal_enabled);
623 if (steal_acc)
624 jump_label_inc(&paravirt_steal_rq_enabled);
625 }
626
627 return 0;
628 }
629 arch_initcall(activate_jump_labels);