]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/process.c
ASoC: wm8904: harmless underflow in wm8904_put_deemph()
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34
35 /*
36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
38 * so they are allowed to end up in the .data..cacheline_aligned
39 * section. Since TSS's are completely CPU-local, we want them
40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
41 */
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43 .x86_tss = {
44 .sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46 .ss0 = __KERNEL_DS,
47 .ss1 = __KERNEL_CS,
48 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
49 #endif
50 },
51 #ifdef CONFIG_X86_32
52 /*
53 * Note that the .io_bitmap member must be extra-big. This is because
54 * the CPU will access an additional byte beyond the end of the IO
55 * permission bitmap. The extra byte must be all 1 bits, and must
56 * be within the limit.
57 */
58 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
60 };
61 EXPORT_PER_CPU_SYMBOL(cpu_tss);
62
63 #ifdef CONFIG_X86_64
64 static DEFINE_PER_CPU(unsigned char, is_idle);
65 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
66
67 void idle_notifier_register(struct notifier_block *n)
68 {
69 atomic_notifier_chain_register(&idle_notifier, n);
70 }
71 EXPORT_SYMBOL_GPL(idle_notifier_register);
72
73 void idle_notifier_unregister(struct notifier_block *n)
74 {
75 atomic_notifier_chain_unregister(&idle_notifier, n);
76 }
77 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
78 #endif
79
80 /*
81 * this gets called so that we can store lazy state into memory and copy the
82 * current task into the new thread.
83 */
84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86 memcpy(dst, src, arch_task_struct_size);
87
88 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
89 }
90
91 /*
92 * Free current thread data structures etc..
93 */
94 void exit_thread(void)
95 {
96 struct task_struct *me = current;
97 struct thread_struct *t = &me->thread;
98 unsigned long *bp = t->io_bitmap_ptr;
99 struct fpu *fpu = &t->fpu;
100
101 if (bp) {
102 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
103
104 t->io_bitmap_ptr = NULL;
105 clear_thread_flag(TIF_IO_BITMAP);
106 /*
107 * Careful, clear this in the TSS too:
108 */
109 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
110 t->io_bitmap_max = 0;
111 put_cpu();
112 kfree(bp);
113 }
114
115 free_vm86(t);
116
117 fpu__drop(fpu);
118 }
119
120 void flush_thread(void)
121 {
122 struct task_struct *tsk = current;
123
124 flush_ptrace_hw_breakpoint(tsk);
125 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
126
127 fpu__clear(&tsk->thread.fpu);
128 }
129
130 static void hard_disable_TSC(void)
131 {
132 cr4_set_bits(X86_CR4_TSD);
133 }
134
135 void disable_TSC(void)
136 {
137 preempt_disable();
138 if (!test_and_set_thread_flag(TIF_NOTSC))
139 /*
140 * Must flip the CPU state synchronously with
141 * TIF_NOTSC in the current running context.
142 */
143 hard_disable_TSC();
144 preempt_enable();
145 }
146
147 static void hard_enable_TSC(void)
148 {
149 cr4_clear_bits(X86_CR4_TSD);
150 }
151
152 static void enable_TSC(void)
153 {
154 preempt_disable();
155 if (test_and_clear_thread_flag(TIF_NOTSC))
156 /*
157 * Must flip the CPU state synchronously with
158 * TIF_NOTSC in the current running context.
159 */
160 hard_enable_TSC();
161 preempt_enable();
162 }
163
164 int get_tsc_mode(unsigned long adr)
165 {
166 unsigned int val;
167
168 if (test_thread_flag(TIF_NOTSC))
169 val = PR_TSC_SIGSEGV;
170 else
171 val = PR_TSC_ENABLE;
172
173 return put_user(val, (unsigned int __user *)adr);
174 }
175
176 int set_tsc_mode(unsigned int val)
177 {
178 if (val == PR_TSC_SIGSEGV)
179 disable_TSC();
180 else if (val == PR_TSC_ENABLE)
181 enable_TSC();
182 else
183 return -EINVAL;
184
185 return 0;
186 }
187
188 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
189 struct tss_struct *tss)
190 {
191 struct thread_struct *prev, *next;
192
193 prev = &prev_p->thread;
194 next = &next_p->thread;
195
196 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
197 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
198 unsigned long debugctl = get_debugctlmsr();
199
200 debugctl &= ~DEBUGCTLMSR_BTF;
201 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
202 debugctl |= DEBUGCTLMSR_BTF;
203
204 update_debugctlmsr(debugctl);
205 }
206
207 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
208 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
209 /* prev and next are different */
210 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
211 hard_disable_TSC();
212 else
213 hard_enable_TSC();
214 }
215
216 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
217 /*
218 * Copy the relevant range of the IO bitmap.
219 * Normally this is 128 bytes or less:
220 */
221 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
222 max(prev->io_bitmap_max, next->io_bitmap_max));
223 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
224 /*
225 * Clear any possible leftover bits:
226 */
227 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
228 }
229 propagate_user_return_notify(prev_p, next_p);
230 }
231
232 /*
233 * Idle related variables and functions
234 */
235 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
236 EXPORT_SYMBOL(boot_option_idle_override);
237
238 static void (*x86_idle)(void);
239
240 #ifndef CONFIG_SMP
241 static inline void play_dead(void)
242 {
243 BUG();
244 }
245 #endif
246
247 #ifdef CONFIG_X86_64
248 void enter_idle(void)
249 {
250 this_cpu_write(is_idle, 1);
251 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
252 }
253
254 static void __exit_idle(void)
255 {
256 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
257 return;
258 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
259 }
260
261 /* Called from interrupts to signify idle end */
262 void exit_idle(void)
263 {
264 /* idle loop has pid 0 */
265 if (current->pid)
266 return;
267 __exit_idle();
268 }
269 #endif
270
271 void arch_cpu_idle_enter(void)
272 {
273 local_touch_nmi();
274 enter_idle();
275 }
276
277 void arch_cpu_idle_exit(void)
278 {
279 __exit_idle();
280 }
281
282 void arch_cpu_idle_dead(void)
283 {
284 play_dead();
285 }
286
287 /*
288 * Called from the generic idle code.
289 */
290 void arch_cpu_idle(void)
291 {
292 x86_idle();
293 }
294
295 /*
296 * We use this if we don't have any better idle routine..
297 */
298 void default_idle(void)
299 {
300 trace_cpu_idle_rcuidle(1, smp_processor_id());
301 safe_halt();
302 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
303 }
304 #ifdef CONFIG_APM_MODULE
305 EXPORT_SYMBOL(default_idle);
306 #endif
307
308 #ifdef CONFIG_XEN
309 bool xen_set_default_idle(void)
310 {
311 bool ret = !!x86_idle;
312
313 x86_idle = default_idle;
314
315 return ret;
316 }
317 #endif
318 void stop_this_cpu(void *dummy)
319 {
320 local_irq_disable();
321 /*
322 * Remove this CPU:
323 */
324 set_cpu_online(smp_processor_id(), false);
325 disable_local_APIC();
326 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
327
328 for (;;)
329 halt();
330 }
331
332 bool amd_e400_c1e_detected;
333 EXPORT_SYMBOL(amd_e400_c1e_detected);
334
335 static cpumask_var_t amd_e400_c1e_mask;
336
337 void amd_e400_remove_cpu(int cpu)
338 {
339 if (amd_e400_c1e_mask != NULL)
340 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
341 }
342
343 /*
344 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
345 * pending message MSR. If we detect C1E, then we handle it the same
346 * way as C3 power states (local apic timer and TSC stop)
347 */
348 static void amd_e400_idle(void)
349 {
350 if (!amd_e400_c1e_detected) {
351 u32 lo, hi;
352
353 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
354
355 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
356 amd_e400_c1e_detected = true;
357 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
358 mark_tsc_unstable("TSC halt in AMD C1E");
359 pr_info("System has AMD C1E enabled\n");
360 }
361 }
362
363 if (amd_e400_c1e_detected) {
364 int cpu = smp_processor_id();
365
366 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
367 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
368 /* Force broadcast so ACPI can not interfere. */
369 tick_broadcast_force();
370 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
371 }
372 tick_broadcast_enter();
373
374 default_idle();
375
376 /*
377 * The switch back from broadcast mode needs to be
378 * called with interrupts disabled.
379 */
380 local_irq_disable();
381 tick_broadcast_exit();
382 local_irq_enable();
383 } else
384 default_idle();
385 }
386
387 /*
388 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
389 * We can't rely on cpuidle installing MWAIT, because it will not load
390 * on systems that support only C1 -- so the boot default must be MWAIT.
391 *
392 * Some AMD machines are the opposite, they depend on using HALT.
393 *
394 * So for default C1, which is used during boot until cpuidle loads,
395 * use MWAIT-C1 on Intel HW that has it, else use HALT.
396 */
397 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
398 {
399 if (c->x86_vendor != X86_VENDOR_INTEL)
400 return 0;
401
402 if (!cpu_has(c, X86_FEATURE_MWAIT))
403 return 0;
404
405 return 1;
406 }
407
408 /*
409 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
410 * with interrupts enabled and no flags, which is backwards compatible with the
411 * original MWAIT implementation.
412 */
413 static void mwait_idle(void)
414 {
415 if (!current_set_polling_and_test()) {
416 trace_cpu_idle_rcuidle(1, smp_processor_id());
417 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
418 smp_mb(); /* quirk */
419 clflush((void *)&current_thread_info()->flags);
420 smp_mb(); /* quirk */
421 }
422
423 __monitor((void *)&current_thread_info()->flags, 0, 0);
424 if (!need_resched())
425 __sti_mwait(0, 0);
426 else
427 local_irq_enable();
428 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
429 } else {
430 local_irq_enable();
431 }
432 __current_clr_polling();
433 }
434
435 void select_idle_routine(const struct cpuinfo_x86 *c)
436 {
437 #ifdef CONFIG_SMP
438 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
439 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
440 #endif
441 if (x86_idle || boot_option_idle_override == IDLE_POLL)
442 return;
443
444 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
445 /* E400: APIC timer interrupt does not wake up CPU from C1e */
446 pr_info("using AMD E400 aware idle routine\n");
447 x86_idle = amd_e400_idle;
448 } else if (prefer_mwait_c1_over_halt(c)) {
449 pr_info("using mwait in idle threads\n");
450 x86_idle = mwait_idle;
451 } else
452 x86_idle = default_idle;
453 }
454
455 void __init init_amd_e400_c1e_mask(void)
456 {
457 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
458 if (x86_idle == amd_e400_idle)
459 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
460 }
461
462 static int __init idle_setup(char *str)
463 {
464 if (!str)
465 return -EINVAL;
466
467 if (!strcmp(str, "poll")) {
468 pr_info("using polling idle threads\n");
469 boot_option_idle_override = IDLE_POLL;
470 cpu_idle_poll_ctrl(true);
471 } else if (!strcmp(str, "halt")) {
472 /*
473 * When the boot option of idle=halt is added, halt is
474 * forced to be used for CPU idle. In such case CPU C2/C3
475 * won't be used again.
476 * To continue to load the CPU idle driver, don't touch
477 * the boot_option_idle_override.
478 */
479 x86_idle = default_idle;
480 boot_option_idle_override = IDLE_HALT;
481 } else if (!strcmp(str, "nomwait")) {
482 /*
483 * If the boot option of "idle=nomwait" is added,
484 * it means that mwait will be disabled for CPU C2/C3
485 * states. In such case it won't touch the variable
486 * of boot_option_idle_override.
487 */
488 boot_option_idle_override = IDLE_NOMWAIT;
489 } else
490 return -1;
491
492 return 0;
493 }
494 early_param("idle", idle_setup);
495
496 unsigned long arch_align_stack(unsigned long sp)
497 {
498 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
499 sp -= get_random_int() % 8192;
500 return sp & ~0xf;
501 }
502
503 unsigned long arch_randomize_brk(struct mm_struct *mm)
504 {
505 unsigned long range_end = mm->brk + 0x02000000;
506 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
507 }
508