]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/ldt.c
x86/acpi: Support objtool validation in wakeup_64.S
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / ldt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5 * Copyright (C) 2002 Andi Kleen
6 *
7 * This handles calls from both 32bit and 64bit mode.
8 *
9 * Lock order:
10 * contex.ldt_usr_sem
11 * mmap_lock
12 * context.lock
13 */
14
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
25
26 #include <asm/ldt.h>
27 #include <asm/tlb.h>
28 #include <asm/desc.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable_areas.h>
31
32 #include <xen/xen.h>
33
34 /* This is a multiple of PAGE_SIZE. */
35 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
36
37 static inline void *ldt_slot_va(int slot)
38 {
39 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
40 }
41
42 void load_mm_ldt(struct mm_struct *mm)
43 {
44 struct ldt_struct *ldt;
45
46 /* READ_ONCE synchronizes with smp_store_release */
47 ldt = READ_ONCE(mm->context.ldt);
48
49 /*
50 * Any change to mm->context.ldt is followed by an IPI to all
51 * CPUs with the mm active. The LDT will not be freed until
52 * after the IPI is handled by all such CPUs. This means that,
53 * if the ldt_struct changes before we return, the values we see
54 * will be safe, and the new values will be loaded before we run
55 * any user code.
56 *
57 * NB: don't try to convert this to use RCU without extreme care.
58 * We would still need IRQs off, because we don't want to change
59 * the local LDT after an IPI loaded a newer value than the one
60 * that we can see.
61 */
62
63 if (unlikely(ldt)) {
64 if (static_cpu_has(X86_FEATURE_PTI)) {
65 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
66 /*
67 * Whoops -- either the new LDT isn't mapped
68 * (if slot == -1) or is mapped into a bogus
69 * slot (if slot > 1).
70 */
71 clear_LDT();
72 return;
73 }
74
75 /*
76 * If page table isolation is enabled, ldt->entries
77 * will not be mapped in the userspace pagetables.
78 * Tell the CPU to access the LDT through the alias
79 * at ldt_slot_va(ldt->slot).
80 */
81 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
82 } else {
83 set_ldt(ldt->entries, ldt->nr_entries);
84 }
85 } else {
86 clear_LDT();
87 }
88 }
89
90 void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
91 {
92 /*
93 * Load the LDT if either the old or new mm had an LDT.
94 *
95 * An mm will never go from having an LDT to not having an LDT. Two
96 * mms never share an LDT, so we don't gain anything by checking to
97 * see whether the LDT changed. There's also no guarantee that
98 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
99 * then prev->context.ldt will also be non-NULL.
100 *
101 * If we really cared, we could optimize the case where prev == next
102 * and we're exiting lazy mode. Most of the time, if this happens,
103 * we don't actually need to reload LDTR, but modify_ldt() is mostly
104 * used by legacy code and emulators where we don't need this level of
105 * performance.
106 *
107 * This uses | instead of || because it generates better code.
108 */
109 if (unlikely((unsigned long)prev->context.ldt |
110 (unsigned long)next->context.ldt))
111 load_mm_ldt(next);
112
113 DEBUG_LOCKS_WARN_ON(preemptible());
114 }
115
116 static void refresh_ldt_segments(void)
117 {
118 #ifdef CONFIG_X86_64
119 unsigned short sel;
120
121 /*
122 * Make sure that the cached DS and ES descriptors match the updated
123 * LDT.
124 */
125 savesegment(ds, sel);
126 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
127 loadsegment(ds, sel);
128
129 savesegment(es, sel);
130 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
131 loadsegment(es, sel);
132 #endif
133 }
134
135 /* context.lock is held by the task which issued the smp function call */
136 static void flush_ldt(void *__mm)
137 {
138 struct mm_struct *mm = __mm;
139
140 if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
141 return;
142
143 load_mm_ldt(mm);
144
145 refresh_ldt_segments();
146 }
147
148 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
149 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
150 {
151 struct ldt_struct *new_ldt;
152 unsigned int alloc_size;
153
154 if (num_entries > LDT_ENTRIES)
155 return NULL;
156
157 new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
158 if (!new_ldt)
159 return NULL;
160
161 BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
162 alloc_size = num_entries * LDT_ENTRY_SIZE;
163
164 /*
165 * Xen is very picky: it requires a page-aligned LDT that has no
166 * trailing nonzero bytes in any page that contains LDT descriptors.
167 * Keep it simple: zero the whole allocation and never allocate less
168 * than PAGE_SIZE.
169 */
170 if (alloc_size > PAGE_SIZE)
171 new_ldt->entries = vzalloc(alloc_size);
172 else
173 new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
174
175 if (!new_ldt->entries) {
176 kfree(new_ldt);
177 return NULL;
178 }
179
180 /* The new LDT isn't aliased for PTI yet. */
181 new_ldt->slot = -1;
182
183 new_ldt->nr_entries = num_entries;
184 return new_ldt;
185 }
186
187 #ifdef CONFIG_PAGE_TABLE_ISOLATION
188
189 static void do_sanity_check(struct mm_struct *mm,
190 bool had_kernel_mapping,
191 bool had_user_mapping)
192 {
193 if (mm->context.ldt) {
194 /*
195 * We already had an LDT. The top-level entry should already
196 * have been allocated and synchronized with the usermode
197 * tables.
198 */
199 WARN_ON(!had_kernel_mapping);
200 if (boot_cpu_has(X86_FEATURE_PTI))
201 WARN_ON(!had_user_mapping);
202 } else {
203 /*
204 * This is the first time we're mapping an LDT for this process.
205 * Sync the pgd to the usermode tables.
206 */
207 WARN_ON(had_kernel_mapping);
208 if (boot_cpu_has(X86_FEATURE_PTI))
209 WARN_ON(had_user_mapping);
210 }
211 }
212
213 #ifdef CONFIG_X86_PAE
214
215 static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
216 {
217 p4d_t *p4d;
218 pud_t *pud;
219
220 if (pgd->pgd == 0)
221 return NULL;
222
223 p4d = p4d_offset(pgd, va);
224 if (p4d_none(*p4d))
225 return NULL;
226
227 pud = pud_offset(p4d, va);
228 if (pud_none(*pud))
229 return NULL;
230
231 return pmd_offset(pud, va);
232 }
233
234 static void map_ldt_struct_to_user(struct mm_struct *mm)
235 {
236 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
237 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
238 pmd_t *k_pmd, *u_pmd;
239
240 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
241 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
242
243 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
244 set_pmd(u_pmd, *k_pmd);
245 }
246
247 static void sanity_check_ldt_mapping(struct mm_struct *mm)
248 {
249 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
250 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
251 bool had_kernel, had_user;
252 pmd_t *k_pmd, *u_pmd;
253
254 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
255 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
256 had_kernel = (k_pmd->pmd != 0);
257 had_user = (u_pmd->pmd != 0);
258
259 do_sanity_check(mm, had_kernel, had_user);
260 }
261
262 #else /* !CONFIG_X86_PAE */
263
264 static void map_ldt_struct_to_user(struct mm_struct *mm)
265 {
266 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
267
268 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
269 set_pgd(kernel_to_user_pgdp(pgd), *pgd);
270 }
271
272 static void sanity_check_ldt_mapping(struct mm_struct *mm)
273 {
274 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
275 bool had_kernel = (pgd->pgd != 0);
276 bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0);
277
278 do_sanity_check(mm, had_kernel, had_user);
279 }
280
281 #endif /* CONFIG_X86_PAE */
282
283 /*
284 * If PTI is enabled, this maps the LDT into the kernelmode and
285 * usermode tables for the given mm.
286 */
287 static int
288 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
289 {
290 unsigned long va;
291 bool is_vmalloc;
292 spinlock_t *ptl;
293 int i, nr_pages;
294
295 if (!boot_cpu_has(X86_FEATURE_PTI))
296 return 0;
297
298 /*
299 * Any given ldt_struct should have map_ldt_struct() called at most
300 * once.
301 */
302 WARN_ON(ldt->slot != -1);
303
304 /* Check if the current mappings are sane */
305 sanity_check_ldt_mapping(mm);
306
307 is_vmalloc = is_vmalloc_addr(ldt->entries);
308
309 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
310
311 for (i = 0; i < nr_pages; i++) {
312 unsigned long offset = i << PAGE_SHIFT;
313 const void *src = (char *)ldt->entries + offset;
314 unsigned long pfn;
315 pgprot_t pte_prot;
316 pte_t pte, *ptep;
317
318 va = (unsigned long)ldt_slot_va(slot) + offset;
319 pfn = is_vmalloc ? vmalloc_to_pfn(src) :
320 page_to_pfn(virt_to_page(src));
321 /*
322 * Treat the PTI LDT range as a *userspace* range.
323 * get_locked_pte() will allocate all needed pagetables
324 * and account for them in this mm.
325 */
326 ptep = get_locked_pte(mm, va, &ptl);
327 if (!ptep)
328 return -ENOMEM;
329 /*
330 * Map it RO so the easy to find address is not a primary
331 * target via some kernel interface which misses a
332 * permission check.
333 */
334 pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
335 /* Filter out unsuppored __PAGE_KERNEL* bits: */
336 pgprot_val(pte_prot) &= __supported_pte_mask;
337 pte = pfn_pte(pfn, pte_prot);
338 set_pte_at(mm, va, ptep, pte);
339 pte_unmap_unlock(ptep, ptl);
340 }
341
342 /* Propagate LDT mapping to the user page-table */
343 map_ldt_struct_to_user(mm);
344
345 ldt->slot = slot;
346 return 0;
347 }
348
349 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
350 {
351 unsigned long va;
352 int i, nr_pages;
353
354 if (!ldt)
355 return;
356
357 /* LDT map/unmap is only required for PTI */
358 if (!boot_cpu_has(X86_FEATURE_PTI))
359 return;
360
361 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
362
363 for (i = 0; i < nr_pages; i++) {
364 unsigned long offset = i << PAGE_SHIFT;
365 spinlock_t *ptl;
366 pte_t *ptep;
367
368 va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
369 ptep = get_locked_pte(mm, va, &ptl);
370 pte_clear(mm, va, ptep);
371 pte_unmap_unlock(ptep, ptl);
372 }
373
374 va = (unsigned long)ldt_slot_va(ldt->slot);
375 flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
376 }
377
378 #else /* !CONFIG_PAGE_TABLE_ISOLATION */
379
380 static int
381 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
382 {
383 return 0;
384 }
385
386 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
387 {
388 }
389 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
390
391 static void free_ldt_pgtables(struct mm_struct *mm)
392 {
393 #ifdef CONFIG_PAGE_TABLE_ISOLATION
394 struct mmu_gather tlb;
395 unsigned long start = LDT_BASE_ADDR;
396 unsigned long end = LDT_END_ADDR;
397
398 if (!boot_cpu_has(X86_FEATURE_PTI))
399 return;
400
401 tlb_gather_mmu(&tlb, mm, start, end);
402 free_pgd_range(&tlb, start, end, start, end);
403 tlb_finish_mmu(&tlb, start, end);
404 #endif
405 }
406
407 /* After calling this, the LDT is immutable. */
408 static void finalize_ldt_struct(struct ldt_struct *ldt)
409 {
410 paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
411 }
412
413 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
414 {
415 mutex_lock(&mm->context.lock);
416
417 /* Synchronizes with READ_ONCE in load_mm_ldt. */
418 smp_store_release(&mm->context.ldt, ldt);
419
420 /* Activate the LDT for all CPUs using currents mm. */
421 on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
422
423 mutex_unlock(&mm->context.lock);
424 }
425
426 static void free_ldt_struct(struct ldt_struct *ldt)
427 {
428 if (likely(!ldt))
429 return;
430
431 paravirt_free_ldt(ldt->entries, ldt->nr_entries);
432 if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
433 vfree_atomic(ldt->entries);
434 else
435 free_page((unsigned long)ldt->entries);
436 kfree(ldt);
437 }
438
439 /*
440 * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
441 * the new task is not running, so nothing can be installed.
442 */
443 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
444 {
445 struct ldt_struct *new_ldt;
446 int retval = 0;
447
448 if (!old_mm)
449 return 0;
450
451 mutex_lock(&old_mm->context.lock);
452 if (!old_mm->context.ldt)
453 goto out_unlock;
454
455 new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
456 if (!new_ldt) {
457 retval = -ENOMEM;
458 goto out_unlock;
459 }
460
461 memcpy(new_ldt->entries, old_mm->context.ldt->entries,
462 new_ldt->nr_entries * LDT_ENTRY_SIZE);
463 finalize_ldt_struct(new_ldt);
464
465 retval = map_ldt_struct(mm, new_ldt, 0);
466 if (retval) {
467 free_ldt_pgtables(mm);
468 free_ldt_struct(new_ldt);
469 goto out_unlock;
470 }
471 mm->context.ldt = new_ldt;
472
473 out_unlock:
474 mutex_unlock(&old_mm->context.lock);
475 return retval;
476 }
477
478 /*
479 * No need to lock the MM as we are the last user
480 *
481 * 64bit: Don't touch the LDT register - we're already in the next thread.
482 */
483 void destroy_context_ldt(struct mm_struct *mm)
484 {
485 free_ldt_struct(mm->context.ldt);
486 mm->context.ldt = NULL;
487 }
488
489 void ldt_arch_exit_mmap(struct mm_struct *mm)
490 {
491 free_ldt_pgtables(mm);
492 }
493
494 static int read_ldt(void __user *ptr, unsigned long bytecount)
495 {
496 struct mm_struct *mm = current->mm;
497 unsigned long entries_size;
498 int retval;
499
500 down_read(&mm->context.ldt_usr_sem);
501
502 if (!mm->context.ldt) {
503 retval = 0;
504 goto out_unlock;
505 }
506
507 if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
508 bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
509
510 entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
511 if (entries_size > bytecount)
512 entries_size = bytecount;
513
514 if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
515 retval = -EFAULT;
516 goto out_unlock;
517 }
518
519 if (entries_size != bytecount) {
520 /* Zero-fill the rest and pretend we read bytecount bytes. */
521 if (clear_user(ptr + entries_size, bytecount - entries_size)) {
522 retval = -EFAULT;
523 goto out_unlock;
524 }
525 }
526 retval = bytecount;
527
528 out_unlock:
529 up_read(&mm->context.ldt_usr_sem);
530 return retval;
531 }
532
533 static int read_default_ldt(void __user *ptr, unsigned long bytecount)
534 {
535 /* CHECKME: Can we use _one_ random number ? */
536 #ifdef CONFIG_X86_32
537 unsigned long size = 5 * sizeof(struct desc_struct);
538 #else
539 unsigned long size = 128;
540 #endif
541 if (bytecount > size)
542 bytecount = size;
543 if (clear_user(ptr, bytecount))
544 return -EFAULT;
545 return bytecount;
546 }
547
548 static bool allow_16bit_segments(void)
549 {
550 if (!IS_ENABLED(CONFIG_X86_16BIT))
551 return false;
552
553 #ifdef CONFIG_XEN_PV
554 /*
555 * Xen PV does not implement ESPFIX64, which means that 16-bit
556 * segments will not work correctly. Until either Xen PV implements
557 * ESPFIX64 and can signal this fact to the guest or unless someone
558 * provides compelling evidence that allowing broken 16-bit segments
559 * is worthwhile, disallow 16-bit segments under Xen PV.
560 */
561 if (xen_pv_domain()) {
562 pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
563 return false;
564 }
565 #endif
566
567 return true;
568 }
569
570 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
571 {
572 struct mm_struct *mm = current->mm;
573 struct ldt_struct *new_ldt, *old_ldt;
574 unsigned int old_nr_entries, new_nr_entries;
575 struct user_desc ldt_info;
576 struct desc_struct ldt;
577 int error;
578
579 error = -EINVAL;
580 if (bytecount != sizeof(ldt_info))
581 goto out;
582 error = -EFAULT;
583 if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
584 goto out;
585
586 error = -EINVAL;
587 if (ldt_info.entry_number >= LDT_ENTRIES)
588 goto out;
589 if (ldt_info.contents == 3) {
590 if (oldmode)
591 goto out;
592 if (ldt_info.seg_not_present == 0)
593 goto out;
594 }
595
596 if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
597 LDT_empty(&ldt_info)) {
598 /* The user wants to clear the entry. */
599 memset(&ldt, 0, sizeof(ldt));
600 } else {
601 if (!ldt_info.seg_32bit && !allow_16bit_segments()) {
602 error = -EINVAL;
603 goto out;
604 }
605
606 fill_ldt(&ldt, &ldt_info);
607 if (oldmode)
608 ldt.avl = 0;
609 }
610
611 if (down_write_killable(&mm->context.ldt_usr_sem))
612 return -EINTR;
613
614 old_ldt = mm->context.ldt;
615 old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
616 new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
617
618 error = -ENOMEM;
619 new_ldt = alloc_ldt_struct(new_nr_entries);
620 if (!new_ldt)
621 goto out_unlock;
622
623 if (old_ldt)
624 memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
625
626 new_ldt->entries[ldt_info.entry_number] = ldt;
627 finalize_ldt_struct(new_ldt);
628
629 /*
630 * If we are using PTI, map the new LDT into the userspace pagetables.
631 * If there is already an LDT, use the other slot so that other CPUs
632 * will continue to use the old LDT until install_ldt() switches
633 * them over to the new LDT.
634 */
635 error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
636 if (error) {
637 /*
638 * This only can fail for the first LDT setup. If an LDT is
639 * already installed then the PTE page is already
640 * populated. Mop up a half populated page table.
641 */
642 if (!WARN_ON_ONCE(old_ldt))
643 free_ldt_pgtables(mm);
644 free_ldt_struct(new_ldt);
645 goto out_unlock;
646 }
647
648 install_ldt(mm, new_ldt);
649 unmap_ldt_struct(mm, old_ldt);
650 free_ldt_struct(old_ldt);
651 error = 0;
652
653 out_unlock:
654 up_write(&mm->context.ldt_usr_sem);
655 out:
656 return error;
657 }
658
659 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
660 unsigned long , bytecount)
661 {
662 int ret = -ENOSYS;
663
664 switch (func) {
665 case 0:
666 ret = read_ldt(ptr, bytecount);
667 break;
668 case 1:
669 ret = write_ldt(ptr, bytecount, 1);
670 break;
671 case 2:
672 ret = read_default_ldt(ptr, bytecount);
673 break;
674 case 0x11:
675 ret = write_ldt(ptr, bytecount, 0);
676 break;
677 }
678 /*
679 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
680 * return type, but tht ABI for sys_modify_ldt() expects
681 * 'int'. This cast gives us an int-sized value in %rax
682 * for the return code. The 'unsigned' is necessary so
683 * the compiler does not try to sign-extend the negative
684 * return codes into the high half of the register when
685 * taking the value from int->long.
686 */
687 return (unsigned int)ret;
688 }