]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/nmi.c
x86/speculation/mds: Clear CPU buffers on exit to user
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / nmi.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * Handle hardware traps and faults.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/sched/debug.h>
17 #include <linux/nmi.h>
18 #include <linux/debugfs.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/ratelimit.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <linux/sched/clock.h>
25
26 #if defined(CONFIG_EDAC)
27 #include <linux/edac.h>
28 #endif
29
30 #include <linux/atomic.h>
31 #include <asm/traps.h>
32 #include <asm/mach_traps.h>
33 #include <asm/nmi.h>
34 #include <asm/x86_init.h>
35 #include <asm/reboot.h>
36 #include <asm/cache.h>
37 #include <asm/nospec-branch.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/nmi.h>
41
42 struct nmi_desc {
43 raw_spinlock_t lock;
44 struct list_head head;
45 };
46
47 static struct nmi_desc nmi_desc[NMI_MAX] =
48 {
49 {
50 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
51 .head = LIST_HEAD_INIT(nmi_desc[0].head),
52 },
53 {
54 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
55 .head = LIST_HEAD_INIT(nmi_desc[1].head),
56 },
57 {
58 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
59 .head = LIST_HEAD_INIT(nmi_desc[2].head),
60 },
61 {
62 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
63 .head = LIST_HEAD_INIT(nmi_desc[3].head),
64 },
65
66 };
67
68 struct nmi_stats {
69 unsigned int normal;
70 unsigned int unknown;
71 unsigned int external;
72 unsigned int swallow;
73 };
74
75 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
76
77 static int ignore_nmis __read_mostly;
78
79 int unknown_nmi_panic;
80 /*
81 * Prevent NMI reason port (0x61) being accessed simultaneously, can
82 * only be used in NMI handler.
83 */
84 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
85
86 static int __init setup_unknown_nmi_panic(char *str)
87 {
88 unknown_nmi_panic = 1;
89 return 1;
90 }
91 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
92
93 #define nmi_to_desc(type) (&nmi_desc[type])
94
95 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
96
97 static int __init nmi_warning_debugfs(void)
98 {
99 debugfs_create_u64("nmi_longest_ns", 0644,
100 arch_debugfs_dir, &nmi_longest_ns);
101 return 0;
102 }
103 fs_initcall(nmi_warning_debugfs);
104
105 static void nmi_max_handler(struct irq_work *w)
106 {
107 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
108 int remainder_ns, decimal_msecs;
109 u64 whole_msecs = READ_ONCE(a->max_duration);
110
111 remainder_ns = do_div(whole_msecs, (1000 * 1000));
112 decimal_msecs = remainder_ns / 1000;
113
114 printk_ratelimited(KERN_INFO
115 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
116 a->handler, whole_msecs, decimal_msecs);
117 }
118
119 static int nmi_handle(unsigned int type, struct pt_regs *regs)
120 {
121 struct nmi_desc *desc = nmi_to_desc(type);
122 struct nmiaction *a;
123 int handled=0;
124
125 rcu_read_lock();
126
127 /*
128 * NMIs are edge-triggered, which means if you have enough
129 * of them concurrently, you can lose some because only one
130 * can be latched at any given time. Walk the whole list
131 * to handle those situations.
132 */
133 list_for_each_entry_rcu(a, &desc->head, list) {
134 int thishandled;
135 u64 delta;
136
137 delta = sched_clock();
138 thishandled = a->handler(type, regs);
139 handled += thishandled;
140 delta = sched_clock() - delta;
141 trace_nmi_handler(a->handler, (int)delta, thishandled);
142
143 if (delta < nmi_longest_ns || delta < a->max_duration)
144 continue;
145
146 a->max_duration = delta;
147 irq_work_queue(&a->irq_work);
148 }
149
150 rcu_read_unlock();
151
152 /* return total number of NMI events handled */
153 return handled;
154 }
155 NOKPROBE_SYMBOL(nmi_handle);
156
157 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
158 {
159 struct nmi_desc *desc = nmi_to_desc(type);
160 unsigned long flags;
161
162 if (!action->handler)
163 return -EINVAL;
164
165 init_irq_work(&action->irq_work, nmi_max_handler);
166
167 raw_spin_lock_irqsave(&desc->lock, flags);
168
169 /*
170 * Indicate if there are multiple registrations on the
171 * internal NMI handler call chains (SERR and IO_CHECK).
172 */
173 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
174 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
175
176 /*
177 * some handlers need to be executed first otherwise a fake
178 * event confuses some handlers (kdump uses this flag)
179 */
180 if (action->flags & NMI_FLAG_FIRST)
181 list_add_rcu(&action->list, &desc->head);
182 else
183 list_add_tail_rcu(&action->list, &desc->head);
184
185 raw_spin_unlock_irqrestore(&desc->lock, flags);
186 return 0;
187 }
188 EXPORT_SYMBOL(__register_nmi_handler);
189
190 void unregister_nmi_handler(unsigned int type, const char *name)
191 {
192 struct nmi_desc *desc = nmi_to_desc(type);
193 struct nmiaction *n;
194 unsigned long flags;
195
196 raw_spin_lock_irqsave(&desc->lock, flags);
197
198 list_for_each_entry_rcu(n, &desc->head, list) {
199 /*
200 * the name passed in to describe the nmi handler
201 * is used as the lookup key
202 */
203 if (!strcmp(n->name, name)) {
204 WARN(in_nmi(),
205 "Trying to free NMI (%s) from NMI context!\n", n->name);
206 list_del_rcu(&n->list);
207 break;
208 }
209 }
210
211 raw_spin_unlock_irqrestore(&desc->lock, flags);
212 synchronize_rcu();
213 }
214 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
215
216 static void
217 pci_serr_error(unsigned char reason, struct pt_regs *regs)
218 {
219 /* check to see if anyone registered against these types of errors */
220 if (nmi_handle(NMI_SERR, regs))
221 return;
222
223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 reason, smp_processor_id());
225
226 if (panic_on_unrecovered_nmi)
227 nmi_panic(regs, "NMI: Not continuing");
228
229 pr_emerg("Dazed and confused, but trying to continue\n");
230
231 /* Clear and disable the PCI SERR error line. */
232 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
233 outb(reason, NMI_REASON_PORT);
234 }
235 NOKPROBE_SYMBOL(pci_serr_error);
236
237 static void
238 io_check_error(unsigned char reason, struct pt_regs *regs)
239 {
240 unsigned long i;
241
242 /* check to see if anyone registered against these types of errors */
243 if (nmi_handle(NMI_IO_CHECK, regs))
244 return;
245
246 pr_emerg(
247 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
248 reason, smp_processor_id());
249 show_regs(regs);
250
251 if (panic_on_io_nmi) {
252 nmi_panic(regs, "NMI IOCK error: Not continuing");
253
254 /*
255 * If we end up here, it means we have received an NMI while
256 * processing panic(). Simply return without delaying and
257 * re-enabling NMIs.
258 */
259 return;
260 }
261
262 /* Re-enable the IOCK line, wait for a few seconds */
263 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
264 outb(reason, NMI_REASON_PORT);
265
266 i = 20000;
267 while (--i) {
268 touch_nmi_watchdog();
269 udelay(100);
270 }
271
272 reason &= ~NMI_REASON_CLEAR_IOCHK;
273 outb(reason, NMI_REASON_PORT);
274 }
275 NOKPROBE_SYMBOL(io_check_error);
276
277 static void
278 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
279 {
280 int handled;
281
282 /*
283 * Use 'false' as back-to-back NMIs are dealt with one level up.
284 * Of course this makes having multiple 'unknown' handlers useless
285 * as only the first one is ever run (unless it can actually determine
286 * if it caused the NMI)
287 */
288 handled = nmi_handle(NMI_UNKNOWN, regs);
289 if (handled) {
290 __this_cpu_add(nmi_stats.unknown, handled);
291 return;
292 }
293
294 __this_cpu_add(nmi_stats.unknown, 1);
295
296 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
297 reason, smp_processor_id());
298
299 pr_emerg("Do you have a strange power saving mode enabled?\n");
300 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
301 nmi_panic(regs, "NMI: Not continuing");
302
303 pr_emerg("Dazed and confused, but trying to continue\n");
304 }
305 NOKPROBE_SYMBOL(unknown_nmi_error);
306
307 static DEFINE_PER_CPU(bool, swallow_nmi);
308 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
309
310 static void default_do_nmi(struct pt_regs *regs)
311 {
312 unsigned char reason = 0;
313 int handled;
314 bool b2b = false;
315
316 /*
317 * CPU-specific NMI must be processed before non-CPU-specific
318 * NMI, otherwise we may lose it, because the CPU-specific
319 * NMI can not be detected/processed on other CPUs.
320 */
321
322 /*
323 * Back-to-back NMIs are interesting because they can either
324 * be two NMI or more than two NMIs (any thing over two is dropped
325 * due to NMI being edge-triggered). If this is the second half
326 * of the back-to-back NMI, assume we dropped things and process
327 * more handlers. Otherwise reset the 'swallow' NMI behaviour
328 */
329 if (regs->ip == __this_cpu_read(last_nmi_rip))
330 b2b = true;
331 else
332 __this_cpu_write(swallow_nmi, false);
333
334 __this_cpu_write(last_nmi_rip, regs->ip);
335
336 handled = nmi_handle(NMI_LOCAL, regs);
337 __this_cpu_add(nmi_stats.normal, handled);
338 if (handled) {
339 /*
340 * There are cases when a NMI handler handles multiple
341 * events in the current NMI. One of these events may
342 * be queued for in the next NMI. Because the event is
343 * already handled, the next NMI will result in an unknown
344 * NMI. Instead lets flag this for a potential NMI to
345 * swallow.
346 */
347 if (handled > 1)
348 __this_cpu_write(swallow_nmi, true);
349 return;
350 }
351
352 /*
353 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
354 *
355 * Another CPU may be processing panic routines while holding
356 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
357 * and if so, call its callback directly. If there is no CPU preparing
358 * crash dump, we simply loop here.
359 */
360 while (!raw_spin_trylock(&nmi_reason_lock)) {
361 run_crash_ipi_callback(regs);
362 cpu_relax();
363 }
364
365 reason = x86_platform.get_nmi_reason();
366
367 if (reason & NMI_REASON_MASK) {
368 if (reason & NMI_REASON_SERR)
369 pci_serr_error(reason, regs);
370 else if (reason & NMI_REASON_IOCHK)
371 io_check_error(reason, regs);
372 #ifdef CONFIG_X86_32
373 /*
374 * Reassert NMI in case it became active
375 * meanwhile as it's edge-triggered:
376 */
377 reassert_nmi();
378 #endif
379 __this_cpu_add(nmi_stats.external, 1);
380 raw_spin_unlock(&nmi_reason_lock);
381 return;
382 }
383 raw_spin_unlock(&nmi_reason_lock);
384
385 /*
386 * Only one NMI can be latched at a time. To handle
387 * this we may process multiple nmi handlers at once to
388 * cover the case where an NMI is dropped. The downside
389 * to this approach is we may process an NMI prematurely,
390 * while its real NMI is sitting latched. This will cause
391 * an unknown NMI on the next run of the NMI processing.
392 *
393 * We tried to flag that condition above, by setting the
394 * swallow_nmi flag when we process more than one event.
395 * This condition is also only present on the second half
396 * of a back-to-back NMI, so we flag that condition too.
397 *
398 * If both are true, we assume we already processed this
399 * NMI previously and we swallow it. Otherwise we reset
400 * the logic.
401 *
402 * There are scenarios where we may accidentally swallow
403 * a 'real' unknown NMI. For example, while processing
404 * a perf NMI another perf NMI comes in along with a
405 * 'real' unknown NMI. These two NMIs get combined into
406 * one (as descibed above). When the next NMI gets
407 * processed, it will be flagged by perf as handled, but
408 * noone will know that there was a 'real' unknown NMI sent
409 * also. As a result it gets swallowed. Or if the first
410 * perf NMI returns two events handled then the second
411 * NMI will get eaten by the logic below, again losing a
412 * 'real' unknown NMI. But this is the best we can do
413 * for now.
414 */
415 if (b2b && __this_cpu_read(swallow_nmi))
416 __this_cpu_add(nmi_stats.swallow, 1);
417 else
418 unknown_nmi_error(reason, regs);
419 }
420 NOKPROBE_SYMBOL(default_do_nmi);
421
422 /*
423 * NMIs can page fault or hit breakpoints which will cause it to lose
424 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
425 *
426 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
427 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
428 * if the outer NMI came from kernel mode, but we can still nest if the
429 * outer NMI came from user mode.
430 *
431 * To handle these nested NMIs, we have three states:
432 *
433 * 1) not running
434 * 2) executing
435 * 3) latched
436 *
437 * When no NMI is in progress, it is in the "not running" state.
438 * When an NMI comes in, it goes into the "executing" state.
439 * Normally, if another NMI is triggered, it does not interrupt
440 * the running NMI and the HW will simply latch it so that when
441 * the first NMI finishes, it will restart the second NMI.
442 * (Note, the latch is binary, thus multiple NMIs triggering,
443 * when one is running, are ignored. Only one NMI is restarted.)
444 *
445 * If an NMI executes an iret, another NMI can preempt it. We do not
446 * want to allow this new NMI to run, but we want to execute it when the
447 * first one finishes. We set the state to "latched", and the exit of
448 * the first NMI will perform a dec_return, if the result is zero
449 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
450 * dec_return would have set the state to NMI_EXECUTING (what we want it
451 * to be when we are running). In this case, we simply jump back to
452 * rerun the NMI handler again, and restart the 'latched' NMI.
453 *
454 * No trap (breakpoint or page fault) should be hit before nmi_restart,
455 * thus there is no race between the first check of state for NOT_RUNNING
456 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
457 * at this point.
458 *
459 * In case the NMI takes a page fault, we need to save off the CR2
460 * because the NMI could have preempted another page fault and corrupt
461 * the CR2 that is about to be read. As nested NMIs must be restarted
462 * and they can not take breakpoints or page faults, the update of the
463 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
464 * Otherwise, there would be a race of another nested NMI coming in
465 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
466 */
467 enum nmi_states {
468 NMI_NOT_RUNNING = 0,
469 NMI_EXECUTING,
470 NMI_LATCHED,
471 };
472 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
473 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
474
475 #ifdef CONFIG_X86_64
476 /*
477 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
478 * some care, the inner breakpoint will clobber the outer breakpoint's
479 * stack.
480 *
481 * If a breakpoint is being processed, and the debug stack is being
482 * used, if an NMI comes in and also hits a breakpoint, the stack
483 * pointer will be set to the same fixed address as the breakpoint that
484 * was interrupted, causing that stack to be corrupted. To handle this
485 * case, check if the stack that was interrupted is the debug stack, and
486 * if so, change the IDT so that new breakpoints will use the current
487 * stack and not switch to the fixed address. On return of the NMI,
488 * switch back to the original IDT.
489 */
490 static DEFINE_PER_CPU(int, update_debug_stack);
491 #endif
492
493 dotraplinkage notrace void
494 do_nmi(struct pt_regs *regs, long error_code)
495 {
496 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
497 this_cpu_write(nmi_state, NMI_LATCHED);
498 return;
499 }
500 this_cpu_write(nmi_state, NMI_EXECUTING);
501 this_cpu_write(nmi_cr2, read_cr2());
502 nmi_restart:
503
504 #ifdef CONFIG_X86_64
505 /*
506 * If we interrupted a breakpoint, it is possible that
507 * the nmi handler will have breakpoints too. We need to
508 * change the IDT such that breakpoints that happen here
509 * continue to use the NMI stack.
510 */
511 if (unlikely(is_debug_stack(regs->sp))) {
512 debug_stack_set_zero();
513 this_cpu_write(update_debug_stack, 1);
514 }
515 #endif
516
517 nmi_enter();
518
519 inc_irq_stat(__nmi_count);
520
521 if (!ignore_nmis)
522 default_do_nmi(regs);
523
524 nmi_exit();
525
526 #ifdef CONFIG_X86_64
527 if (unlikely(this_cpu_read(update_debug_stack))) {
528 debug_stack_reset();
529 this_cpu_write(update_debug_stack, 0);
530 }
531 #endif
532
533 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
534 write_cr2(this_cpu_read(nmi_cr2));
535 if (this_cpu_dec_return(nmi_state))
536 goto nmi_restart;
537
538 if (user_mode(regs))
539 mds_user_clear_cpu_buffers();
540 }
541 NOKPROBE_SYMBOL(do_nmi);
542
543 void stop_nmi(void)
544 {
545 ignore_nmis++;
546 }
547
548 void restart_nmi(void)
549 {
550 ignore_nmis--;
551 }
552
553 /* reset the back-to-back NMI logic */
554 void local_touch_nmi(void)
555 {
556 __this_cpu_write(last_nmi_rip, 0);
557 }
558 EXPORT_SYMBOL_GPL(local_touch_nmi);