]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/nmi.c
Merge branch 'fix/sun8i' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / nmi.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * Handle hardware traps and faults.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/sched/debug.h>
17 #include <linux/nmi.h>
18 #include <linux/debugfs.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/ratelimit.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <linux/sched/clock.h>
25
26 #if defined(CONFIG_EDAC)
27 #include <linux/edac.h>
28 #endif
29
30 #include <linux/atomic.h>
31 #include <asm/traps.h>
32 #include <asm/mach_traps.h>
33 #include <asm/nmi.h>
34 #include <asm/x86_init.h>
35 #include <asm/reboot.h>
36 #include <asm/cache.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/nmi.h>
40
41 struct nmi_desc {
42 spinlock_t lock;
43 struct list_head head;
44 };
45
46 static struct nmi_desc nmi_desc[NMI_MAX] =
47 {
48 {
49 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[0].head),
51 },
52 {
53 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[1].head),
55 },
56 {
57 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 .head = LIST_HEAD_INIT(nmi_desc[2].head),
59 },
60 {
61 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 .head = LIST_HEAD_INIT(nmi_desc[3].head),
63 },
64
65 };
66
67 struct nmi_stats {
68 unsigned int normal;
69 unsigned int unknown;
70 unsigned int external;
71 unsigned int swallow;
72 };
73
74 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
75
76 static int ignore_nmis __read_mostly;
77
78 int unknown_nmi_panic;
79 /*
80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
81 * only be used in NMI handler.
82 */
83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
84
85 static int __init setup_unknown_nmi_panic(char *str)
86 {
87 unknown_nmi_panic = 1;
88 return 1;
89 }
90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
91
92 #define nmi_to_desc(type) (&nmi_desc[type])
93
94 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
95
96 static int __init nmi_warning_debugfs(void)
97 {
98 debugfs_create_u64("nmi_longest_ns", 0644,
99 arch_debugfs_dir, &nmi_longest_ns);
100 return 0;
101 }
102 fs_initcall(nmi_warning_debugfs);
103
104 static void nmi_max_handler(struct irq_work *w)
105 {
106 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
107 int remainder_ns, decimal_msecs;
108 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
109
110 remainder_ns = do_div(whole_msecs, (1000 * 1000));
111 decimal_msecs = remainder_ns / 1000;
112
113 printk_ratelimited(KERN_INFO
114 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
115 a->handler, whole_msecs, decimal_msecs);
116 }
117
118 static int nmi_handle(unsigned int type, struct pt_regs *regs)
119 {
120 struct nmi_desc *desc = nmi_to_desc(type);
121 struct nmiaction *a;
122 int handled=0;
123
124 rcu_read_lock();
125
126 /*
127 * NMIs are edge-triggered, which means if you have enough
128 * of them concurrently, you can lose some because only one
129 * can be latched at any given time. Walk the whole list
130 * to handle those situations.
131 */
132 list_for_each_entry_rcu(a, &desc->head, list) {
133 int thishandled;
134 u64 delta;
135
136 delta = sched_clock();
137 thishandled = a->handler(type, regs);
138 handled += thishandled;
139 delta = sched_clock() - delta;
140 trace_nmi_handler(a->handler, (int)delta, thishandled);
141
142 if (delta < nmi_longest_ns || delta < a->max_duration)
143 continue;
144
145 a->max_duration = delta;
146 irq_work_queue(&a->irq_work);
147 }
148
149 rcu_read_unlock();
150
151 /* return total number of NMI events handled */
152 return handled;
153 }
154 NOKPROBE_SYMBOL(nmi_handle);
155
156 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
157 {
158 struct nmi_desc *desc = nmi_to_desc(type);
159 unsigned long flags;
160
161 if (!action->handler)
162 return -EINVAL;
163
164 init_irq_work(&action->irq_work, nmi_max_handler);
165
166 spin_lock_irqsave(&desc->lock, flags);
167
168 /*
169 * most handlers of type NMI_UNKNOWN never return because
170 * they just assume the NMI is theirs. Just a sanity check
171 * to manage expectations
172 */
173 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
174 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
175 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
176
177 /*
178 * some handlers need to be executed first otherwise a fake
179 * event confuses some handlers (kdump uses this flag)
180 */
181 if (action->flags & NMI_FLAG_FIRST)
182 list_add_rcu(&action->list, &desc->head);
183 else
184 list_add_tail_rcu(&action->list, &desc->head);
185
186 spin_unlock_irqrestore(&desc->lock, flags);
187 return 0;
188 }
189 EXPORT_SYMBOL(__register_nmi_handler);
190
191 void unregister_nmi_handler(unsigned int type, const char *name)
192 {
193 struct nmi_desc *desc = nmi_to_desc(type);
194 struct nmiaction *n;
195 unsigned long flags;
196
197 spin_lock_irqsave(&desc->lock, flags);
198
199 list_for_each_entry_rcu(n, &desc->head, list) {
200 /*
201 * the name passed in to describe the nmi handler
202 * is used as the lookup key
203 */
204 if (!strcmp(n->name, name)) {
205 WARN(in_nmi(),
206 "Trying to free NMI (%s) from NMI context!\n", n->name);
207 list_del_rcu(&n->list);
208 break;
209 }
210 }
211
212 spin_unlock_irqrestore(&desc->lock, flags);
213 synchronize_rcu();
214 }
215 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
216
217 static void
218 pci_serr_error(unsigned char reason, struct pt_regs *regs)
219 {
220 /* check to see if anyone registered against these types of errors */
221 if (nmi_handle(NMI_SERR, regs))
222 return;
223
224 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
225 reason, smp_processor_id());
226
227 /*
228 * On some machines, PCI SERR line is used to report memory
229 * errors. EDAC makes use of it.
230 */
231 #if defined(CONFIG_EDAC)
232 if (edac_handler_set()) {
233 edac_atomic_assert_error();
234 return;
235 }
236 #endif
237
238 if (panic_on_unrecovered_nmi)
239 nmi_panic(regs, "NMI: Not continuing");
240
241 pr_emerg("Dazed and confused, but trying to continue\n");
242
243 /* Clear and disable the PCI SERR error line. */
244 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
245 outb(reason, NMI_REASON_PORT);
246 }
247 NOKPROBE_SYMBOL(pci_serr_error);
248
249 static void
250 io_check_error(unsigned char reason, struct pt_regs *regs)
251 {
252 unsigned long i;
253
254 /* check to see if anyone registered against these types of errors */
255 if (nmi_handle(NMI_IO_CHECK, regs))
256 return;
257
258 pr_emerg(
259 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
260 reason, smp_processor_id());
261 show_regs(regs);
262
263 if (panic_on_io_nmi) {
264 nmi_panic(regs, "NMI IOCK error: Not continuing");
265
266 /*
267 * If we end up here, it means we have received an NMI while
268 * processing panic(). Simply return without delaying and
269 * re-enabling NMIs.
270 */
271 return;
272 }
273
274 /* Re-enable the IOCK line, wait for a few seconds */
275 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
276 outb(reason, NMI_REASON_PORT);
277
278 i = 20000;
279 while (--i) {
280 touch_nmi_watchdog();
281 udelay(100);
282 }
283
284 reason &= ~NMI_REASON_CLEAR_IOCHK;
285 outb(reason, NMI_REASON_PORT);
286 }
287 NOKPROBE_SYMBOL(io_check_error);
288
289 static void
290 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
291 {
292 int handled;
293
294 /*
295 * Use 'false' as back-to-back NMIs are dealt with one level up.
296 * Of course this makes having multiple 'unknown' handlers useless
297 * as only the first one is ever run (unless it can actually determine
298 * if it caused the NMI)
299 */
300 handled = nmi_handle(NMI_UNKNOWN, regs);
301 if (handled) {
302 __this_cpu_add(nmi_stats.unknown, handled);
303 return;
304 }
305
306 __this_cpu_add(nmi_stats.unknown, 1);
307
308 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
309 reason, smp_processor_id());
310
311 pr_emerg("Do you have a strange power saving mode enabled?\n");
312 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
313 nmi_panic(regs, "NMI: Not continuing");
314
315 pr_emerg("Dazed and confused, but trying to continue\n");
316 }
317 NOKPROBE_SYMBOL(unknown_nmi_error);
318
319 static DEFINE_PER_CPU(bool, swallow_nmi);
320 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
321
322 static void default_do_nmi(struct pt_regs *regs)
323 {
324 unsigned char reason = 0;
325 int handled;
326 bool b2b = false;
327
328 /*
329 * CPU-specific NMI must be processed before non-CPU-specific
330 * NMI, otherwise we may lose it, because the CPU-specific
331 * NMI can not be detected/processed on other CPUs.
332 */
333
334 /*
335 * Back-to-back NMIs are interesting because they can either
336 * be two NMI or more than two NMIs (any thing over two is dropped
337 * due to NMI being edge-triggered). If this is the second half
338 * of the back-to-back NMI, assume we dropped things and process
339 * more handlers. Otherwise reset the 'swallow' NMI behaviour
340 */
341 if (regs->ip == __this_cpu_read(last_nmi_rip))
342 b2b = true;
343 else
344 __this_cpu_write(swallow_nmi, false);
345
346 __this_cpu_write(last_nmi_rip, regs->ip);
347
348 handled = nmi_handle(NMI_LOCAL, regs);
349 __this_cpu_add(nmi_stats.normal, handled);
350 if (handled) {
351 /*
352 * There are cases when a NMI handler handles multiple
353 * events in the current NMI. One of these events may
354 * be queued for in the next NMI. Because the event is
355 * already handled, the next NMI will result in an unknown
356 * NMI. Instead lets flag this for a potential NMI to
357 * swallow.
358 */
359 if (handled > 1)
360 __this_cpu_write(swallow_nmi, true);
361 return;
362 }
363
364 /*
365 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
366 *
367 * Another CPU may be processing panic routines while holding
368 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
369 * and if so, call its callback directly. If there is no CPU preparing
370 * crash dump, we simply loop here.
371 */
372 while (!raw_spin_trylock(&nmi_reason_lock)) {
373 run_crash_ipi_callback(regs);
374 cpu_relax();
375 }
376
377 reason = x86_platform.get_nmi_reason();
378
379 if (reason & NMI_REASON_MASK) {
380 if (reason & NMI_REASON_SERR)
381 pci_serr_error(reason, regs);
382 else if (reason & NMI_REASON_IOCHK)
383 io_check_error(reason, regs);
384 #ifdef CONFIG_X86_32
385 /*
386 * Reassert NMI in case it became active
387 * meanwhile as it's edge-triggered:
388 */
389 reassert_nmi();
390 #endif
391 __this_cpu_add(nmi_stats.external, 1);
392 raw_spin_unlock(&nmi_reason_lock);
393 return;
394 }
395 raw_spin_unlock(&nmi_reason_lock);
396
397 /*
398 * Only one NMI can be latched at a time. To handle
399 * this we may process multiple nmi handlers at once to
400 * cover the case where an NMI is dropped. The downside
401 * to this approach is we may process an NMI prematurely,
402 * while its real NMI is sitting latched. This will cause
403 * an unknown NMI on the next run of the NMI processing.
404 *
405 * We tried to flag that condition above, by setting the
406 * swallow_nmi flag when we process more than one event.
407 * This condition is also only present on the second half
408 * of a back-to-back NMI, so we flag that condition too.
409 *
410 * If both are true, we assume we already processed this
411 * NMI previously and we swallow it. Otherwise we reset
412 * the logic.
413 *
414 * There are scenarios where we may accidentally swallow
415 * a 'real' unknown NMI. For example, while processing
416 * a perf NMI another perf NMI comes in along with a
417 * 'real' unknown NMI. These two NMIs get combined into
418 * one (as descibed above). When the next NMI gets
419 * processed, it will be flagged by perf as handled, but
420 * noone will know that there was a 'real' unknown NMI sent
421 * also. As a result it gets swallowed. Or if the first
422 * perf NMI returns two events handled then the second
423 * NMI will get eaten by the logic below, again losing a
424 * 'real' unknown NMI. But this is the best we can do
425 * for now.
426 */
427 if (b2b && __this_cpu_read(swallow_nmi))
428 __this_cpu_add(nmi_stats.swallow, 1);
429 else
430 unknown_nmi_error(reason, regs);
431 }
432 NOKPROBE_SYMBOL(default_do_nmi);
433
434 /*
435 * NMIs can page fault or hit breakpoints which will cause it to lose
436 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
437 *
438 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
439 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
440 * if the outer NMI came from kernel mode, but we can still nest if the
441 * outer NMI came from user mode.
442 *
443 * To handle these nested NMIs, we have three states:
444 *
445 * 1) not running
446 * 2) executing
447 * 3) latched
448 *
449 * When no NMI is in progress, it is in the "not running" state.
450 * When an NMI comes in, it goes into the "executing" state.
451 * Normally, if another NMI is triggered, it does not interrupt
452 * the running NMI and the HW will simply latch it so that when
453 * the first NMI finishes, it will restart the second NMI.
454 * (Note, the latch is binary, thus multiple NMIs triggering,
455 * when one is running, are ignored. Only one NMI is restarted.)
456 *
457 * If an NMI executes an iret, another NMI can preempt it. We do not
458 * want to allow this new NMI to run, but we want to execute it when the
459 * first one finishes. We set the state to "latched", and the exit of
460 * the first NMI will perform a dec_return, if the result is zero
461 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
462 * dec_return would have set the state to NMI_EXECUTING (what we want it
463 * to be when we are running). In this case, we simply jump back to
464 * rerun the NMI handler again, and restart the 'latched' NMI.
465 *
466 * No trap (breakpoint or page fault) should be hit before nmi_restart,
467 * thus there is no race between the first check of state for NOT_RUNNING
468 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
469 * at this point.
470 *
471 * In case the NMI takes a page fault, we need to save off the CR2
472 * because the NMI could have preempted another page fault and corrupt
473 * the CR2 that is about to be read. As nested NMIs must be restarted
474 * and they can not take breakpoints or page faults, the update of the
475 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
476 * Otherwise, there would be a race of another nested NMI coming in
477 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
478 */
479 enum nmi_states {
480 NMI_NOT_RUNNING = 0,
481 NMI_EXECUTING,
482 NMI_LATCHED,
483 };
484 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
485 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
486
487 #ifdef CONFIG_X86_64
488 /*
489 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
490 * some care, the inner breakpoint will clobber the outer breakpoint's
491 * stack.
492 *
493 * If a breakpoint is being processed, and the debug stack is being
494 * used, if an NMI comes in and also hits a breakpoint, the stack
495 * pointer will be set to the same fixed address as the breakpoint that
496 * was interrupted, causing that stack to be corrupted. To handle this
497 * case, check if the stack that was interrupted is the debug stack, and
498 * if so, change the IDT so that new breakpoints will use the current
499 * stack and not switch to the fixed address. On return of the NMI,
500 * switch back to the original IDT.
501 */
502 static DEFINE_PER_CPU(int, update_debug_stack);
503 #endif
504
505 dotraplinkage notrace void
506 do_nmi(struct pt_regs *regs, long error_code)
507 {
508 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
509 this_cpu_write(nmi_state, NMI_LATCHED);
510 return;
511 }
512 this_cpu_write(nmi_state, NMI_EXECUTING);
513 this_cpu_write(nmi_cr2, read_cr2());
514 nmi_restart:
515
516 #ifdef CONFIG_X86_64
517 /*
518 * If we interrupted a breakpoint, it is possible that
519 * the nmi handler will have breakpoints too. We need to
520 * change the IDT such that breakpoints that happen here
521 * continue to use the NMI stack.
522 */
523 if (unlikely(is_debug_stack(regs->sp))) {
524 debug_stack_set_zero();
525 this_cpu_write(update_debug_stack, 1);
526 }
527 #endif
528
529 nmi_enter();
530
531 inc_irq_stat(__nmi_count);
532
533 if (!ignore_nmis)
534 default_do_nmi(regs);
535
536 nmi_exit();
537
538 #ifdef CONFIG_X86_64
539 if (unlikely(this_cpu_read(update_debug_stack))) {
540 debug_stack_reset();
541 this_cpu_write(update_debug_stack, 0);
542 }
543 #endif
544
545 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
546 write_cr2(this_cpu_read(nmi_cr2));
547 if (this_cpu_dec_return(nmi_state))
548 goto nmi_restart;
549 }
550 NOKPROBE_SYMBOL(do_nmi);
551
552 void stop_nmi(void)
553 {
554 ignore_nmis++;
555 }
556
557 void restart_nmi(void)
558 {
559 ignore_nmis--;
560 }
561
562 /* reset the back-to-back NMI logic */
563 void local_touch_nmi(void)
564 {
565 __this_cpu_write(last_nmi_rip, 0);
566 }
567 EXPORT_SYMBOL_GPL(local_touch_nmi);