]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/machine_kexec_64.c
x86/process: Allow runtime control of Speculative Store Bypass
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #define pr_fmt(fmt) "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
31
32 #ifdef CONFIG_KEXEC_FILE
33 static struct kexec_file_ops *kexec_file_loaders[] = {
34 &kexec_bzImage64_ops,
35 };
36 #endif
37
38 static void free_transition_pgtable(struct kimage *image)
39 {
40 free_page((unsigned long)image->arch.p4d);
41 free_page((unsigned long)image->arch.pud);
42 free_page((unsigned long)image->arch.pmd);
43 free_page((unsigned long)image->arch.pte);
44 }
45
46 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
47 {
48 p4d_t *p4d;
49 pud_t *pud;
50 pmd_t *pmd;
51 pte_t *pte;
52 unsigned long vaddr, paddr;
53 int result = -ENOMEM;
54
55 vaddr = (unsigned long)relocate_kernel;
56 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
57 pgd += pgd_index(vaddr);
58 if (!pgd_present(*pgd)) {
59 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
60 if (!p4d)
61 goto err;
62 image->arch.p4d = p4d;
63 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
64 }
65 p4d = p4d_offset(pgd, vaddr);
66 if (!p4d_present(*p4d)) {
67 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
68 if (!pud)
69 goto err;
70 image->arch.pud = pud;
71 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
72 }
73 pud = pud_offset(p4d, vaddr);
74 if (!pud_present(*pud)) {
75 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
76 if (!pmd)
77 goto err;
78 image->arch.pmd = pmd;
79 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
80 }
81 pmd = pmd_offset(pud, vaddr);
82 if (!pmd_present(*pmd)) {
83 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
84 if (!pte)
85 goto err;
86 image->arch.pte = pte;
87 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
88 }
89 pte = pte_offset_kernel(pmd, vaddr);
90 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
91 return 0;
92 err:
93 free_transition_pgtable(image);
94 return result;
95 }
96
97 static void *alloc_pgt_page(void *data)
98 {
99 struct kimage *image = (struct kimage *)data;
100 struct page *page;
101 void *p = NULL;
102
103 page = kimage_alloc_control_pages(image, 0);
104 if (page) {
105 p = page_address(page);
106 clear_page(p);
107 }
108
109 return p;
110 }
111
112 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
113 {
114 struct x86_mapping_info info = {
115 .alloc_pgt_page = alloc_pgt_page,
116 .context = image,
117 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
118 };
119 unsigned long mstart, mend;
120 pgd_t *level4p;
121 int result;
122 int i;
123
124 level4p = (pgd_t *)__va(start_pgtable);
125 clear_page(level4p);
126
127 if (direct_gbpages)
128 info.direct_gbpages = true;
129
130 for (i = 0; i < nr_pfn_mapped; i++) {
131 mstart = pfn_mapped[i].start << PAGE_SHIFT;
132 mend = pfn_mapped[i].end << PAGE_SHIFT;
133
134 result = kernel_ident_mapping_init(&info,
135 level4p, mstart, mend);
136 if (result)
137 return result;
138 }
139
140 /*
141 * segments's mem ranges could be outside 0 ~ max_pfn,
142 * for example when jump back to original kernel from kexeced kernel.
143 * or first kernel is booted with user mem map, and second kernel
144 * could be loaded out of that range.
145 */
146 for (i = 0; i < image->nr_segments; i++) {
147 mstart = image->segment[i].mem;
148 mend = mstart + image->segment[i].memsz;
149
150 result = kernel_ident_mapping_init(&info,
151 level4p, mstart, mend);
152
153 if (result)
154 return result;
155 }
156
157 return init_transition_pgtable(image, level4p);
158 }
159
160 static void set_idt(void *newidt, u16 limit)
161 {
162 struct desc_ptr curidt;
163
164 /* x86-64 supports unaliged loads & stores */
165 curidt.size = limit;
166 curidt.address = (unsigned long)newidt;
167
168 __asm__ __volatile__ (
169 "lidtq %0\n"
170 : : "m" (curidt)
171 );
172 };
173
174
175 static void set_gdt(void *newgdt, u16 limit)
176 {
177 struct desc_ptr curgdt;
178
179 /* x86-64 supports unaligned loads & stores */
180 curgdt.size = limit;
181 curgdt.address = (unsigned long)newgdt;
182
183 __asm__ __volatile__ (
184 "lgdtq %0\n"
185 : : "m" (curgdt)
186 );
187 };
188
189 static void load_segments(void)
190 {
191 __asm__ __volatile__ (
192 "\tmovl %0,%%ds\n"
193 "\tmovl %0,%%es\n"
194 "\tmovl %0,%%ss\n"
195 "\tmovl %0,%%fs\n"
196 "\tmovl %0,%%gs\n"
197 : : "a" (__KERNEL_DS) : "memory"
198 );
199 }
200
201 #ifdef CONFIG_KEXEC_FILE
202 /* Update purgatory as needed after various image segments have been prepared */
203 static int arch_update_purgatory(struct kimage *image)
204 {
205 int ret = 0;
206
207 if (!image->file_mode)
208 return 0;
209
210 /* Setup copying of backup region */
211 if (image->type == KEXEC_TYPE_CRASH) {
212 ret = kexec_purgatory_get_set_symbol(image,
213 "purgatory_backup_dest",
214 &image->arch.backup_load_addr,
215 sizeof(image->arch.backup_load_addr), 0);
216 if (ret)
217 return ret;
218
219 ret = kexec_purgatory_get_set_symbol(image,
220 "purgatory_backup_src",
221 &image->arch.backup_src_start,
222 sizeof(image->arch.backup_src_start), 0);
223 if (ret)
224 return ret;
225
226 ret = kexec_purgatory_get_set_symbol(image,
227 "purgatory_backup_sz",
228 &image->arch.backup_src_sz,
229 sizeof(image->arch.backup_src_sz), 0);
230 if (ret)
231 return ret;
232 }
233
234 return ret;
235 }
236 #else /* !CONFIG_KEXEC_FILE */
237 static inline int arch_update_purgatory(struct kimage *image)
238 {
239 return 0;
240 }
241 #endif /* CONFIG_KEXEC_FILE */
242
243 int machine_kexec_prepare(struct kimage *image)
244 {
245 unsigned long start_pgtable;
246 int result;
247
248 /* Calculate the offsets */
249 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
250
251 /* Setup the identity mapped 64bit page table */
252 result = init_pgtable(image, start_pgtable);
253 if (result)
254 return result;
255
256 /* update purgatory as needed */
257 result = arch_update_purgatory(image);
258 if (result)
259 return result;
260
261 return 0;
262 }
263
264 void machine_kexec_cleanup(struct kimage *image)
265 {
266 free_transition_pgtable(image);
267 }
268
269 /*
270 * Do not allocate memory (or fail in any way) in machine_kexec().
271 * We are past the point of no return, committed to rebooting now.
272 */
273 void machine_kexec(struct kimage *image)
274 {
275 unsigned long page_list[PAGES_NR];
276 void *control_page;
277 int save_ftrace_enabled;
278
279 #ifdef CONFIG_KEXEC_JUMP
280 if (image->preserve_context)
281 save_processor_state();
282 #endif
283
284 save_ftrace_enabled = __ftrace_enabled_save();
285
286 /* Interrupts aren't acceptable while we reboot */
287 local_irq_disable();
288 hw_breakpoint_disable();
289
290 if (image->preserve_context) {
291 #ifdef CONFIG_X86_IO_APIC
292 /*
293 * We need to put APICs in legacy mode so that we can
294 * get timer interrupts in second kernel. kexec/kdump
295 * paths already have calls to disable_IO_APIC() in
296 * one form or other. kexec jump path also need
297 * one.
298 */
299 disable_IO_APIC();
300 #endif
301 }
302
303 control_page = page_address(image->control_code_page) + PAGE_SIZE;
304 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
305
306 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
307 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
308 page_list[PA_TABLE_PAGE] =
309 (unsigned long)__pa(page_address(image->control_code_page));
310
311 if (image->type == KEXEC_TYPE_DEFAULT)
312 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
313 << PAGE_SHIFT);
314
315 /*
316 * The segment registers are funny things, they have both a
317 * visible and an invisible part. Whenever the visible part is
318 * set to a specific selector, the invisible part is loaded
319 * with from a table in memory. At no other time is the
320 * descriptor table in memory accessed.
321 *
322 * I take advantage of this here by force loading the
323 * segments, before I zap the gdt with an invalid value.
324 */
325 load_segments();
326 /*
327 * The gdt & idt are now invalid.
328 * If you want to load them you must set up your own idt & gdt.
329 */
330 set_gdt(phys_to_virt(0), 0);
331 set_idt(phys_to_virt(0), 0);
332
333 /* now call it */
334 image->start = relocate_kernel((unsigned long)image->head,
335 (unsigned long)page_list,
336 image->start,
337 image->preserve_context);
338
339 #ifdef CONFIG_KEXEC_JUMP
340 if (image->preserve_context)
341 restore_processor_state();
342 #endif
343
344 __ftrace_enabled_restore(save_ftrace_enabled);
345 }
346
347 void arch_crash_save_vmcoreinfo(void)
348 {
349 VMCOREINFO_NUMBER(phys_base);
350 VMCOREINFO_SYMBOL(init_top_pgt);
351
352 #ifdef CONFIG_NUMA
353 VMCOREINFO_SYMBOL(node_data);
354 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
355 #endif
356 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
357 kaslr_offset());
358 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
359 }
360
361 /* arch-dependent functionality related to kexec file-based syscall */
362
363 #ifdef CONFIG_KEXEC_FILE
364 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
365 unsigned long buf_len)
366 {
367 int i, ret = -ENOEXEC;
368 struct kexec_file_ops *fops;
369
370 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
371 fops = kexec_file_loaders[i];
372 if (!fops || !fops->probe)
373 continue;
374
375 ret = fops->probe(buf, buf_len);
376 if (!ret) {
377 image->fops = fops;
378 return ret;
379 }
380 }
381
382 return ret;
383 }
384
385 void *arch_kexec_kernel_image_load(struct kimage *image)
386 {
387 vfree(image->arch.elf_headers);
388 image->arch.elf_headers = NULL;
389
390 if (!image->fops || !image->fops->load)
391 return ERR_PTR(-ENOEXEC);
392
393 return image->fops->load(image, image->kernel_buf,
394 image->kernel_buf_len, image->initrd_buf,
395 image->initrd_buf_len, image->cmdline_buf,
396 image->cmdline_buf_len);
397 }
398
399 int arch_kimage_file_post_load_cleanup(struct kimage *image)
400 {
401 if (!image->fops || !image->fops->cleanup)
402 return 0;
403
404 return image->fops->cleanup(image->image_loader_data);
405 }
406
407 #ifdef CONFIG_KEXEC_VERIFY_SIG
408 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
409 unsigned long kernel_len)
410 {
411 if (!image->fops || !image->fops->verify_sig) {
412 pr_debug("kernel loader does not support signature verification.");
413 return -EKEYREJECTED;
414 }
415
416 return image->fops->verify_sig(kernel, kernel_len);
417 }
418 #endif
419
420 /*
421 * Apply purgatory relocations.
422 *
423 * ehdr: Pointer to elf headers
424 * sechdrs: Pointer to section headers.
425 * relsec: section index of SHT_RELA section.
426 *
427 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
428 */
429 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
430 Elf64_Shdr *sechdrs, unsigned int relsec)
431 {
432 unsigned int i;
433 Elf64_Rela *rel;
434 Elf64_Sym *sym;
435 void *location;
436 Elf64_Shdr *section, *symtabsec;
437 unsigned long address, sec_base, value;
438 const char *strtab, *name, *shstrtab;
439
440 /*
441 * ->sh_offset has been modified to keep the pointer to section
442 * contents in memory
443 */
444 rel = (void *)sechdrs[relsec].sh_offset;
445
446 /* Section to which relocations apply */
447 section = &sechdrs[sechdrs[relsec].sh_info];
448
449 pr_debug("Applying relocate section %u to %u\n", relsec,
450 sechdrs[relsec].sh_info);
451
452 /* Associated symbol table */
453 symtabsec = &sechdrs[sechdrs[relsec].sh_link];
454
455 /* String table */
456 if (symtabsec->sh_link >= ehdr->e_shnum) {
457 /* Invalid strtab section number */
458 pr_err("Invalid string table section index %d\n",
459 symtabsec->sh_link);
460 return -ENOEXEC;
461 }
462
463 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
464
465 /* section header string table */
466 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
467
468 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
469
470 /*
471 * rel[i].r_offset contains byte offset from beginning
472 * of section to the storage unit affected.
473 *
474 * This is location to update (->sh_offset). This is temporary
475 * buffer where section is currently loaded. This will finally
476 * be loaded to a different address later, pointed to by
477 * ->sh_addr. kexec takes care of moving it
478 * (kexec_load_segment()).
479 */
480 location = (void *)(section->sh_offset + rel[i].r_offset);
481
482 /* Final address of the location */
483 address = section->sh_addr + rel[i].r_offset;
484
485 /*
486 * rel[i].r_info contains information about symbol table index
487 * w.r.t which relocation must be made and type of relocation
488 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
489 * these respectively.
490 */
491 sym = (Elf64_Sym *)symtabsec->sh_offset +
492 ELF64_R_SYM(rel[i].r_info);
493
494 if (sym->st_name)
495 name = strtab + sym->st_name;
496 else
497 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
498
499 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
500 name, sym->st_info, sym->st_shndx, sym->st_value,
501 sym->st_size);
502
503 if (sym->st_shndx == SHN_UNDEF) {
504 pr_err("Undefined symbol: %s\n", name);
505 return -ENOEXEC;
506 }
507
508 if (sym->st_shndx == SHN_COMMON) {
509 pr_err("symbol '%s' in common section\n", name);
510 return -ENOEXEC;
511 }
512
513 if (sym->st_shndx == SHN_ABS)
514 sec_base = 0;
515 else if (sym->st_shndx >= ehdr->e_shnum) {
516 pr_err("Invalid section %d for symbol %s\n",
517 sym->st_shndx, name);
518 return -ENOEXEC;
519 } else
520 sec_base = sechdrs[sym->st_shndx].sh_addr;
521
522 value = sym->st_value;
523 value += sec_base;
524 value += rel[i].r_addend;
525
526 switch (ELF64_R_TYPE(rel[i].r_info)) {
527 case R_X86_64_NONE:
528 break;
529 case R_X86_64_64:
530 *(u64 *)location = value;
531 break;
532 case R_X86_64_32:
533 *(u32 *)location = value;
534 if (value != *(u32 *)location)
535 goto overflow;
536 break;
537 case R_X86_64_32S:
538 *(s32 *)location = value;
539 if ((s64)value != *(s32 *)location)
540 goto overflow;
541 break;
542 case R_X86_64_PC32:
543 value -= (u64)address;
544 *(u32 *)location = value;
545 break;
546 default:
547 pr_err("Unknown rela relocation: %llu\n",
548 ELF64_R_TYPE(rel[i].r_info));
549 return -ENOEXEC;
550 }
551 }
552 return 0;
553
554 overflow:
555 pr_err("Overflow in relocation type %d value 0x%lx\n",
556 (int)ELF64_R_TYPE(rel[i].r_info), value);
557 return -ENOEXEC;
558 }
559 #endif /* CONFIG_KEXEC_FILE */
560
561 static int
562 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
563 {
564 struct page *page;
565 unsigned int nr_pages;
566
567 /*
568 * For physical range: [start, end]. We must skip the unassigned
569 * crashk resource with zero-valued "end" member.
570 */
571 if (!end || start > end)
572 return 0;
573
574 page = pfn_to_page(start >> PAGE_SHIFT);
575 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
576 if (protect)
577 return set_pages_ro(page, nr_pages);
578 else
579 return set_pages_rw(page, nr_pages);
580 }
581
582 static void kexec_mark_crashkres(bool protect)
583 {
584 unsigned long control;
585
586 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
587
588 /* Don't touch the control code page used in crash_kexec().*/
589 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
590 /* Control code page is located in the 2nd page. */
591 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
592 control += KEXEC_CONTROL_PAGE_SIZE;
593 kexec_mark_range(control, crashk_res.end, protect);
594 }
595
596 void arch_kexec_protect_crashkres(void)
597 {
598 kexec_mark_crashkres(true);
599 }
600
601 void arch_kexec_unprotect_crashkres(void)
602 {
603 kexec_mark_crashkres(false);
604 }