]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 #include <asm/switch_to.h>
35
36 /*
37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
39 * so they are allowed to end up in the .data..cacheline_aligned
40 * section. Since TSS's are completely CPU-local, we want them
41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42 */
43 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
44 .x86_tss = {
45 .sp0 = TOP_OF_INIT_STACK,
46 #ifdef CONFIG_X86_32
47 .ss0 = __KERNEL_DS,
48 .ss1 = __KERNEL_CS,
49 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
50 #endif
51 },
52 #ifdef CONFIG_X86_32
53 /*
54 * Note that the .io_bitmap member must be extra-big. This is because
55 * the CPU will access an additional byte beyond the end of the IO
56 * permission bitmap. The extra byte must be all 1 bits, and must
57 * be within the limit.
58 */
59 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
60 #endif
61 #ifdef CONFIG_X86_32
62 .SYSENTER_stack_canary = STACK_END_MAGIC,
63 #endif
64 };
65 EXPORT_PER_CPU_SYMBOL(cpu_tss);
66
67 /*
68 * this gets called so that we can store lazy state into memory and copy the
69 * current task into the new thread.
70 */
71 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
72 {
73 memcpy(dst, src, arch_task_struct_size);
74 #ifdef CONFIG_VM86
75 dst->thread.vm86 = NULL;
76 #endif
77
78 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
79 }
80
81 /*
82 * Free current thread data structures etc..
83 */
84 void exit_thread(struct task_struct *tsk)
85 {
86 struct thread_struct *t = &tsk->thread;
87 unsigned long *bp = t->io_bitmap_ptr;
88 struct fpu *fpu = &t->fpu;
89
90 if (bp) {
91 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
92
93 t->io_bitmap_ptr = NULL;
94 clear_thread_flag(TIF_IO_BITMAP);
95 /*
96 * Careful, clear this in the TSS too:
97 */
98 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
99 t->io_bitmap_max = 0;
100 put_cpu();
101 kfree(bp);
102 }
103
104 free_vm86(t);
105
106 fpu__drop(fpu);
107 }
108
109 void flush_thread(void)
110 {
111 struct task_struct *tsk = current;
112
113 flush_ptrace_hw_breakpoint(tsk);
114 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115
116 fpu__clear(&tsk->thread.fpu);
117 }
118
119 static void hard_disable_TSC(void)
120 {
121 cr4_set_bits(X86_CR4_TSD);
122 }
123
124 void disable_TSC(void)
125 {
126 preempt_disable();
127 if (!test_and_set_thread_flag(TIF_NOTSC))
128 /*
129 * Must flip the CPU state synchronously with
130 * TIF_NOTSC in the current running context.
131 */
132 hard_disable_TSC();
133 preempt_enable();
134 }
135
136 static void hard_enable_TSC(void)
137 {
138 cr4_clear_bits(X86_CR4_TSD);
139 }
140
141 static void enable_TSC(void)
142 {
143 preempt_disable();
144 if (test_and_clear_thread_flag(TIF_NOTSC))
145 /*
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
148 */
149 hard_enable_TSC();
150 preempt_enable();
151 }
152
153 int get_tsc_mode(unsigned long adr)
154 {
155 unsigned int val;
156
157 if (test_thread_flag(TIF_NOTSC))
158 val = PR_TSC_SIGSEGV;
159 else
160 val = PR_TSC_ENABLE;
161
162 return put_user(val, (unsigned int __user *)adr);
163 }
164
165 int set_tsc_mode(unsigned int val)
166 {
167 if (val == PR_TSC_SIGSEGV)
168 disable_TSC();
169 else if (val == PR_TSC_ENABLE)
170 enable_TSC();
171 else
172 return -EINVAL;
173
174 return 0;
175 }
176
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178 struct tss_struct *tss)
179 {
180 struct thread_struct *prev, *next;
181
182 prev = &prev_p->thread;
183 next = &next_p->thread;
184
185 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187 unsigned long debugctl = get_debugctlmsr();
188
189 debugctl &= ~DEBUGCTLMSR_BTF;
190 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191 debugctl |= DEBUGCTLMSR_BTF;
192
193 update_debugctlmsr(debugctl);
194 }
195
196 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198 /* prev and next are different */
199 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200 hard_disable_TSC();
201 else
202 hard_enable_TSC();
203 }
204
205 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
206 /*
207 * Copy the relevant range of the IO bitmap.
208 * Normally this is 128 bytes or less:
209 */
210 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211 max(prev->io_bitmap_max, next->io_bitmap_max));
212 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
213 /*
214 * Clear any possible leftover bits:
215 */
216 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
217 }
218 propagate_user_return_notify(prev_p, next_p);
219 }
220
221 /*
222 * Idle related variables and functions
223 */
224 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225 EXPORT_SYMBOL(boot_option_idle_override);
226
227 static void (*x86_idle)(void);
228
229 #ifndef CONFIG_SMP
230 static inline void play_dead(void)
231 {
232 BUG();
233 }
234 #endif
235
236 void arch_cpu_idle_enter(void)
237 {
238 local_touch_nmi();
239 }
240
241 void arch_cpu_idle_dead(void)
242 {
243 play_dead();
244 }
245
246 /*
247 * Called from the generic idle code.
248 */
249 void arch_cpu_idle(void)
250 {
251 x86_idle();
252 }
253
254 /*
255 * We use this if we don't have any better idle routine..
256 */
257 void __cpuidle default_idle(void)
258 {
259 trace_cpu_idle_rcuidle(1, smp_processor_id());
260 safe_halt();
261 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
262 }
263 #ifdef CONFIG_APM_MODULE
264 EXPORT_SYMBOL(default_idle);
265 #endif
266
267 #ifdef CONFIG_XEN
268 bool xen_set_default_idle(void)
269 {
270 bool ret = !!x86_idle;
271
272 x86_idle = default_idle;
273
274 return ret;
275 }
276 #endif
277 void stop_this_cpu(void *dummy)
278 {
279 local_irq_disable();
280 /*
281 * Remove this CPU:
282 */
283 set_cpu_online(smp_processor_id(), false);
284 disable_local_APIC();
285 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
286
287 for (;;)
288 halt();
289 }
290
291 /*
292 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
293 * states (local apic timer and TSC stop).
294 */
295 static void amd_e400_idle(void)
296 {
297 /*
298 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
299 * gets set after static_cpu_has() places have been converted via
300 * alternatives.
301 */
302 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
303 default_idle();
304 return;
305 }
306
307 tick_broadcast_enter();
308
309 default_idle();
310
311 /*
312 * The switch back from broadcast mode needs to be called with
313 * interrupts disabled.
314 */
315 local_irq_disable();
316 tick_broadcast_exit();
317 local_irq_enable();
318 }
319
320 /*
321 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
322 * We can't rely on cpuidle installing MWAIT, because it will not load
323 * on systems that support only C1 -- so the boot default must be MWAIT.
324 *
325 * Some AMD machines are the opposite, they depend on using HALT.
326 *
327 * So for default C1, which is used during boot until cpuidle loads,
328 * use MWAIT-C1 on Intel HW that has it, else use HALT.
329 */
330 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
331 {
332 if (c->x86_vendor != X86_VENDOR_INTEL)
333 return 0;
334
335 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
336 return 0;
337
338 return 1;
339 }
340
341 /*
342 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
343 * with interrupts enabled and no flags, which is backwards compatible with the
344 * original MWAIT implementation.
345 */
346 static __cpuidle void mwait_idle(void)
347 {
348 if (!current_set_polling_and_test()) {
349 trace_cpu_idle_rcuidle(1, smp_processor_id());
350 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
351 mb(); /* quirk */
352 clflush((void *)&current_thread_info()->flags);
353 mb(); /* quirk */
354 }
355
356 __monitor((void *)&current_thread_info()->flags, 0, 0);
357 if (!need_resched())
358 __sti_mwait(0, 0);
359 else
360 local_irq_enable();
361 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
362 } else {
363 local_irq_enable();
364 }
365 __current_clr_polling();
366 }
367
368 void select_idle_routine(const struct cpuinfo_x86 *c)
369 {
370 #ifdef CONFIG_SMP
371 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
372 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
373 #endif
374 if (x86_idle || boot_option_idle_override == IDLE_POLL)
375 return;
376
377 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
378 pr_info("using AMD E400 aware idle routine\n");
379 x86_idle = amd_e400_idle;
380 } else if (prefer_mwait_c1_over_halt(c)) {
381 pr_info("using mwait in idle threads\n");
382 x86_idle = mwait_idle;
383 } else
384 x86_idle = default_idle;
385 }
386
387 void amd_e400_c1e_apic_setup(void)
388 {
389 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
390 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
391 local_irq_disable();
392 tick_broadcast_force();
393 local_irq_enable();
394 }
395 }
396
397 void __init arch_post_acpi_subsys_init(void)
398 {
399 u32 lo, hi;
400
401 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
402 return;
403
404 /*
405 * AMD E400 detection needs to happen after ACPI has been enabled. If
406 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
407 * MSR_K8_INT_PENDING_MSG.
408 */
409 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
410 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
411 return;
412
413 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
414
415 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
416 mark_tsc_unstable("TSC halt in AMD C1E");
417 pr_info("System has AMD C1E enabled\n");
418 }
419
420 static int __init idle_setup(char *str)
421 {
422 if (!str)
423 return -EINVAL;
424
425 if (!strcmp(str, "poll")) {
426 pr_info("using polling idle threads\n");
427 boot_option_idle_override = IDLE_POLL;
428 cpu_idle_poll_ctrl(true);
429 } else if (!strcmp(str, "halt")) {
430 /*
431 * When the boot option of idle=halt is added, halt is
432 * forced to be used for CPU idle. In such case CPU C2/C3
433 * won't be used again.
434 * To continue to load the CPU idle driver, don't touch
435 * the boot_option_idle_override.
436 */
437 x86_idle = default_idle;
438 boot_option_idle_override = IDLE_HALT;
439 } else if (!strcmp(str, "nomwait")) {
440 /*
441 * If the boot option of "idle=nomwait" is added,
442 * it means that mwait will be disabled for CPU C2/C3
443 * states. In such case it won't touch the variable
444 * of boot_option_idle_override.
445 */
446 boot_option_idle_override = IDLE_NOMWAIT;
447 } else
448 return -1;
449
450 return 0;
451 }
452 early_param("idle", idle_setup);
453
454 unsigned long arch_align_stack(unsigned long sp)
455 {
456 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
457 sp -= get_random_int() % 8192;
458 return sp & ~0xf;
459 }
460
461 unsigned long arch_randomize_brk(struct mm_struct *mm)
462 {
463 return randomize_page(mm->brk, 0x02000000);
464 }
465
466 /*
467 * Return saved PC of a blocked thread.
468 * What is this good for? it will be always the scheduler or ret_from_fork.
469 */
470 unsigned long thread_saved_pc(struct task_struct *tsk)
471 {
472 struct inactive_task_frame *frame =
473 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
474 return READ_ONCE_NOCHECK(frame->ret_addr);
475 }
476
477 /*
478 * Called from fs/proc with a reference on @p to find the function
479 * which called into schedule(). This needs to be done carefully
480 * because the task might wake up and we might look at a stack
481 * changing under us.
482 */
483 unsigned long get_wchan(struct task_struct *p)
484 {
485 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
486 int count = 0;
487
488 if (!p || p == current || p->state == TASK_RUNNING)
489 return 0;
490
491 if (!try_get_task_stack(p))
492 return 0;
493
494 start = (unsigned long)task_stack_page(p);
495 if (!start)
496 goto out;
497
498 /*
499 * Layout of the stack page:
500 *
501 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
502 * PADDING
503 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
504 * stack
505 * ----------- bottom = start
506 *
507 * The tasks stack pointer points at the location where the
508 * framepointer is stored. The data on the stack is:
509 * ... IP FP ... IP FP
510 *
511 * We need to read FP and IP, so we need to adjust the upper
512 * bound by another unsigned long.
513 */
514 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
515 top -= 2 * sizeof(unsigned long);
516 bottom = start;
517
518 sp = READ_ONCE(p->thread.sp);
519 if (sp < bottom || sp > top)
520 goto out;
521
522 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
523 do {
524 if (fp < bottom || fp > top)
525 goto out;
526 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
527 if (!in_sched_functions(ip)) {
528 ret = ip;
529 goto out;
530 }
531 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
532 } while (count++ < 16 && p->state != TASK_RUNNING);
533
534 out:
535 put_task_stack(p);
536 return ret;
537 }