]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
x86/bugs: Separate AMD E400 erratum and C1E bug
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <asm/idle.h>
27 #include <asm/uaccess.h>
28 #include <asm/mwait.h>
29 #include <asm/fpu/internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mce.h>
34 #include <asm/vm86.h>
35 #include <asm/switch_to.h>
36
37 /*
38 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
39 * no more per-task TSS's. The TSS size is kept cacheline-aligned
40 * so they are allowed to end up in the .data..cacheline_aligned
41 * section. Since TSS's are completely CPU-local, we want them
42 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
43 */
44 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
45 .x86_tss = {
46 .sp0 = TOP_OF_INIT_STACK,
47 #ifdef CONFIG_X86_32
48 .ss0 = __KERNEL_DS,
49 .ss1 = __KERNEL_CS,
50 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
51 #endif
52 },
53 #ifdef CONFIG_X86_32
54 /*
55 * Note that the .io_bitmap member must be extra-big. This is because
56 * the CPU will access an additional byte beyond the end of the IO
57 * permission bitmap. The extra byte must be all 1 bits, and must
58 * be within the limit.
59 */
60 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
61 #endif
62 #ifdef CONFIG_X86_32
63 .SYSENTER_stack_canary = STACK_END_MAGIC,
64 #endif
65 };
66 EXPORT_PER_CPU_SYMBOL(cpu_tss);
67
68 /*
69 * this gets called so that we can store lazy state into memory and copy the
70 * current task into the new thread.
71 */
72 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
73 {
74 memcpy(dst, src, arch_task_struct_size);
75 #ifdef CONFIG_VM86
76 dst->thread.vm86 = NULL;
77 #endif
78
79 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
80 }
81
82 /*
83 * Free current thread data structures etc..
84 */
85 void exit_thread(struct task_struct *tsk)
86 {
87 struct thread_struct *t = &tsk->thread;
88 unsigned long *bp = t->io_bitmap_ptr;
89 struct fpu *fpu = &t->fpu;
90
91 if (bp) {
92 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
93
94 t->io_bitmap_ptr = NULL;
95 clear_thread_flag(TIF_IO_BITMAP);
96 /*
97 * Careful, clear this in the TSS too:
98 */
99 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
100 t->io_bitmap_max = 0;
101 put_cpu();
102 kfree(bp);
103 }
104
105 free_vm86(t);
106
107 fpu__drop(fpu);
108 }
109
110 void flush_thread(void)
111 {
112 struct task_struct *tsk = current;
113
114 flush_ptrace_hw_breakpoint(tsk);
115 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
116
117 fpu__clear(&tsk->thread.fpu);
118 }
119
120 static void hard_disable_TSC(void)
121 {
122 cr4_set_bits(X86_CR4_TSD);
123 }
124
125 void disable_TSC(void)
126 {
127 preempt_disable();
128 if (!test_and_set_thread_flag(TIF_NOTSC))
129 /*
130 * Must flip the CPU state synchronously with
131 * TIF_NOTSC in the current running context.
132 */
133 hard_disable_TSC();
134 preempt_enable();
135 }
136
137 static void hard_enable_TSC(void)
138 {
139 cr4_clear_bits(X86_CR4_TSD);
140 }
141
142 static void enable_TSC(void)
143 {
144 preempt_disable();
145 if (test_and_clear_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
150 hard_enable_TSC();
151 preempt_enable();
152 }
153
154 int get_tsc_mode(unsigned long adr)
155 {
156 unsigned int val;
157
158 if (test_thread_flag(TIF_NOTSC))
159 val = PR_TSC_SIGSEGV;
160 else
161 val = PR_TSC_ENABLE;
162
163 return put_user(val, (unsigned int __user *)adr);
164 }
165
166 int set_tsc_mode(unsigned int val)
167 {
168 if (val == PR_TSC_SIGSEGV)
169 disable_TSC();
170 else if (val == PR_TSC_ENABLE)
171 enable_TSC();
172 else
173 return -EINVAL;
174
175 return 0;
176 }
177
178 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
179 struct tss_struct *tss)
180 {
181 struct thread_struct *prev, *next;
182
183 prev = &prev_p->thread;
184 next = &next_p->thread;
185
186 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
187 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
188 unsigned long debugctl = get_debugctlmsr();
189
190 debugctl &= ~DEBUGCTLMSR_BTF;
191 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
192 debugctl |= DEBUGCTLMSR_BTF;
193
194 update_debugctlmsr(debugctl);
195 }
196
197 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
198 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
199 /* prev and next are different */
200 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
201 hard_disable_TSC();
202 else
203 hard_enable_TSC();
204 }
205
206 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
207 /*
208 * Copy the relevant range of the IO bitmap.
209 * Normally this is 128 bytes or less:
210 */
211 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
212 max(prev->io_bitmap_max, next->io_bitmap_max));
213 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
214 /*
215 * Clear any possible leftover bits:
216 */
217 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
218 }
219 propagate_user_return_notify(prev_p, next_p);
220 }
221
222 /*
223 * Idle related variables and functions
224 */
225 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
226 EXPORT_SYMBOL(boot_option_idle_override);
227
228 static void (*x86_idle)(void);
229
230 #ifndef CONFIG_SMP
231 static inline void play_dead(void)
232 {
233 BUG();
234 }
235 #endif
236
237 void arch_cpu_idle_enter(void)
238 {
239 local_touch_nmi();
240 }
241
242 void arch_cpu_idle_dead(void)
243 {
244 play_dead();
245 }
246
247 /*
248 * Called from the generic idle code.
249 */
250 void arch_cpu_idle(void)
251 {
252 x86_idle();
253 }
254
255 /*
256 * We use this if we don't have any better idle routine..
257 */
258 void __cpuidle default_idle(void)
259 {
260 trace_cpu_idle_rcuidle(1, smp_processor_id());
261 safe_halt();
262 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
263 }
264 #ifdef CONFIG_APM_MODULE
265 EXPORT_SYMBOL(default_idle);
266 #endif
267
268 #ifdef CONFIG_XEN
269 bool xen_set_default_idle(void)
270 {
271 bool ret = !!x86_idle;
272
273 x86_idle = default_idle;
274
275 return ret;
276 }
277 #endif
278 void stop_this_cpu(void *dummy)
279 {
280 local_irq_disable();
281 /*
282 * Remove this CPU:
283 */
284 set_cpu_online(smp_processor_id(), false);
285 disable_local_APIC();
286 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
287
288 for (;;)
289 halt();
290 }
291
292 bool amd_e400_c1e_detected;
293 EXPORT_SYMBOL(amd_e400_c1e_detected);
294
295 static cpumask_var_t amd_e400_c1e_mask;
296
297 void amd_e400_remove_cpu(int cpu)
298 {
299 if (amd_e400_c1e_mask != NULL)
300 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
301 }
302
303 /*
304 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
305 * pending message MSR. If we detect C1E, then we handle it the same
306 * way as C3 power states (local apic timer and TSC stop)
307 */
308 static void amd_e400_idle(void)
309 {
310 if (!amd_e400_c1e_detected) {
311 u32 lo, hi;
312
313 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
314
315 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
316 amd_e400_c1e_detected = true;
317 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
318 mark_tsc_unstable("TSC halt in AMD C1E");
319 pr_info("System has AMD C1E enabled\n");
320 }
321 }
322
323 if (amd_e400_c1e_detected) {
324 int cpu = smp_processor_id();
325
326 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
327 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
328 /* Force broadcast so ACPI can not interfere. */
329 tick_broadcast_force();
330 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
331 }
332 tick_broadcast_enter();
333
334 default_idle();
335
336 /*
337 * The switch back from broadcast mode needs to be
338 * called with interrupts disabled.
339 */
340 local_irq_disable();
341 tick_broadcast_exit();
342 local_irq_enable();
343 } else
344 default_idle();
345 }
346
347 /*
348 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
349 * We can't rely on cpuidle installing MWAIT, because it will not load
350 * on systems that support only C1 -- so the boot default must be MWAIT.
351 *
352 * Some AMD machines are the opposite, they depend on using HALT.
353 *
354 * So for default C1, which is used during boot until cpuidle loads,
355 * use MWAIT-C1 on Intel HW that has it, else use HALT.
356 */
357 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
358 {
359 if (c->x86_vendor != X86_VENDOR_INTEL)
360 return 0;
361
362 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
363 return 0;
364
365 return 1;
366 }
367
368 /*
369 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
370 * with interrupts enabled and no flags, which is backwards compatible with the
371 * original MWAIT implementation.
372 */
373 static __cpuidle void mwait_idle(void)
374 {
375 if (!current_set_polling_and_test()) {
376 trace_cpu_idle_rcuidle(1, smp_processor_id());
377 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
378 mb(); /* quirk */
379 clflush((void *)&current_thread_info()->flags);
380 mb(); /* quirk */
381 }
382
383 __monitor((void *)&current_thread_info()->flags, 0, 0);
384 if (!need_resched())
385 __sti_mwait(0, 0);
386 else
387 local_irq_enable();
388 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
389 } else {
390 local_irq_enable();
391 }
392 __current_clr_polling();
393 }
394
395 void select_idle_routine(const struct cpuinfo_x86 *c)
396 {
397 #ifdef CONFIG_SMP
398 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
399 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
400 #endif
401 if (x86_idle || boot_option_idle_override == IDLE_POLL)
402 return;
403
404 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
405 pr_info("using AMD E400 aware idle routine\n");
406 x86_idle = amd_e400_idle;
407 } else if (prefer_mwait_c1_over_halt(c)) {
408 pr_info("using mwait in idle threads\n");
409 x86_idle = mwait_idle;
410 } else
411 x86_idle = default_idle;
412 }
413
414 void __init init_amd_e400_c1e_mask(void)
415 {
416 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
417 if (x86_idle == amd_e400_idle)
418 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
419 }
420
421 static int __init idle_setup(char *str)
422 {
423 if (!str)
424 return -EINVAL;
425
426 if (!strcmp(str, "poll")) {
427 pr_info("using polling idle threads\n");
428 boot_option_idle_override = IDLE_POLL;
429 cpu_idle_poll_ctrl(true);
430 } else if (!strcmp(str, "halt")) {
431 /*
432 * When the boot option of idle=halt is added, halt is
433 * forced to be used for CPU idle. In such case CPU C2/C3
434 * won't be used again.
435 * To continue to load the CPU idle driver, don't touch
436 * the boot_option_idle_override.
437 */
438 x86_idle = default_idle;
439 boot_option_idle_override = IDLE_HALT;
440 } else if (!strcmp(str, "nomwait")) {
441 /*
442 * If the boot option of "idle=nomwait" is added,
443 * it means that mwait will be disabled for CPU C2/C3
444 * states. In such case it won't touch the variable
445 * of boot_option_idle_override.
446 */
447 boot_option_idle_override = IDLE_NOMWAIT;
448 } else
449 return -1;
450
451 return 0;
452 }
453 early_param("idle", idle_setup);
454
455 unsigned long arch_align_stack(unsigned long sp)
456 {
457 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458 sp -= get_random_int() % 8192;
459 return sp & ~0xf;
460 }
461
462 unsigned long arch_randomize_brk(struct mm_struct *mm)
463 {
464 return randomize_page(mm->brk, 0x02000000);
465 }
466
467 /*
468 * Return saved PC of a blocked thread.
469 * What is this good for? it will be always the scheduler or ret_from_fork.
470 */
471 unsigned long thread_saved_pc(struct task_struct *tsk)
472 {
473 struct inactive_task_frame *frame =
474 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475 return READ_ONCE_NOCHECK(frame->ret_addr);
476 }
477
478 /*
479 * Called from fs/proc with a reference on @p to find the function
480 * which called into schedule(). This needs to be done carefully
481 * because the task might wake up and we might look at a stack
482 * changing under us.
483 */
484 unsigned long get_wchan(struct task_struct *p)
485 {
486 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
487 int count = 0;
488
489 if (!p || p == current || p->state == TASK_RUNNING)
490 return 0;
491
492 if (!try_get_task_stack(p))
493 return 0;
494
495 start = (unsigned long)task_stack_page(p);
496 if (!start)
497 goto out;
498
499 /*
500 * Layout of the stack page:
501 *
502 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503 * PADDING
504 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505 * stack
506 * ----------- bottom = start
507 *
508 * The tasks stack pointer points at the location where the
509 * framepointer is stored. The data on the stack is:
510 * ... IP FP ... IP FP
511 *
512 * We need to read FP and IP, so we need to adjust the upper
513 * bound by another unsigned long.
514 */
515 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516 top -= 2 * sizeof(unsigned long);
517 bottom = start;
518
519 sp = READ_ONCE(p->thread.sp);
520 if (sp < bottom || sp > top)
521 goto out;
522
523 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
524 do {
525 if (fp < bottom || fp > top)
526 goto out;
527 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
528 if (!in_sched_functions(ip)) {
529 ret = ip;
530 goto out;
531 }
532 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
533 } while (count++ < 16 && p->state != TASK_RUNNING);
534
535 out:
536 put_task_stack(p);
537 return ret;
538 }