]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/nmi.c
Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / nmi.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * Handle hardware traps and faults.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/sched/debug.h>
17 #include <linux/nmi.h>
18 #include <linux/debugfs.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/ratelimit.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <linux/atomic.h>
25 #include <linux/sched/clock.h>
26
27 #if defined(CONFIG_EDAC)
28 #include <linux/edac.h>
29 #endif
30
31 #include <asm/cpu_entry_area.h>
32 #include <asm/traps.h>
33 #include <asm/mach_traps.h>
34 #include <asm/nmi.h>
35 #include <asm/x86_init.h>
36 #include <asm/reboot.h>
37 #include <asm/cache.h>
38 #include <asm/nospec-branch.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/nmi.h>
42
43 struct nmi_desc {
44 raw_spinlock_t lock;
45 struct list_head head;
46 };
47
48 static struct nmi_desc nmi_desc[NMI_MAX] =
49 {
50 {
51 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
52 .head = LIST_HEAD_INIT(nmi_desc[0].head),
53 },
54 {
55 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
56 .head = LIST_HEAD_INIT(nmi_desc[1].head),
57 },
58 {
59 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
60 .head = LIST_HEAD_INIT(nmi_desc[2].head),
61 },
62 {
63 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
64 .head = LIST_HEAD_INIT(nmi_desc[3].head),
65 },
66
67 };
68
69 struct nmi_stats {
70 unsigned int normal;
71 unsigned int unknown;
72 unsigned int external;
73 unsigned int swallow;
74 };
75
76 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
77
78 static int ignore_nmis __read_mostly;
79
80 int unknown_nmi_panic;
81 /*
82 * Prevent NMI reason port (0x61) being accessed simultaneously, can
83 * only be used in NMI handler.
84 */
85 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
86
87 static int __init setup_unknown_nmi_panic(char *str)
88 {
89 unknown_nmi_panic = 1;
90 return 1;
91 }
92 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
93
94 #define nmi_to_desc(type) (&nmi_desc[type])
95
96 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
97
98 static int __init nmi_warning_debugfs(void)
99 {
100 debugfs_create_u64("nmi_longest_ns", 0644,
101 arch_debugfs_dir, &nmi_longest_ns);
102 return 0;
103 }
104 fs_initcall(nmi_warning_debugfs);
105
106 static void nmi_max_handler(struct irq_work *w)
107 {
108 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
109 int remainder_ns, decimal_msecs;
110 u64 whole_msecs = READ_ONCE(a->max_duration);
111
112 remainder_ns = do_div(whole_msecs, (1000 * 1000));
113 decimal_msecs = remainder_ns / 1000;
114
115 printk_ratelimited(KERN_INFO
116 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
117 a->handler, whole_msecs, decimal_msecs);
118 }
119
120 static int nmi_handle(unsigned int type, struct pt_regs *regs)
121 {
122 struct nmi_desc *desc = nmi_to_desc(type);
123 struct nmiaction *a;
124 int handled=0;
125
126 rcu_read_lock();
127
128 /*
129 * NMIs are edge-triggered, which means if you have enough
130 * of them concurrently, you can lose some because only one
131 * can be latched at any given time. Walk the whole list
132 * to handle those situations.
133 */
134 list_for_each_entry_rcu(a, &desc->head, list) {
135 int thishandled;
136 u64 delta;
137
138 delta = sched_clock();
139 thishandled = a->handler(type, regs);
140 handled += thishandled;
141 delta = sched_clock() - delta;
142 trace_nmi_handler(a->handler, (int)delta, thishandled);
143
144 if (delta < nmi_longest_ns || delta < a->max_duration)
145 continue;
146
147 a->max_duration = delta;
148 irq_work_queue(&a->irq_work);
149 }
150
151 rcu_read_unlock();
152
153 /* return total number of NMI events handled */
154 return handled;
155 }
156 NOKPROBE_SYMBOL(nmi_handle);
157
158 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
159 {
160 struct nmi_desc *desc = nmi_to_desc(type);
161 unsigned long flags;
162
163 if (!action->handler)
164 return -EINVAL;
165
166 init_irq_work(&action->irq_work, nmi_max_handler);
167
168 raw_spin_lock_irqsave(&desc->lock, flags);
169
170 /*
171 * Indicate if there are multiple registrations on the
172 * internal NMI handler call chains (SERR and IO_CHECK).
173 */
174 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
175 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
176
177 /*
178 * some handlers need to be executed first otherwise a fake
179 * event confuses some handlers (kdump uses this flag)
180 */
181 if (action->flags & NMI_FLAG_FIRST)
182 list_add_rcu(&action->list, &desc->head);
183 else
184 list_add_tail_rcu(&action->list, &desc->head);
185
186 raw_spin_unlock_irqrestore(&desc->lock, flags);
187 return 0;
188 }
189 EXPORT_SYMBOL(__register_nmi_handler);
190
191 void unregister_nmi_handler(unsigned int type, const char *name)
192 {
193 struct nmi_desc *desc = nmi_to_desc(type);
194 struct nmiaction *n;
195 unsigned long flags;
196
197 raw_spin_lock_irqsave(&desc->lock, flags);
198
199 list_for_each_entry_rcu(n, &desc->head, list) {
200 /*
201 * the name passed in to describe the nmi handler
202 * is used as the lookup key
203 */
204 if (!strcmp(n->name, name)) {
205 WARN(in_nmi(),
206 "Trying to free NMI (%s) from NMI context!\n", n->name);
207 list_del_rcu(&n->list);
208 break;
209 }
210 }
211
212 raw_spin_unlock_irqrestore(&desc->lock, flags);
213 synchronize_rcu();
214 }
215 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
216
217 static void
218 pci_serr_error(unsigned char reason, struct pt_regs *regs)
219 {
220 /* check to see if anyone registered against these types of errors */
221 if (nmi_handle(NMI_SERR, regs))
222 return;
223
224 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
225 reason, smp_processor_id());
226
227 if (panic_on_unrecovered_nmi)
228 nmi_panic(regs, "NMI: Not continuing");
229
230 pr_emerg("Dazed and confused, but trying to continue\n");
231
232 /* Clear and disable the PCI SERR error line. */
233 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
234 outb(reason, NMI_REASON_PORT);
235 }
236 NOKPROBE_SYMBOL(pci_serr_error);
237
238 static void
239 io_check_error(unsigned char reason, struct pt_regs *regs)
240 {
241 unsigned long i;
242
243 /* check to see if anyone registered against these types of errors */
244 if (nmi_handle(NMI_IO_CHECK, regs))
245 return;
246
247 pr_emerg(
248 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
249 reason, smp_processor_id());
250 show_regs(regs);
251
252 if (panic_on_io_nmi) {
253 nmi_panic(regs, "NMI IOCK error: Not continuing");
254
255 /*
256 * If we end up here, it means we have received an NMI while
257 * processing panic(). Simply return without delaying and
258 * re-enabling NMIs.
259 */
260 return;
261 }
262
263 /* Re-enable the IOCK line, wait for a few seconds */
264 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
265 outb(reason, NMI_REASON_PORT);
266
267 i = 20000;
268 while (--i) {
269 touch_nmi_watchdog();
270 udelay(100);
271 }
272
273 reason &= ~NMI_REASON_CLEAR_IOCHK;
274 outb(reason, NMI_REASON_PORT);
275 }
276 NOKPROBE_SYMBOL(io_check_error);
277
278 static void
279 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
280 {
281 int handled;
282
283 /*
284 * Use 'false' as back-to-back NMIs are dealt with one level up.
285 * Of course this makes having multiple 'unknown' handlers useless
286 * as only the first one is ever run (unless it can actually determine
287 * if it caused the NMI)
288 */
289 handled = nmi_handle(NMI_UNKNOWN, regs);
290 if (handled) {
291 __this_cpu_add(nmi_stats.unknown, handled);
292 return;
293 }
294
295 __this_cpu_add(nmi_stats.unknown, 1);
296
297 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
298 reason, smp_processor_id());
299
300 pr_emerg("Do you have a strange power saving mode enabled?\n");
301 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
302 nmi_panic(regs, "NMI: Not continuing");
303
304 pr_emerg("Dazed and confused, but trying to continue\n");
305 }
306 NOKPROBE_SYMBOL(unknown_nmi_error);
307
308 static DEFINE_PER_CPU(bool, swallow_nmi);
309 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
310
311 static void default_do_nmi(struct pt_regs *regs)
312 {
313 unsigned char reason = 0;
314 int handled;
315 bool b2b = false;
316
317 /*
318 * CPU-specific NMI must be processed before non-CPU-specific
319 * NMI, otherwise we may lose it, because the CPU-specific
320 * NMI can not be detected/processed on other CPUs.
321 */
322
323 /*
324 * Back-to-back NMIs are interesting because they can either
325 * be two NMI or more than two NMIs (any thing over two is dropped
326 * due to NMI being edge-triggered). If this is the second half
327 * of the back-to-back NMI, assume we dropped things and process
328 * more handlers. Otherwise reset the 'swallow' NMI behaviour
329 */
330 if (regs->ip == __this_cpu_read(last_nmi_rip))
331 b2b = true;
332 else
333 __this_cpu_write(swallow_nmi, false);
334
335 __this_cpu_write(last_nmi_rip, regs->ip);
336
337 handled = nmi_handle(NMI_LOCAL, regs);
338 __this_cpu_add(nmi_stats.normal, handled);
339 if (handled) {
340 /*
341 * There are cases when a NMI handler handles multiple
342 * events in the current NMI. One of these events may
343 * be queued for in the next NMI. Because the event is
344 * already handled, the next NMI will result in an unknown
345 * NMI. Instead lets flag this for a potential NMI to
346 * swallow.
347 */
348 if (handled > 1)
349 __this_cpu_write(swallow_nmi, true);
350 return;
351 }
352
353 /*
354 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
355 *
356 * Another CPU may be processing panic routines while holding
357 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
358 * and if so, call its callback directly. If there is no CPU preparing
359 * crash dump, we simply loop here.
360 */
361 while (!raw_spin_trylock(&nmi_reason_lock)) {
362 run_crash_ipi_callback(regs);
363 cpu_relax();
364 }
365
366 reason = x86_platform.get_nmi_reason();
367
368 if (reason & NMI_REASON_MASK) {
369 if (reason & NMI_REASON_SERR)
370 pci_serr_error(reason, regs);
371 else if (reason & NMI_REASON_IOCHK)
372 io_check_error(reason, regs);
373 #ifdef CONFIG_X86_32
374 /*
375 * Reassert NMI in case it became active
376 * meanwhile as it's edge-triggered:
377 */
378 reassert_nmi();
379 #endif
380 __this_cpu_add(nmi_stats.external, 1);
381 raw_spin_unlock(&nmi_reason_lock);
382 return;
383 }
384 raw_spin_unlock(&nmi_reason_lock);
385
386 /*
387 * Only one NMI can be latched at a time. To handle
388 * this we may process multiple nmi handlers at once to
389 * cover the case where an NMI is dropped. The downside
390 * to this approach is we may process an NMI prematurely,
391 * while its real NMI is sitting latched. This will cause
392 * an unknown NMI on the next run of the NMI processing.
393 *
394 * We tried to flag that condition above, by setting the
395 * swallow_nmi flag when we process more than one event.
396 * This condition is also only present on the second half
397 * of a back-to-back NMI, so we flag that condition too.
398 *
399 * If both are true, we assume we already processed this
400 * NMI previously and we swallow it. Otherwise we reset
401 * the logic.
402 *
403 * There are scenarios where we may accidentally swallow
404 * a 'real' unknown NMI. For example, while processing
405 * a perf NMI another perf NMI comes in along with a
406 * 'real' unknown NMI. These two NMIs get combined into
407 * one (as descibed above). When the next NMI gets
408 * processed, it will be flagged by perf as handled, but
409 * noone will know that there was a 'real' unknown NMI sent
410 * also. As a result it gets swallowed. Or if the first
411 * perf NMI returns two events handled then the second
412 * NMI will get eaten by the logic below, again losing a
413 * 'real' unknown NMI. But this is the best we can do
414 * for now.
415 */
416 if (b2b && __this_cpu_read(swallow_nmi))
417 __this_cpu_add(nmi_stats.swallow, 1);
418 else
419 unknown_nmi_error(reason, regs);
420 }
421 NOKPROBE_SYMBOL(default_do_nmi);
422
423 /*
424 * NMIs can page fault or hit breakpoints which will cause it to lose
425 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
426 *
427 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
428 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
429 * if the outer NMI came from kernel mode, but we can still nest if the
430 * outer NMI came from user mode.
431 *
432 * To handle these nested NMIs, we have three states:
433 *
434 * 1) not running
435 * 2) executing
436 * 3) latched
437 *
438 * When no NMI is in progress, it is in the "not running" state.
439 * When an NMI comes in, it goes into the "executing" state.
440 * Normally, if another NMI is triggered, it does not interrupt
441 * the running NMI and the HW will simply latch it so that when
442 * the first NMI finishes, it will restart the second NMI.
443 * (Note, the latch is binary, thus multiple NMIs triggering,
444 * when one is running, are ignored. Only one NMI is restarted.)
445 *
446 * If an NMI executes an iret, another NMI can preempt it. We do not
447 * want to allow this new NMI to run, but we want to execute it when the
448 * first one finishes. We set the state to "latched", and the exit of
449 * the first NMI will perform a dec_return, if the result is zero
450 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
451 * dec_return would have set the state to NMI_EXECUTING (what we want it
452 * to be when we are running). In this case, we simply jump back to
453 * rerun the NMI handler again, and restart the 'latched' NMI.
454 *
455 * No trap (breakpoint or page fault) should be hit before nmi_restart,
456 * thus there is no race between the first check of state for NOT_RUNNING
457 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
458 * at this point.
459 *
460 * In case the NMI takes a page fault, we need to save off the CR2
461 * because the NMI could have preempted another page fault and corrupt
462 * the CR2 that is about to be read. As nested NMIs must be restarted
463 * and they can not take breakpoints or page faults, the update of the
464 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
465 * Otherwise, there would be a race of another nested NMI coming in
466 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
467 */
468 enum nmi_states {
469 NMI_NOT_RUNNING = 0,
470 NMI_EXECUTING,
471 NMI_LATCHED,
472 };
473 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
474 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
475
476 #ifdef CONFIG_X86_64
477 /*
478 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
479 * some care, the inner breakpoint will clobber the outer breakpoint's
480 * stack.
481 *
482 * If a breakpoint is being processed, and the debug stack is being
483 * used, if an NMI comes in and also hits a breakpoint, the stack
484 * pointer will be set to the same fixed address as the breakpoint that
485 * was interrupted, causing that stack to be corrupted. To handle this
486 * case, check if the stack that was interrupted is the debug stack, and
487 * if so, change the IDT so that new breakpoints will use the current
488 * stack and not switch to the fixed address. On return of the NMI,
489 * switch back to the original IDT.
490 */
491 static DEFINE_PER_CPU(int, update_debug_stack);
492
493 static bool notrace is_debug_stack(unsigned long addr)
494 {
495 struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
496 unsigned long top = CEA_ESTACK_TOP(cs, DB);
497 unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
498
499 if (__this_cpu_read(debug_stack_usage))
500 return true;
501 /*
502 * Note, this covers the guard page between DB and DB1 as well to
503 * avoid two checks. But by all means @addr can never point into
504 * the guard page.
505 */
506 return addr >= bot && addr < top;
507 }
508 NOKPROBE_SYMBOL(is_debug_stack);
509 #endif
510
511 dotraplinkage notrace void
512 do_nmi(struct pt_regs *regs, long error_code)
513 {
514 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
515 this_cpu_write(nmi_state, NMI_LATCHED);
516 return;
517 }
518 this_cpu_write(nmi_state, NMI_EXECUTING);
519 this_cpu_write(nmi_cr2, read_cr2());
520 nmi_restart:
521
522 #ifdef CONFIG_X86_64
523 /*
524 * If we interrupted a breakpoint, it is possible that
525 * the nmi handler will have breakpoints too. We need to
526 * change the IDT such that breakpoints that happen here
527 * continue to use the NMI stack.
528 */
529 if (unlikely(is_debug_stack(regs->sp))) {
530 debug_stack_set_zero();
531 this_cpu_write(update_debug_stack, 1);
532 }
533 #endif
534
535 nmi_enter();
536
537 inc_irq_stat(__nmi_count);
538
539 if (!ignore_nmis)
540 default_do_nmi(regs);
541
542 nmi_exit();
543
544 #ifdef CONFIG_X86_64
545 if (unlikely(this_cpu_read(update_debug_stack))) {
546 debug_stack_reset();
547 this_cpu_write(update_debug_stack, 0);
548 }
549 #endif
550
551 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
552 write_cr2(this_cpu_read(nmi_cr2));
553 if (this_cpu_dec_return(nmi_state))
554 goto nmi_restart;
555
556 if (user_mode(regs))
557 mds_user_clear_cpu_buffers();
558 }
559 NOKPROBE_SYMBOL(do_nmi);
560
561 void stop_nmi(void)
562 {
563 ignore_nmis++;
564 }
565
566 void restart_nmi(void)
567 {
568 ignore_nmis--;
569 }
570
571 /* reset the back-to-back NMI logic */
572 void local_touch_nmi(void)
573 {
574 __this_cpu_write(last_nmi_rip, 0);
575 }
576 EXPORT_SYMBOL_GPL(local_touch_nmi);