]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/pci-dma.c
x86: more apic debugging
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / pci-dma.c
1 #include <linux/dma-mapping.h>
2 #include <linux/dmar.h>
3 #include <linux/bootmem.h>
4 #include <linux/pci.h>
5
6 #include <asm/proto.h>
7 #include <asm/dma.h>
8 #include <asm/gart.h>
9 #include <asm/calgary.h>
10 #include <asm/amd_iommu.h>
11
12 int forbid_dac __read_mostly;
13 EXPORT_SYMBOL(forbid_dac);
14
15 const struct dma_mapping_ops *dma_ops;
16 EXPORT_SYMBOL(dma_ops);
17
18 static int iommu_sac_force __read_mostly;
19
20 #ifdef CONFIG_IOMMU_DEBUG
21 int panic_on_overflow __read_mostly = 1;
22 int force_iommu __read_mostly = 1;
23 #else
24 int panic_on_overflow __read_mostly = 0;
25 int force_iommu __read_mostly = 0;
26 #endif
27
28 int iommu_merge __read_mostly = 0;
29
30 int no_iommu __read_mostly;
31 /* Set this to 1 if there is a HW IOMMU in the system */
32 int iommu_detected __read_mostly = 0;
33
34 /* This tells the BIO block layer to assume merging. Default to off
35 because we cannot guarantee merging later. */
36 int iommu_bio_merge __read_mostly = 0;
37 EXPORT_SYMBOL(iommu_bio_merge);
38
39 dma_addr_t bad_dma_address __read_mostly = 0;
40 EXPORT_SYMBOL(bad_dma_address);
41
42 /* Dummy device used for NULL arguments (normally ISA). Better would
43 be probably a smaller DMA mask, but this is bug-to-bug compatible
44 to older i386. */
45 struct device fallback_dev = {
46 .bus_id = "fallback device",
47 .coherent_dma_mask = DMA_32BIT_MASK,
48 .dma_mask = &fallback_dev.coherent_dma_mask,
49 };
50
51 int dma_set_mask(struct device *dev, u64 mask)
52 {
53 if (!dev->dma_mask || !dma_supported(dev, mask))
54 return -EIO;
55
56 *dev->dma_mask = mask;
57
58 return 0;
59 }
60 EXPORT_SYMBOL(dma_set_mask);
61
62 #ifdef CONFIG_X86_64
63 static __initdata void *dma32_bootmem_ptr;
64 static unsigned long dma32_bootmem_size __initdata = (128ULL<<20);
65
66 static int __init parse_dma32_size_opt(char *p)
67 {
68 if (!p)
69 return -EINVAL;
70 dma32_bootmem_size = memparse(p, &p);
71 return 0;
72 }
73 early_param("dma32_size", parse_dma32_size_opt);
74
75 void __init dma32_reserve_bootmem(void)
76 {
77 unsigned long size, align;
78 if (max_pfn <= MAX_DMA32_PFN)
79 return;
80
81 /*
82 * check aperture_64.c allocate_aperture() for reason about
83 * using 512M as goal
84 */
85 align = 64ULL<<20;
86 size = round_up(dma32_bootmem_size, align);
87 dma32_bootmem_ptr = __alloc_bootmem_nopanic(size, align,
88 512ULL<<20);
89 if (dma32_bootmem_ptr)
90 dma32_bootmem_size = size;
91 else
92 dma32_bootmem_size = 0;
93 }
94 static void __init dma32_free_bootmem(void)
95 {
96
97 if (max_pfn <= MAX_DMA32_PFN)
98 return;
99
100 if (!dma32_bootmem_ptr)
101 return;
102
103 free_bootmem(__pa(dma32_bootmem_ptr), dma32_bootmem_size);
104
105 dma32_bootmem_ptr = NULL;
106 dma32_bootmem_size = 0;
107 }
108
109 void __init pci_iommu_alloc(void)
110 {
111 /* free the range so iommu could get some range less than 4G */
112 dma32_free_bootmem();
113 /*
114 * The order of these functions is important for
115 * fall-back/fail-over reasons
116 */
117 #ifdef CONFIG_GART_IOMMU
118 gart_iommu_hole_init();
119 #endif
120
121 #ifdef CONFIG_CALGARY_IOMMU
122 detect_calgary();
123 #endif
124
125 detect_intel_iommu();
126
127 amd_iommu_detect();
128
129 #ifdef CONFIG_SWIOTLB
130 pci_swiotlb_init();
131 #endif
132 }
133 #endif
134
135 /*
136 * See <Documentation/x86_64/boot-options.txt> for the iommu kernel parameter
137 * documentation.
138 */
139 static __init int iommu_setup(char *p)
140 {
141 iommu_merge = 1;
142
143 if (!p)
144 return -EINVAL;
145
146 while (*p) {
147 if (!strncmp(p, "off", 3))
148 no_iommu = 1;
149 /* gart_parse_options has more force support */
150 if (!strncmp(p, "force", 5))
151 force_iommu = 1;
152 if (!strncmp(p, "noforce", 7)) {
153 iommu_merge = 0;
154 force_iommu = 0;
155 }
156
157 if (!strncmp(p, "biomerge", 8)) {
158 iommu_bio_merge = 4096;
159 iommu_merge = 1;
160 force_iommu = 1;
161 }
162 if (!strncmp(p, "panic", 5))
163 panic_on_overflow = 1;
164 if (!strncmp(p, "nopanic", 7))
165 panic_on_overflow = 0;
166 if (!strncmp(p, "merge", 5)) {
167 iommu_merge = 1;
168 force_iommu = 1;
169 }
170 if (!strncmp(p, "nomerge", 7))
171 iommu_merge = 0;
172 if (!strncmp(p, "forcesac", 8))
173 iommu_sac_force = 1;
174 if (!strncmp(p, "allowdac", 8))
175 forbid_dac = 0;
176 if (!strncmp(p, "nodac", 5))
177 forbid_dac = -1;
178 if (!strncmp(p, "usedac", 6)) {
179 forbid_dac = -1;
180 return 1;
181 }
182 #ifdef CONFIG_SWIOTLB
183 if (!strncmp(p, "soft", 4))
184 swiotlb = 1;
185 #endif
186
187 #ifdef CONFIG_GART_IOMMU
188 gart_parse_options(p);
189 #endif
190
191 #ifdef CONFIG_CALGARY_IOMMU
192 if (!strncmp(p, "calgary", 7))
193 use_calgary = 1;
194 #endif /* CONFIG_CALGARY_IOMMU */
195
196 p += strcspn(p, ",");
197 if (*p == ',')
198 ++p;
199 }
200 return 0;
201 }
202 early_param("iommu", iommu_setup);
203
204 #ifdef CONFIG_X86_32
205 int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
206 dma_addr_t device_addr, size_t size, int flags)
207 {
208 void __iomem *mem_base = NULL;
209 int pages = size >> PAGE_SHIFT;
210 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
211
212 if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
213 goto out;
214 if (!size)
215 goto out;
216 if (dev->dma_mem)
217 goto out;
218
219 /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
220
221 mem_base = ioremap(bus_addr, size);
222 if (!mem_base)
223 goto out;
224
225 dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
226 if (!dev->dma_mem)
227 goto out;
228 dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
229 if (!dev->dma_mem->bitmap)
230 goto free1_out;
231
232 dev->dma_mem->virt_base = mem_base;
233 dev->dma_mem->device_base = device_addr;
234 dev->dma_mem->size = pages;
235 dev->dma_mem->flags = flags;
236
237 if (flags & DMA_MEMORY_MAP)
238 return DMA_MEMORY_MAP;
239
240 return DMA_MEMORY_IO;
241
242 free1_out:
243 kfree(dev->dma_mem);
244 out:
245 if (mem_base)
246 iounmap(mem_base);
247 return 0;
248 }
249 EXPORT_SYMBOL(dma_declare_coherent_memory);
250
251 void dma_release_declared_memory(struct device *dev)
252 {
253 struct dma_coherent_mem *mem = dev->dma_mem;
254
255 if (!mem)
256 return;
257 dev->dma_mem = NULL;
258 iounmap(mem->virt_base);
259 kfree(mem->bitmap);
260 kfree(mem);
261 }
262 EXPORT_SYMBOL(dma_release_declared_memory);
263
264 void *dma_mark_declared_memory_occupied(struct device *dev,
265 dma_addr_t device_addr, size_t size)
266 {
267 struct dma_coherent_mem *mem = dev->dma_mem;
268 int pos, err;
269 int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1);
270
271 pages >>= PAGE_SHIFT;
272
273 if (!mem)
274 return ERR_PTR(-EINVAL);
275
276 pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
277 err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
278 if (err != 0)
279 return ERR_PTR(err);
280 return mem->virt_base + (pos << PAGE_SHIFT);
281 }
282 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
283
284 static int dma_alloc_from_coherent_mem(struct device *dev, ssize_t size,
285 dma_addr_t *dma_handle, void **ret)
286 {
287 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
288 int order = get_order(size);
289
290 if (mem) {
291 int page = bitmap_find_free_region(mem->bitmap, mem->size,
292 order);
293 if (page >= 0) {
294 *dma_handle = mem->device_base + (page << PAGE_SHIFT);
295 *ret = mem->virt_base + (page << PAGE_SHIFT);
296 memset(*ret, 0, size);
297 }
298 if (mem->flags & DMA_MEMORY_EXCLUSIVE)
299 *ret = NULL;
300 }
301 return (mem != NULL);
302 }
303
304 static int dma_release_coherent(struct device *dev, int order, void *vaddr)
305 {
306 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
307
308 if (mem && vaddr >= mem->virt_base && vaddr <
309 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
310 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
311
312 bitmap_release_region(mem->bitmap, page, order);
313 return 1;
314 }
315 return 0;
316 }
317 #else
318 #define dma_alloc_from_coherent_mem(dev, size, handle, ret) (0)
319 #define dma_release_coherent(dev, order, vaddr) (0)
320 #endif /* CONFIG_X86_32 */
321
322 int dma_supported(struct device *dev, u64 mask)
323 {
324 #ifdef CONFIG_PCI
325 if (mask > 0xffffffff && forbid_dac > 0) {
326 printk(KERN_INFO "PCI: Disallowing DAC for device %s\n",
327 dev->bus_id);
328 return 0;
329 }
330 #endif
331
332 if (dma_ops->dma_supported)
333 return dma_ops->dma_supported(dev, mask);
334
335 /* Copied from i386. Doesn't make much sense, because it will
336 only work for pci_alloc_coherent.
337 The caller just has to use GFP_DMA in this case. */
338 if (mask < DMA_24BIT_MASK)
339 return 0;
340
341 /* Tell the device to use SAC when IOMMU force is on. This
342 allows the driver to use cheaper accesses in some cases.
343
344 Problem with this is that if we overflow the IOMMU area and
345 return DAC as fallback address the device may not handle it
346 correctly.
347
348 As a special case some controllers have a 39bit address
349 mode that is as efficient as 32bit (aic79xx). Don't force
350 SAC for these. Assume all masks <= 40 bits are of this
351 type. Normally this doesn't make any difference, but gives
352 more gentle handling of IOMMU overflow. */
353 if (iommu_sac_force && (mask >= DMA_40BIT_MASK)) {
354 printk(KERN_INFO "%s: Force SAC with mask %Lx\n",
355 dev->bus_id, mask);
356 return 0;
357 }
358
359 return 1;
360 }
361 EXPORT_SYMBOL(dma_supported);
362
363 /* Allocate DMA memory on node near device */
364 static noinline struct page *
365 dma_alloc_pages(struct device *dev, gfp_t gfp, unsigned order)
366 {
367 int node;
368
369 node = dev_to_node(dev);
370
371 return alloc_pages_node(node, gfp, order);
372 }
373
374 /*
375 * Allocate memory for a coherent mapping.
376 */
377 void *
378 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
379 gfp_t gfp)
380 {
381 void *memory = NULL;
382 struct page *page;
383 unsigned long dma_mask = 0;
384 dma_addr_t bus;
385 int noretry = 0;
386
387 /* ignore region specifiers */
388 gfp &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
389
390 if (dma_alloc_from_coherent_mem(dev, size, dma_handle, &memory))
391 return memory;
392
393 if (!dev) {
394 dev = &fallback_dev;
395 gfp |= GFP_DMA;
396 }
397 dma_mask = dev->coherent_dma_mask;
398 if (dma_mask == 0)
399 dma_mask = (gfp & GFP_DMA) ? DMA_24BIT_MASK : DMA_32BIT_MASK;
400
401 /* Device not DMA able */
402 if (dev->dma_mask == NULL)
403 return NULL;
404
405 /* Don't invoke OOM killer or retry in lower 16MB DMA zone */
406 if (gfp & __GFP_DMA)
407 noretry = 1;
408
409 #ifdef CONFIG_X86_64
410 /* Why <=? Even when the mask is smaller than 4GB it is often
411 larger than 16MB and in this case we have a chance of
412 finding fitting memory in the next higher zone first. If
413 not retry with true GFP_DMA. -AK */
414 if (dma_mask <= DMA_32BIT_MASK && !(gfp & GFP_DMA)) {
415 gfp |= GFP_DMA32;
416 if (dma_mask < DMA_32BIT_MASK)
417 noretry = 1;
418 }
419 #endif
420
421 again:
422 page = dma_alloc_pages(dev,
423 noretry ? gfp | __GFP_NORETRY : gfp, get_order(size));
424 if (page == NULL)
425 return NULL;
426
427 {
428 int high, mmu;
429 bus = page_to_phys(page);
430 memory = page_address(page);
431 high = (bus + size) >= dma_mask;
432 mmu = high;
433 if (force_iommu && !(gfp & GFP_DMA))
434 mmu = 1;
435 else if (high) {
436 free_pages((unsigned long)memory,
437 get_order(size));
438
439 /* Don't use the 16MB ZONE_DMA unless absolutely
440 needed. It's better to use remapping first. */
441 if (dma_mask < DMA_32BIT_MASK && !(gfp & GFP_DMA)) {
442 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
443 goto again;
444 }
445
446 /* Let low level make its own zone decisions */
447 gfp &= ~(GFP_DMA32|GFP_DMA);
448
449 if (dma_ops->alloc_coherent)
450 return dma_ops->alloc_coherent(dev, size,
451 dma_handle, gfp);
452 return NULL;
453 }
454
455 memset(memory, 0, size);
456 if (!mmu) {
457 *dma_handle = bus;
458 return memory;
459 }
460 }
461
462 if (dma_ops->alloc_coherent) {
463 free_pages((unsigned long)memory, get_order(size));
464 gfp &= ~(GFP_DMA|GFP_DMA32);
465 return dma_ops->alloc_coherent(dev, size, dma_handle, gfp);
466 }
467
468 if (dma_ops->map_simple) {
469 *dma_handle = dma_ops->map_simple(dev, virt_to_phys(memory),
470 size,
471 PCI_DMA_BIDIRECTIONAL);
472 if (*dma_handle != bad_dma_address)
473 return memory;
474 }
475
476 if (panic_on_overflow)
477 panic("dma_alloc_coherent: IOMMU overflow by %lu bytes\n",
478 (unsigned long)size);
479 free_pages((unsigned long)memory, get_order(size));
480 return NULL;
481 }
482 EXPORT_SYMBOL(dma_alloc_coherent);
483
484 /*
485 * Unmap coherent memory.
486 * The caller must ensure that the device has finished accessing the mapping.
487 */
488 void dma_free_coherent(struct device *dev, size_t size,
489 void *vaddr, dma_addr_t bus)
490 {
491 int order = get_order(size);
492 WARN_ON(irqs_disabled()); /* for portability */
493 if (dma_release_coherent(dev, order, vaddr))
494 return;
495 if (dma_ops->unmap_single)
496 dma_ops->unmap_single(dev, bus, size, 0);
497 free_pages((unsigned long)vaddr, order);
498 }
499 EXPORT_SYMBOL(dma_free_coherent);
500
501 static int __init pci_iommu_init(void)
502 {
503 #ifdef CONFIG_CALGARY_IOMMU
504 calgary_iommu_init();
505 #endif
506
507 intel_iommu_init();
508
509 amd_iommu_init();
510
511 #ifdef CONFIG_GART_IOMMU
512 gart_iommu_init();
513 #endif
514
515 no_iommu_init();
516 return 0;
517 }
518
519 void pci_iommu_shutdown(void)
520 {
521 gart_iommu_shutdown();
522 }
523 /* Must execute after PCI subsystem */
524 fs_initcall(pci_iommu_init);
525
526 #ifdef CONFIG_PCI
527 /* Many VIA bridges seem to corrupt data for DAC. Disable it here */
528
529 static __devinit void via_no_dac(struct pci_dev *dev)
530 {
531 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && forbid_dac == 0) {
532 printk(KERN_INFO "PCI: VIA PCI bridge detected."
533 "Disabling DAC.\n");
534 forbid_dac = 1;
535 }
536 }
537 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_VIA, PCI_ANY_ID, via_no_dac);
538 #endif